1 //===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code for a function.  This class contains a list of
10 // MachineBasicBlock instances that make up the current compiled function.
11 //
12 // This class also contains pointers to various classes which hold
13 // target-specific information about the generated code.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
18 #define LLVM_CODEGEN_MACHINEFUNCTION_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/GraphTraits.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/ilist.h"
26 #include "llvm/ADT/iterator.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/Support/Allocator.h"
32 #include "llvm/Support/ArrayRecycler.h"
33 #include "llvm/Support/AtomicOrdering.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/Recycler.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <memory>
40 #include <utility>
41 #include <vector>
42 
43 namespace llvm {
44 
45 class BasicBlock;
46 class BlockAddress;
47 class DataLayout;
48 class DebugLoc;
49 struct DenormalMode;
50 class DIExpression;
51 class DILocalVariable;
52 class DILocation;
53 class Function;
54 class GISelChangeObserver;
55 class GlobalValue;
56 class LLVMTargetMachine;
57 class MachineConstantPool;
58 class MachineFrameInfo;
59 class MachineFunction;
60 class MachineJumpTableInfo;
61 class MachineModuleInfo;
62 class MachineRegisterInfo;
63 class MCContext;
64 class MCInstrDesc;
65 class MCSymbol;
66 class MCSection;
67 class Pass;
68 class PseudoSourceValueManager;
69 class raw_ostream;
70 class SlotIndexes;
71 class StringRef;
72 class TargetRegisterClass;
73 class TargetSubtargetInfo;
74 struct WasmEHFuncInfo;
75 struct WinEHFuncInfo;
76 
77 template <> struct ilist_alloc_traits<MachineBasicBlock> {
78   void deleteNode(MachineBasicBlock *MBB);
79 };
80 
81 template <> struct ilist_callback_traits<MachineBasicBlock> {
82   void addNodeToList(MachineBasicBlock* N);
83   void removeNodeFromList(MachineBasicBlock* N);
84 
85   template <class Iterator>
86   void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
87     assert(this == &OldList && "never transfer MBBs between functions");
88   }
89 };
90 
91 /// MachineFunctionInfo - This class can be derived from and used by targets to
92 /// hold private target-specific information for each MachineFunction.  Objects
93 /// of type are accessed/created with MF::getInfo and destroyed when the
94 /// MachineFunction is destroyed.
95 struct MachineFunctionInfo {
96   virtual ~MachineFunctionInfo();
97 
98   /// Factory function: default behavior is to call new using the
99   /// supplied allocator.
100   ///
101   /// This function can be overridden in a derive class.
102   template<typename Ty>
103   static Ty *create(BumpPtrAllocator &Allocator, MachineFunction &MF) {
104     return new (Allocator.Allocate<Ty>()) Ty(MF);
105   }
106 
107   template <typename Ty>
108   static Ty *create(BumpPtrAllocator &Allocator, const Ty &MFI) {
109     return new (Allocator.Allocate<Ty>()) Ty(MFI);
110   }
111 
112   /// Make a functionally equivalent copy of this MachineFunctionInfo in \p MF.
113   /// This requires remapping MachineBasicBlock references from the original
114   /// parent to values in the new function. Targets may assume that virtual
115   /// register and frame index values are preserved in the new function.
116   virtual MachineFunctionInfo *
117   clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF,
118         const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
119       const {
120     return nullptr;
121   }
122 };
123 
124 /// Properties which a MachineFunction may have at a given point in time.
125 /// Each of these has checking code in the MachineVerifier, and passes can
126 /// require that a property be set.
127 class MachineFunctionProperties {
128   // Possible TODO: Allow targets to extend this (perhaps by allowing the
129   // constructor to specify the size of the bit vector)
130   // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
131   // stated as the negative of "has vregs"
132 
133 public:
134   // The properties are stated in "positive" form; i.e. a pass could require
135   // that the property hold, but not that it does not hold.
136 
137   // Property descriptions:
138   // IsSSA: True when the machine function is in SSA form and virtual registers
139   //  have a single def.
140   // NoPHIs: The machine function does not contain any PHI instruction.
141   // TracksLiveness: True when tracking register liveness accurately.
