1 //===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code for a function.  This class contains a list of
10 // MachineBasicBlock instances that make up the current compiled function.
11 //
12 // This class also contains pointers to various classes which hold
13 // target-specific information about the generated code.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
18 #define LLVM_CODEGEN_MACHINEFUNCTION_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/FloatingPointMode.h"
24 #include "llvm/ADT/GraphTraits.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/ilist.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/ArrayRecycler.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/Recycler.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <memory>
43 #include <utility>
44 #include <vector>
45 
46 namespace llvm {
47 
48 class BasicBlock;
49 class BlockAddress;
50 class DataLayout;
51 class DebugLoc;
52 class DIExpression;
53 class DILocalVariable;
54 class DILocation;
55 class Function;
56 class GlobalValue;
57 class LLVMTargetMachine;
58 class MachineConstantPool;
59 class MachineFrameInfo;
60 class MachineFunction;
61 class MachineJumpTableInfo;
62 class MachineModuleInfo;
63 class MachineRegisterInfo;
64 class MCContext;
65 class MCInstrDesc;
66 class MCSymbol;
67 class Pass;
68 class PseudoSourceValueManager;
69 class raw_ostream;
70 class SlotIndexes;
71 class TargetRegisterClass;
72 class TargetSubtargetInfo;
73 struct WasmEHFuncInfo;
74 struct WinEHFuncInfo;
75 
76 template <> struct ilist_alloc_traits<MachineBasicBlock> {
77   void deleteNode(MachineBasicBlock *MBB);
78 };
79 
80 template <> struct ilist_callback_traits<MachineBasicBlock> {
81   void addNodeToList(MachineBasicBlock* N);
82   void removeNodeFromList(MachineBasicBlock* N);
83 
84   template <class Iterator>
85   void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
86     assert(this == &OldList && "never transfer MBBs between functions");
87   }
88 };
89 
90 /// MachineFunctionInfo - This class can be derived from and used by targets to
91 /// hold private target-specific information for each MachineFunction.  Objects
92 /// of type are accessed/created with MF::getInfo and destroyed when the
93 /// MachineFunction is destroyed.
94 struct MachineFunctionInfo {
95   virtual ~MachineFunctionInfo();
96 
97   /// Factory function: default behavior is to call new using the
98   /// supplied allocator.
99   ///
100   /// This function can be overridden in a derive class.
101   template<typename Ty>
102   static Ty *create(BumpPtrAllocator &Allocator, MachineFunction &MF) {
103     return new (Allocator.Allocate<Ty>()) Ty(MF);
104   }
105 };
106 
107 /// Properties which a MachineFunction may have at a given point in time.
108 /// Each of these has checking code in the MachineVerifier, and passes can
109 /// require that a property be set.
110 class MachineFunctionProperties {
111   // Possible TODO: Allow targets to extend this (perhaps by allowing the
112   // constructor to specify the size of the bit vector)
113   // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
114   // stated as the negative of "has vregs"
115 
116 public:
117   // The properties are stated in "positive" form; i.e. a pass could require
118   // that the property hold, but not that it does not hold.
119 
120   // Property descriptions:
121   // IsSSA: True when the machine function is in SSA form and virtual registers
122   //  have a single def.
123   // NoPHIs: The machine function does not contain any PHI instruction.
124   // TracksLiveness: True when tracking register liveness accurately.
125   //  While this property is set, register liveness information in basic block
126   //  live-in lists and machine instruction operands (e.g. kill flags, implicit
127   //  defs) is accurate. This means it can be used to change the code in ways
128   //  that affect the values in registers, for example by the register
129   //  scavenger.
130   //  When this property is clear, liveness is no longer reliable.
131   // NoVRegs: The machine function does not use any virtual registers.
132   // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
133   //  instructions have been legalized; i.e., all instructions are now one of:
134   //   - generic and always legal (e.g., COPY)
135   //   - target-specific
136   //   - legal pre-isel generic instructions.
137   // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
138   //  virtual registers have been assigned to a register bank.
139   // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
140   //  generic instructions have been eliminated; i.e., all instructions are now
141   //  target-specific or non-pre-isel generic instructions (e.g., COPY).
142   //  Since only pre-isel generic instructions can have generic virtual register
143   //  operands, this also means that all generic virtual registers have been
144   //  constrained to virtual registers (assigned to register classes) and that
145   //  all sizes attached to them have been eliminated.
146   enum class Property : unsigned {
147     IsSSA,
148     NoPHIs,
149     TracksLiveness,
150     NoVRegs,
151     FailedISel,
152     Legalized,
153     RegBankSelected,
154     Selected,
155     LastProperty = Selected,
156   };
157 
158   bool hasProperty(Property P) const {
159     return Properties[static_cast<unsigned>(P)];
160   }
161 
162   MachineFunctionProperties &set(Property P) {
163     Properties.set(static_cast<unsigned>(P));
164     return *this;
165   }
166 
167   MachineFunctionProperties &reset(Property P) {
168     Properties.reset(static_cast<unsigned>(P));
169     return *this;
170   }
171 
172   /// Reset all the properties.
173   MachineFunctionProperties &reset() {
174     Properties.reset();
175     return *this;
176   }
177 
178   MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
179     Properties |= MFP.Properties;
180     return *this;
181   }
182 
183   MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
184     Properties.reset(MFP.Properties);
185     return *this;
186   }
187 
188   // Returns true if all properties set in V (i.e. required by a pass) are set
189   // in this.
190   bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
191     return !V.Properties.test(Properties);
192   }
193 
194   /// Print the MachineFunctionProperties in human-readable form.
195   void print(raw_ostream &OS) const;
196 
197 private:
198   BitVector Properties =
199       BitVector(static_cast<unsigned>(Property::LastProperty)+1);
200 };
201 
202 struct SEHHandler {
203   /// Filter or finally function. Null indicates a catch-all.
204   const Function *FilterOrFinally;
205 
206   /// Address of block to recover at. Null for a finally handler.
207   const BlockAddress *RecoverBA;
208 };
209 
210 /// This structure is used to retain landing pad info for the current function.
211 struct LandingPadInfo {
212   MachineBasicBlock *LandingPadBlock;      // Landing pad block.
213   SmallVector<MCSymbol *, 1> BeginLabels;  // Labels prior to invoke.
214   SmallVector<MCSymbol *, 1> EndLabels;    // Labels after invoke.
215   SmallVector<SEHHandler, 1> SEHHandlers;  // SEH handlers active at this lpad.
216   MCSymbol *LandingPadLabel = nullptr;     // Label at beginning of landing pad.
217   std::vector<int> TypeIds;                // List of type ids (filters negative).
218 
219   explicit LandingPadInfo(MachineBasicBlock *MBB)
220       : LandingPadBlock(MBB) {}
221 };
222 
223 class MachineFunction {
224   const Function &F;
225   const LLVMTargetMachine &Target;
226   const TargetSubtargetInfo *STI;
227   MCContext &Ctx;
228   MachineModuleInfo &MMI;
229 
230   // RegInfo - Information about each register in use in the function.
231   MachineRegisterInfo *RegInfo;
232 
233   // Used to keep track of target-specific per-machine function information for
234   // the target implementation.
235   MachineFunctionInfo *MFInfo;
236 
237   // Keep track of objects allocated on the stack.
238   MachineFrameInfo *FrameInfo;
239 
240   // Keep track of constants which are spilled to memory
241   MachineConstantPool *ConstantPool;
242 
243   // Keep track of jump tables for switch instructions
244   MachineJumpTableInfo *JumpTableInfo;
245 
246   // Keeps track of Wasm exception handling related data. This will be null for
247   // functions that aren't using a wasm EH personality.
248   WasmEHFuncInfo *WasmEHInfo = nullptr;
249 
250   // Keeps track of Windows exception handling related data. This will be null
251   // for functions that aren't using a funclet-based EH personality.
252   WinEHFuncInfo *WinEHInfo = nullptr;
253 
254   // Function-level unique numbering for MachineBasicBlocks.  When a
255   // MachineBasicBlock is inserted into a MachineFunction is it automatically
256   // numbered and this vector keeps track of the mapping from ID's to MBB's.
257   std::vector<MachineBasicBlock*> MBBNumbering;
258 
259   // Pool-allocate MachineFunction-lifetime and IR objects.
260   BumpPtrAllocator Allocator;
261 
262   // Allocation management for instructions in function.
263   Recycler<MachineInstr> InstructionRecycler;
264 
265   // Allocation management for operand arrays on instructions.
266   ArrayRecycler<MachineOperand> OperandRecycler;
267 
268   // Allocation management for basic blocks in function.
269   Recycler<MachineBasicBlock> BasicBlockRecycler;
270 
271   // List of machine basic blocks in function
272   using BasicBlockListType = ilist<MachineBasicBlock>;
273   BasicBlockListType BasicBlocks;
274 
275   /// FunctionNumber - This provides a unique ID for each function emitted in
276   /// this translation unit.
277   ///
278   unsigned FunctionNumber;
279 
280   /// Alignment - The alignment of the function.
281   Align Alignment;
282 
283   /// ExposesReturnsTwice - True if the function calls setjmp or related
284   /// functions with attribute "returns twice", but doesn't have
285   /// the attribute itself.
286   /// This is used to limit optimizations which cannot reason
287   /// about the control flow of such functions.
288   bool ExposesReturnsTwice = false;
289 
290   /// True if the function includes any inline assembly.
291   bool HasInlineAsm = false;
292 
293   /// True if any WinCFI instruction have been emitted in this function.