142   //  While this property is set, register liveness information in basic block
143   //  live-in lists and machine instruction operands (e.g. implicit defs) is
144   //  accurate, kill flags are conservatively accurate (kill flag correctly
145   //  indicates the last use of a register, an operand without kill flag may or
146   //  may not be the last use of a register). This means it can be used to
147   //  change the code in ways that affect the values in registers, for example
148   //  by the register scavenger.
149   //  When this property is cleared at a very late time, liveness is no longer
150   //  reliable.
151   // NoVRegs: The machine function does not use any virtual registers.
152   // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
153   //  instructions have been legalized; i.e., all instructions are now one of:
154   //   - generic and always legal (e.g., COPY)
155   //   - target-specific
156   //   - legal pre-isel generic instructions.
157   // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
158   //  virtual registers have been assigned to a register bank.
159   // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
160   //  generic instructions have been eliminated; i.e., all instructions are now
161   //  target-specific or non-pre-isel generic instructions (e.g., COPY).
162   //  Since only pre-isel generic instructions can have generic virtual register
163   //  operands, this also means that all generic virtual registers have been
164   //  constrained to virtual registers (assigned to register classes) and that
165   //  all sizes attached to them have been eliminated.
166   // TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it
167   //  means that tied-def have been rewritten to meet the RegConstraint.
168   // FailsVerification: Means that the function is not expected to pass machine
169   //  verification. This can be set by passes that introduce known problems that
170   //  have not been fixed yet.
171   // TracksDebugUserValues: Without this property enabled, debug instructions
172   // such as DBG_VALUE are allowed to reference virtual registers even if those
173   // registers do not have a definition. With the property enabled virtual
174   // registers must only be used if they have a definition. This property
175   // allows earlier passes in the pipeline to skip updates of `DBG_VALUE`
176   // instructions to save compile time.
177   enum class Property : unsigned {
178     IsSSA,
179     NoPHIs,
180     TracksLiveness,
181     NoVRegs,
182     FailedISel,
183     Legalized,
184     RegBankSelected,
185     Selected,
186     TiedOpsRewritten,
187     FailsVerification,
188     TracksDebugUserValues,
189     LastProperty = TracksDebugUserValues,
190   };
191 
192   bool hasProperty(Property P) const {
193     return Properties[static_cast<unsigned>(P)];
194   }
195 
196   MachineFunctionProperties &set(Property P) {
197     Properties.set(static_cast<unsigned>(P));
198     return *this;
199   }
200 
201   MachineFunctionProperties &reset(Property P) {
202     Properties.reset(static_cast<unsigned>(P));
203     return *this;
204   }
205 
206   /// Reset all the properties.
207   MachineFunctionProperties &reset() {
208     Properties.reset();
209     return *this;
210   }
211 
212   MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
213     Properties |= MFP.Properties;
214     return *this;
215   }
216 
217   MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
218     Properties.reset(MFP.Properties);
219     return *this;
220   }
221 
222   // Returns true if all properties set in V (i.e. required by a pass) are set
223   // in this.
224   bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
225     return !V.Properties.test(Properties);
226   }
227 
228   /// Print the MachineFunctionProperties in human-readable form.
229   void print(raw_ostream &OS) const;
230 
231 private:
232   BitVector Properties =
233       BitVector(static_cast<unsigned>(Property::LastProperty)+1);
234 };
235 
236 struct SEHHandler {
237   /// Filter or finally function. Null indicates a catch-all.
238   const Function *FilterOrFinally;
239 
240   /// Address of block to recover at. Null for a finally handler.
241   const BlockAddress *RecoverBA;
242 };
243 
244 /// This structure is used to retain landing pad info for the current function.
245 struct LandingPadInfo {
246   MachineBasicBlock *LandingPadBlock;      // Landing pad block.
247   SmallVector<MCSymbol *, 1> BeginLabels;  // Labels prior to invoke.
248   SmallVector<MCSymbol *, 1> EndLabels;    // Labels after invoke.
249   SmallVector<SEHHandler, 1> SEHHandlers;  // SEH handlers active at this lpad.
250   MCSymbol *LandingPadLabel = nullptr;     // Label at beginning of landing pad.
251   std::vector<int> TypeIds;                // List of type ids (filters negative).
252 
253   explicit LandingPadInfo(MachineBasicBlock *MBB)
254       : LandingPadBlock(MBB) {}
255 };
256 
257 class LLVM_EXTERNAL_VISIBILITY MachineFunction {
258   Function &F;
259   const LLVMTargetMachine &Target;
260   const TargetSubtargetInfo *STI;
261   MCContext &Ctx;
262   MachineModuleInfo &MMI;
263 
264   // RegInfo - Information about each register in use in the function.