294   bool HasWinCFI = false;
295 
296   /// Current high-level properties of the IR of the function (e.g. is in SSA
297   /// form or whether registers have been allocated)
298   MachineFunctionProperties Properties;
299 
300   // Allocation management for pseudo source values.
301   std::unique_ptr<PseudoSourceValueManager> PSVManager;
302 
303   /// List of moves done by a function's prolog.  Used to construct frame maps
304   /// by debug and exception handling consumers.
305   std::vector<MCCFIInstruction> FrameInstructions;
306 
307   /// List of basic blocks immediately following calls to _setjmp. Used to
308   /// construct a table of valid longjmp targets for Windows Control Flow Guard.
309   std::vector<MCSymbol *> LongjmpTargets;
310 
311   /// \name Exception Handling
312   /// \{
313 
314   /// List of LandingPadInfo describing the landing pad information.
315   std::vector<LandingPadInfo> LandingPads;
316 
317   /// Map a landing pad's EH symbol to the call site indexes.
318   DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap;
319 
320   /// Map a landing pad to its index.
321   DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap;
322 
323   /// Map of invoke call site index values to associated begin EH_LABEL.
324   DenseMap<MCSymbol*, unsigned> CallSiteMap;
325 
326   /// CodeView label annotations.
327   std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations;
328 
329   bool CallsEHReturn = false;
330   bool CallsUnwindInit = false;
331   bool HasEHScopes = false;
332   bool HasEHFunclets = false;
333 
334   /// List of C++ TypeInfo used.
335   std::vector<const GlobalValue *> TypeInfos;
336 
337   /// List of typeids encoding filters used.
338   std::vector<unsigned> FilterIds;
339 
340   /// List of the indices in FilterIds corresponding to filter terminators.
341   std::vector<unsigned> FilterEnds;
342 
343   EHPersonality PersonalityTypeCache = EHPersonality::Unknown;
344 
345   /// \}
346 
347   /// Clear all the members of this MachineFunction, but the ones used
348   /// to initialize again the MachineFunction.
349   /// More specifically, this deallocates all the dynamically allocated
350   /// objects and get rid of all the XXXInfo data structure, but keep
351   /// unchanged the references to Fn, Target, MMI, and FunctionNumber.
352   void clear();
353   /// Allocate and initialize the different members.
354   /// In particular, the XXXInfo data structure.
355   /// \pre Fn, Target, MMI, and FunctionNumber are properly set.
356   void init();
357 
358 public:
359   struct VariableDbgInfo {
360     const DILocalVariable *Var;
361     const DIExpression *Expr;
362     // The Slot can be negative for fixed stack objects.
363     int Slot;
364     const DILocation *Loc;
365 
366     VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
367                     int Slot, const DILocation *Loc)
368         : Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {}
369   };
370 
371   class Delegate {
372     virtual void anchor();
373 
374   public:
375     virtual ~Delegate() = default;
376     /// Callback after an insertion. This should not modify the MI directly.
377     virtual void MF_HandleInsertion(MachineInstr &MI) = 0;
378     /// Callback before a removal. This should not modify the MI directly.
379     virtual void MF_HandleRemoval(MachineInstr &MI) = 0;
380   };
381 
382   /// Structure used to represent pair of argument number after call lowering
383   /// and register used to transfer that argument.
384   /// For now we support only cases when argument is transferred through one
385   /// register.
386   struct ArgRegPair {
387     unsigned Reg;
388     uint16_t ArgNo;
389     ArgRegPair(unsigned R, unsigned Arg) : Reg(R), ArgNo(Arg) {
390       assert(Arg < (1 << 16) && "Arg out of range");
391     }
392   };
393   /// Vector of call argument and its forwarding register.
394   using CallSiteInfo = SmallVector<ArgRegPair, 1>;
395   using CallSiteInfoImpl = SmallVectorImpl<ArgRegPair>;
396 
397 private:
398   Delegate *TheDelegate = nullptr;
399 
400   using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>;
401   /// Map a call instruction to call site arguments forwarding info.
402   CallSiteInfoMap CallSitesInfo;
403 
404   /// A helper function that returns call site info for a give call
405   /// instruction if debug entry value support is enabled.
406   CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI);
407 
408   // Callbacks for insertion and removal.
409   void handleInsertion(MachineInstr &MI);
410   void handleRemoval(MachineInstr &MI);
411   friend struct ilist_traits<MachineInstr>;
412 
413 public:
414   using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>;
415   VariableDbgInfoMapTy VariableDbgInfos;
416 
417   MachineFunction(const Function &F, const LLVMTargetMachine &Target,
418                   const TargetSubtargetInfo &STI, unsigned FunctionNum,
419                   MachineModuleInfo &MMI);
420   MachineFunction(const MachineFunction &) = delete;
421   MachineFunction &operator=(const MachineFunction &) = delete;
422   ~MachineFunction();
423 
424   /// Reset the instance as if it was just created.
425   void reset() {
426     clear();
427     init();
428   }
429 
430   /// Reset the currently registered delegate - otherwise assert.
431   void resetDelegate(Delegate *delegate) {
432     assert(TheDelegate == delegate &&
433            "Only the current delegate can perform reset!");
434     TheDelegate = nullptr;
435   }
436 
437   /// Set the delegate. resetDelegate must be called before attempting
438   /// to set.
439   void setDelegate(Delegate *delegate) {
440     assert(delegate && !TheDelegate &&
441            "Attempted to set delegate to null, or to change it without "
442            "first resetting it!");
443 
444     TheDelegate = delegate;
445   }
446 
447   MachineModuleInfo &getMMI() const { return MMI; }
448   MCContext &getContext() const { return Ctx; }
449 
450   PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }
451 
452   /// Return the DataLayout attached to the Module associated to this MF.
453   const DataLayout &getDataLayout() const;
454 
455   /// Return the LLVM function that this machine code represents
456   const Function &getFunction() const { return F; }
457 
458   /// getName - Return the name of the corresponding LLVM function.
459   StringRef getName() const;
460 
461   /// getFunctionNumber - Return a unique ID for the current function.
462   unsigned getFunctionNumber() const { return FunctionNumber; }
463 
464   /// getTarget - Return the target machine this machine code is compiled with
465   const LLVMTargetMachine &getTarget() const { return Target; }
466 
467   /// getSubtarget - Return the subtarget for which this machine code is being
468   /// compiled.
469   const TargetSubtargetInfo &getSubtarget() const { return *STI; }
470 
471   /// getSubtarget - This method returns a pointer to the specified type of
472   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
473   /// returned is of the correct type.
474   template<typename STC> const STC &getSubtarget() const {
475     return *static_cast<const STC *>(STI);
476   }
477 
478   /// getRegInfo - Return information about the registers currently in use.
479   MachineRegisterInfo &getRegInfo() { return *RegInfo; }
480   const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }
481 
482   /// getFrameInfo - Return the frame info object for the current function.
483   /// This object contains information about objects allocated on the stack
484   /// frame of the current function in an abstract way.
485   MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
486   const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }
487 
488   /// getJumpTableInfo - Return the jump table info object for the current
489   /// function.  This object contains information about jump tables in the
490   /// current function.  If the current function has no jump tables, this will
491   /// return null.
492   const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
493   MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }
494 
495   /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
496   /// does already exist, allocate one.
497   MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);
498 
499   /// getConstantPool - Return the constant pool object for the current
500   /// function.
501   MachineConstantPool *getConstantPool() { return ConstantPool; }
502   const MachineConstantPool *getConstantPool() const { return ConstantPool; }
503 
504   /// getWasmEHFuncInfo - Return information about how the current function uses
505   /// Wasm exception handling. Returns null for functions that don't use wasm
506   /// exception handling.
507   const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; }
508   WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; }
509 
510   /// getWinEHFuncInfo - Return information about how the current function uses
511   /// Windows exception handling. Returns null for functions that don't use
512   /// funclets for exception handling.
513   const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
514   WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }
515 
516   /// getAlignment - Return the alignment of the function.
517   Align getAlignment() const { return Alignment; }
518 
519   /// setAlignment - Set the alignment of the function.
520   void setAlignment(Align A) { Alignment = A; }
521 
522   /// ensureAlignment - Make sure the function is at least A bytes aligned.
523   void ensureAlignment(Align A) {
524     if (Alignment < A)
525       Alignment = A;
526   }
527 
528   /// exposesReturnsTwice - Returns true if the function calls setjmp or
529   /// any other similar functions with attribute "returns twice" without
530   /// having the attribute itself.
531   bool exposesReturnsTwice() const {
532     return ExposesReturnsTwice;
533   }
534 
535   /// setCallsSetJmp - Set a flag that indicates if there's a call to
536   /// a "returns twice" function.
537   void setExposesReturnsTwice(bool B) {
538     ExposesReturnsTwice = B;
539   }
540 
541   /// Returns true if the function contains any inline assembly.
542   bool hasInlineAsm() const {
543     return HasInlineAsm;
544   }
545 
546   /// Set a flag that indicates that the function contains inline assembly.
547   void setHasInlineAsm(bool B) {
548     HasInlineAsm = B;
549   }
550 
551   bool hasWinCFI() const {
552     return HasWinCFI;
553   }
554   void setHasWinCFI(bool v) { HasWinCFI = v; }
555 
556   /// True if this function needs frame moves for debug or exceptions.
557   bool needsFrameMoves() const;
558 
559   /// Get the function properties
560   const MachineFunctionProperties &getProperties() const { return Properties; }
561   MachineFunctionProperties &getProperties() { return Properties; }
562 
563   /// getInfo - Keep track of various per-function pieces of information for
564   /// backends that would like to do so.
565   ///
566   template<typename Ty>
567   Ty *getInfo() {
568     if (!MFInfo)
569       MFInfo = Ty::template create<Ty>(Allocator, *this);
570     return static_cast<Ty*>(MFInfo);
571   }
572 
573   template<typename Ty>
574   const Ty *getInfo() const {
575      return const_cast<MachineFunction*>(this)->getInfo<Ty>();
576   }
577 
578   /// Returns the denormal handling type for the default rounding mode of the
579   /// function.
580   DenormalMode getDenormalMode(const fltSemantics &FPType) const;
581 
582   /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
583   /// are inserted into the machine function.  The block number for a machine
584   /// basic block can be found by using the MBB::getNumber method, this method
585   /// provides the inverse mapping.
586   MachineBasicBlock *getBlockNumbered(unsigned N) const {
587     assert(N < MBBNumbering.size() && "Illegal block number");
588     assert(MBBNumbering[N] && "Block was removed from the machine function!");
589     return MBBNumbering[N];
590   }
591 
592   /// Should we be emitting segmented stack stuff for the function
593   bool shouldSplitStack() const;
594 
595   /// getNumBlockIDs - Return the number of MBB ID's allocated.
596   unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }
597 
598   /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
599   /// recomputes them.  This guarantees that the MBB numbers are sequential,
600   /// dense, and match the ordering of the blocks within the function.  If a
601   /// specific MachineBasicBlock is specified, only that block and those after
602   /// it are renumbered.
603   void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);
604 
605   /// print - Print out the MachineFunction in a format suitable for debugging
606   /// to the specified stream.
607   void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
608 
609   /// viewCFG - This function is meant for use from the debugger.  You can just
610   /// say 'call F->viewCFG()' and a ghostview window should pop up from the
611   /// program, displaying the CFG of the current function with the code for each
612   /// basic block inside.  This depends on there being a 'dot' and 'gv' program
613   /// in your path.
614   void viewCFG() const;
615 
616   /// viewCFGOnly - This function is meant for use from the debugger.  It works
617   /// just like viewCFG, but it does not include the contents of basic blocks
618   /// into the nodes, just the label.  If you are only interested in the CFG
619   /// this can make the graph smaller.
620   ///
621   void viewCFGOnly() const;
622 
623   /// dump - Print the current MachineFunction to cerr, useful for debugger use.
624   void dump() const;
625 
626   /// Run the current MachineFunction through the machine code verifier, useful
627   /// for debugger use.
628   /// \returns true if no problems were found.
629   bool verify(Pass *p = nullptr, const char *Banner = nullptr,
630               bool AbortOnError = true) const;
631 
632   // Provide accessors for the MachineBasicBlock list...
633   using iterator = BasicBlockListType::iterator;
634   using const_iterator = BasicBlockListType::const_iterator;
635   using const_reverse_iterator = BasicBlockListType::const_reverse_iterator;
636   using reverse_iterator = BasicBlockListType::reverse_iterator;
637 
638   /// Support for MachineBasicBlock::getNextNode().
639   static BasicBlockListType MachineFunction::*
640   getSublistAccess(MachineBasicBlock *) {
641     return &MachineFunction::BasicBlocks;
642   }
643 
644   /// addLiveIn - Add the specified physical register as a live-in value and
645   /// create a corresponding virtual register for it.
646   unsigned addLiveIn(unsigned PReg, const TargetRegisterClass *RC);
647 
648   //===--------------------------------------------------------------------===//
649   // BasicBlock accessor functions.
650   //
651   iterator                 begin()       { return BasicBlocks.begin(); }
652   const_iterator           begin() const { return BasicBlocks.begin(); }
653   iterator                 end  ()       { return BasicBlocks.end();   }
654   const_iterator           end  () const { return BasicBlocks.end();   }
655 
656   reverse_iterator        rbegin()       { return BasicBlocks.rbegin(); }
657   const_reverse_iterator  rbegin() const { return BasicBlocks.rbegin(); }
658   reverse_iterator        rend  ()       { return BasicBlocks.rend();   }
659   const_reverse_iterator  rend  () const { return BasicBlocks.rend();   }
660 
661   unsigned                  size() const { return (unsigned)BasicBlocks.size();}
662   bool                     empty() const { return BasicBlocks.empty(); }
663   const MachineBasicBlock &front() const { return BasicBlocks.front(); }
664         MachineBasicBlock &front()       { return BasicBlocks.front(); }
665   const MachineBasicBlock & back() const { return BasicBlocks.back(); }
666         MachineBasicBlock & back()       { return BasicBlocks.back(); }
667 
668   void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
669   void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
670   void insert(iterator MBBI, MachineBasicBlock *MBB) {
671     BasicBlocks.insert(MBBI, MBB);
672   }
673   void splice(iterator InsertPt, iterator MBBI) {
674     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
675   }
676   void splice(iterator InsertPt, MachineBasicBlock *MBB) {
677     BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
678   }
679   void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
680     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
681   }
682 
683   void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
684   void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
685   void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
686   void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }
687 
688   template <typename Comp>
689   void sort(Comp comp) {
690     BasicBlocks.sort(comp);
691   }
692 
693   /// Return the number of \p MachineInstrs in this \p MachineFunction.
694   unsigned getInstructionCount() const {
695     unsigned InstrCount = 0;
696     for (const MachineBasicBlock &MBB : BasicBlocks)
697       InstrCount += MBB.size();
698     return InstrCount;
699   }
700 
701   //===--------------------------------------------------------------------===//
702   // Internal functions used to automatically number MachineBasicBlocks
703 
704   /// Adds the MBB to the internal numbering. Returns the unique number
705   /// assigned to the MBB.
706   unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
707     MBBNumbering.push_back(MBB);
708     return (unsigned)MBBNumbering.size()-1;
709   }
710 
711   /// removeFromMBBNumbering - Remove the specific machine basic block from our
712   /// tracker, this is only really to be used by the MachineBasicBlock
713   /// implementation.
714   void removeFromMBBNumbering(unsigned N) {
715     assert(N < MBBNumbering.size() && "Illegal basic block #");
716     MBBNumbering[N] = nullptr;
717   }
718 
719   /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
720   /// of `new MachineInstr'.
721   MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, const DebugLoc &DL,
722                                    bool NoImp = false);
723 
724   /// Create a new MachineInstr which is a copy of \p Orig, identical in all
725   /// ways except the instruction has no parent, prev, or next. Bundling flags
726   /// are reset.
727   ///
728   /// Note: Clones a single instruction, not whole instruction bundles.
729   /// Does not perform target specific adjustments; consider using
730   /// TargetInstrInfo::duplicate() instead.
731   MachineInstr *CloneMachineInstr(const MachineInstr *Orig);
732 
733   /// Clones instruction or the whole instruction bundle \p Orig and insert
734   /// into \p MBB before \p InsertBefore.
735   ///
736   /// Note: Does not perform target specific adjustments; consider using
737   /// TargetInstrInfo::duplicate() intead.
738   MachineInstr &CloneMachineInstrBundle(MachineBasicBlock &MBB,
739       MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig);
740 
741   /// DeleteMachineInstr - Delete the given MachineInstr.
742   void DeleteMachineInstr(MachineInstr *MI);
743 
744   /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
745   /// instead of `new MachineBasicBlock'.
746   MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr);
747 
748   /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
749   void DeleteMachineBasicBlock(MachineBasicBlock *MBB);
750 
751   /// getMachineMemOperand - Allocate a new MachineMemOperand.
752   /// MachineMemOperands are owned by the MachineFunction and need not be
753   /// explicitly deallocated.
754   MachineMemOperand *getMachineMemOperand(
755       MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
756       unsigned base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
757       const MDNode *Ranges = nullptr,
758       SyncScope::ID SSID = SyncScope::System,
759       AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
760       AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
761 
762   /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
763   /// an existing one, adjusting by an offset and using the given size.
764   /// MachineMemOperands are owned by the MachineFunction and need not be
765   /// explicitly deallocated.
766   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
767                                           int64_t Offset, uint64_t Size);
768 
769   /// Allocate a new MachineMemOperand by copying an existing one,
770   /// replacing only AliasAnalysis information. MachineMemOperands are owned
771   /// by the MachineFunction and need not be explicitly deallocated.
772   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
773                                           const AAMDNodes &AAInfo);
774 
775   /// Allocate a new MachineMemOperand by copying an existing one,
776   /// replacing the flags. MachineMemOperands are owned
777   /// by the MachineFunction and need not be explicitly deallocated.
778   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
779                                           MachineMemOperand::Flags Flags);
780 
781   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
782 
783   /// Allocate an array of MachineOperands. This is only intended for use by
784   /// internal MachineInstr functions.
785   MachineOperand *allocateOperandArray(OperandCapacity Cap) {
786     return OperandRecycler.allocate(Cap, Allocator);
787   }
788 
789   /// Dellocate an array of MachineOperands and recycle the memory. This is
790   /// only intended for use by internal MachineInstr functions.
791   /// Cap must be the same capacity that was used to allocate the array.
792   void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
793     OperandRecycler.deallocate(Cap, Array);
794   }
795 
796   /// Allocate and initialize a register mask with @p NumRegister bits.
797   uint32_t *allocateRegMask();
798 
799   ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask);
800 
801   /// Allocate and construct an extra info structure for a `MachineInstr`.
802   ///
803   /// This is allocated on the function's allocator and so lives the life of
804   /// the function.
805   MachineInstr::ExtraInfo *createMIExtraInfo(
806       ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr,
807       MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr);
808 
809   /// Allocate a string and populate it with the given external symbol name.
810   const char *createExternalSymbolName(StringRef Name);
811 
812   //===--------------------------------------------------------------------===//
813   // Label Manipulation.
814 
815   /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
816   /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
817   /// normal 'L' label is returned.
818   MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
819                          bool isLinkerPrivate = false) const;
820 
821   /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
822   /// base.
823   MCSymbol *getPICBaseSymbol() const;
824 
825   /// Returns a reference to a list of cfi instructions in the function's
826   /// prologue.  Used to construct frame maps for debug and exception handling
827   /// comsumers.
828   const std::vector<MCCFIInstruction> &getFrameInstructions() const {
829     return FrameInstructions;
830   }
831 
832   LLVM_NODISCARD unsigned addFrameInst(const MCCFIInstruction &Inst);
833 
834   /// Returns a reference to a list of symbols immediately following calls to
835   /// _setjmp in the function. Used to construct the longjmp target table used
836   /// by Windows Control Flow Guard.
837   const std::vector<MCSymbol *> &getLongjmpTargets() const {
838     return LongjmpTargets;
839   }
840 
841   /// Add the specified symbol to the list of valid longjmp targets for Windows
842   /// Control Flow Guard.
843   void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); }
844 
845   /// \name Exception Handling
846   /// \{
847 
848   bool callsEHReturn() const { return CallsEHReturn; }
849   void setCallsEHReturn(bool b) { CallsEHReturn = b; }
850 
851   bool callsUnwindInit() const { return CallsUnwindInit; }
852   void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
853 
854   bool hasEHScopes() const { return HasEHScopes; }
855   void setHasEHScopes(bool V) { HasEHScopes = V; }
856 
857   bool hasEHFunclets() const { return HasEHFunclets; }
858   void setHasEHFunclets(bool V) { HasEHFunclets = V; }
859 
860   /// Find or create an LandingPadInfo for the specified MachineBasicBlock.
861   LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);
862 
863   /// Remap landing pad labels and remove any deleted landing pads.
864   void tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap = nullptr,
865                        bool TidyIfNoBeginLabels = true);
866 
867   /// Return a reference to the landing pad info for the current function.
868   const std::vector<LandingPadInfo> &getLandingPads() const {
869     return LandingPads;
870   }
871 
872   /// Provide the begin and end labels of an invoke style call and associate it
873   /// with a try landing pad block.
874   void addInvoke(MachineBasicBlock *LandingPad,
875                  MCSymbol *BeginLabel, MCSymbol *EndLabel);
876 
877   /// Add a new panding pad, and extract the exception handling information from
878   /// the landingpad instruction. Returns the label ID for the landing pad
879   /// entry.
880   MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
881 
882   /// Provide the catch typeinfo for a landing pad.
883   void addCatchTypeInfo(MachineBasicBlock *LandingPad,
884                         ArrayRef<const GlobalValue *> TyInfo);
885 
886   /// Provide the filter typeinfo for a landing pad.
887   void addFilterTypeInfo(MachineBasicBlock *LandingPad,
888                          ArrayRef<const GlobalValue *> TyInfo);
889 
890   /// Add a cleanup action for a landing pad.
891   void addCleanup(MachineBasicBlock *LandingPad);
892 
893   void addSEHCatchHandler(MachineBasicBlock *LandingPad, const Function *Filter,
894                           const BlockAddress *RecoverBA);
895 
896   void addSEHCleanupHandler(MachineBasicBlock *LandingPad,
897                             const Function *Cleanup);
898 
899   /// Return the type id for the specified typeinfo.  This is function wide.
900   unsigned getTypeIDFor(const GlobalValue *TI);
901 
902   /// Return the id of the filter encoded by TyIds.  This is function wide.
903   int getFilterIDFor(std::vector<unsigned> &TyIds);
904 
905   /// Map the landing pad's EH symbol to the call site indexes.
906   void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);
907 
908   /// Map the landing pad to its index. Used for Wasm exception handling.
909   void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) {
910     WasmLPadToIndexMap[LPad] = Index;
911   }
912 
913   /// Returns true if the landing pad has an associate index in wasm EH.
914   bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
915     return WasmLPadToIndexMap.count(LPad);
916   }
917 
918   /// Get the index in wasm EH for a given landing pad.
919   unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
920     assert(hasWasmLandingPadIndex(LPad));
921     return WasmLPadToIndexMap.lookup(LPad);
922   }
923 
924   /// Get the call site indexes for a landing pad EH symbol.
925   SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
926     assert(hasCallSiteLandingPad(Sym) &&
927            "missing call site number for landing pad!");
928     return LPadToCallSiteMap[Sym];
929   }
930 
931   /// Return true if the landing pad Eh symbol has an associated call site.
932   bool hasCallSiteLandingPad(MCSymbol *Sym) {
933     return !LPadToCallSiteMap[Sym].empty();
934   }
935 
936   /// Map the begin label for a call site.
937   void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
938     CallSiteMap[BeginLabel] = Site;
939   }
940 
941   /// Get the call site number for a begin label.
942   unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
943     assert(hasCallSiteBeginLabel(BeginLabel) &&
944            "Missing call site number for EH_LABEL!");
945     return CallSiteMap.lookup(BeginLabel);
946   }
947 
948   /// Return true if the begin label has a call site number associated with it.
949   bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
950     return CallSiteMap.count(BeginLabel);
951   }
952 
953   /// Record annotations associated with a particular label.
954   void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) {
955     CodeViewAnnotations.push_back({Label, MD});
956   }
957 
958   ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const {
959     return CodeViewAnnotations;
960   }
961 
962   /// Return a reference to the C++ typeinfo for the current function.
963   const std::vector<const GlobalValue *> &getTypeInfos() const {
964     return TypeInfos;
965   }
966 
967   /// Return a reference to the typeids encoding filters used in the current
968   /// function.
969   const std::vector<unsigned> &getFilterIds() const {
970     return FilterIds;
971   }
972 
973   /// \}
974 
975   /// Collect information used to emit debugging information of a variable.
976   void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
977                           int Slot, const DILocation *Loc) {
978     VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
979   }
980 
981   VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
982   const VariableDbgInfoMapTy &getVariableDbgInfo() const {
983     return VariableDbgInfos;
984   }
985 
986   void addCallArgsForwardingRegs(const MachineInstr *CallI,
987                                  CallSiteInfoImpl &&CallInfo) {
988     assert(CallI->isCall());
989     CallSitesInfo[CallI] = std::move(CallInfo);
990   }
991 
992   const CallSiteInfoMap &getCallSitesInfo() const {
993     return CallSitesInfo;
994   }
995 
996   /// Following functions update call site info. They should be called before
997   /// removing, replacing or copying call instruction.
998 
999   /// Move the call site info from \p Old to \New call site info. This function
1000   /// is used when we are replacing one call instruction with another one to
1001   /// the same callee.
1002   void moveCallSiteInfo(const MachineInstr *Old,
1003                         const MachineInstr *New);
1004 
1005   /// Erase the call site info for \p MI. It is used to remove a call
1006   /// instruction from the instruction stream.
1007   void eraseCallSiteInfo(const MachineInstr *MI);
1008 
1009   /// Copy the call site info from \p Old to \ New. Its usage is when we are
1010   /// making a copy of the instruction that will be inserted at different point
1011   /// of the instruction stream.
1012   void copyCallSiteInfo(const MachineInstr *Old,
1013                         const MachineInstr *New);
1014 };
1015 
1016 //===--------------------------------------------------------------------===//
1017 // GraphTraits specializations for function basic block graphs (CFGs)
1018 //===--------------------------------------------------------------------===//
1019 
1020 // Provide specializations of GraphTraits to be able to treat a
1021 // machine function as a graph of machine basic blocks... these are
1022 // the same as the machine basic block iterators, except that the root
1023 // node is implicitly the first node of the function.
1024 //
1025 template <> struct GraphTraits<MachineFunction*> :
1026   public GraphTraits<MachineBasicBlock*> {
1027   static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }
1028 
1029   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1030   using nodes_iterator = pointer_iterator<MachineFunction::iterator>;
1031 
1032   static nodes_iterator nodes_begin(MachineFunction *F) {
1033     return nodes_iterator(F->begin());
1034   }
1035 
1036   static nodes_iterator nodes_end(MachineFunction *F) {
1037     return nodes_iterator(F->end());
1038   }
1039 
1040   static unsigned       size       (MachineFunction *F) { return F->size(); }
1041 };
1042 template <> struct GraphTraits<const MachineFunction*> :
1043   public GraphTraits<const MachineBasicBlock*> {
1044   static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }
1045 
1046   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1047   using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>;
1048 
1049   static nodes_iterator nodes_begin(const MachineFunction *F) {
1050     return nodes_iterator(F->begin());
1051   }
1052 
1053   static nodes_iterator nodes_end  (const MachineFunction *F) {
1054     return nodes_iterator(F->end());
1055   }
1056 
1057   static unsigned       size       (const MachineFunction *F)  {
1058     return F->size();
1059   }
1060 };
1061 
1062 // Provide specializations of GraphTraits to be able to treat a function as a
1063 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
1064 // a function is considered to be when traversing the predecessor edges of a BB
1065 // instead of the successor edges.
1066 //
1067 template <> struct GraphTraits<Inverse<MachineFunction*>> :
1068   public GraphTraits<Inverse<MachineBasicBlock*>> {
1069   static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
1070     return &G.Graph->front();
1071   }
1072 };
1073 template <> struct GraphTraits<Inverse<const MachineFunction*>> :
1074   public GraphTraits<Inverse<const MachineBasicBlock*>> {
1075   static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
1076     return &G.Graph->front();
1077   }
1078 };
1079 
1080 } // end namespace llvm
1081 
1082 #endif // LLVM_CODEGEN_MACHINEFUNCTION_H
1083