265   MachineRegisterInfo *RegInfo;
266 
267   // Used to keep track of target-specific per-machine function information for
268   // the target implementation.
269   MachineFunctionInfo *MFInfo;
270 
271   // Keep track of objects allocated on the stack.
272   MachineFrameInfo *FrameInfo;
273 
274   // Keep track of constants which are spilled to memory
275   MachineConstantPool *ConstantPool;
276 
277   // Keep track of jump tables for switch instructions
278   MachineJumpTableInfo *JumpTableInfo;
279 
280   // Keep track of the function section.
281   MCSection *Section = nullptr;
282 
283   // Keeps track of Wasm exception handling related data. This will be null for
284   // functions that aren't using a wasm EH personality.
285   WasmEHFuncInfo *WasmEHInfo = nullptr;
286 
287   // Keeps track of Windows exception handling related data. This will be null
288   // for functions that aren't using a funclet-based EH personality.
289   WinEHFuncInfo *WinEHInfo = nullptr;
290 
291   // Function-level unique numbering for MachineBasicBlocks.  When a
292   // MachineBasicBlock is inserted into a MachineFunction is it automatically
293   // numbered and this vector keeps track of the mapping from ID's to MBB's.
294   std::vector<MachineBasicBlock*> MBBNumbering;
295 
296   // Pool-allocate MachineFunction-lifetime and IR objects.
297   BumpPtrAllocator Allocator;
298 
299   // Allocation management for instructions in function.
300   Recycler<MachineInstr> InstructionRecycler;
301 
302   // Allocation management for operand arrays on instructions.
303   ArrayRecycler<MachineOperand> OperandRecycler;
304 
305   // Allocation management for basic blocks in function.
306   Recycler<MachineBasicBlock> BasicBlockRecycler;
307 
308   // List of machine basic blocks in function
309   using BasicBlockListType = ilist<MachineBasicBlock>;
310   BasicBlockListType BasicBlocks;
311 
312   /// FunctionNumber - This provides a unique ID for each function emitted in
313   /// this translation unit.
314   ///
315   unsigned FunctionNumber;
316 
317   /// Alignment - The alignment of the function.
318   Align Alignment;
319 
320   /// ExposesReturnsTwice - True if the function calls setjmp or related
321   /// functions with attribute "returns twice", but doesn't have
322   /// the attribute itself.
323   /// This is used to limit optimizations which cannot reason
324   /// about the control flow of such functions.
325   bool ExposesReturnsTwice = false;
326 
327   /// True if the function includes any inline assembly.
328   bool HasInlineAsm = false;
329 
330   /// True if any WinCFI instruction have been emitted in this function.
331   bool HasWinCFI = false;
332 
333   /// Current high-level properties of the IR of the function (e.g. is in SSA
334   /// form or whether registers have been allocated)
335   MachineFunctionProperties Properties;
336 
337   // Allocation management for pseudo source values.
338   std::unique_ptr<PseudoSourceValueManager> PSVManager;
339 
340   /// List of moves done by a function's prolog.  Used to construct frame maps
341   /// by debug and exception handling consumers.
342   std::vector<MCCFIInstruction> FrameInstructions;
343 
344   /// List of basic blocks immediately following calls to _setjmp. Used to
345   /// construct a table of valid longjmp targets for Windows Control Flow Guard.
346   std::vector<MCSymbol *> LongjmpTargets;
347 
348   /// List of basic blocks that are the target of catchrets. Used to construct
349   /// a table of valid targets for Windows EHCont Guard.
350   std::vector<MCSymbol *> CatchretTargets;
351 
352   /// \name Exception Handling
353   /// \{
354 
355   /// List of LandingPadInfo describing the landing pad information.
356   std::vector<LandingPadInfo> LandingPads;
357 
358   /// Map a landing pad's EH symbol to the call site indexes.
359   DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap;
360 
361   /// Map a landing pad to its index.
362   DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap;
363 
364   /// Map of invoke call site index values to associated begin EH_LABEL.
365   DenseMap<MCSymbol*, unsigned> CallSiteMap;
366 
367   /// CodeView label annotations.
368   std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations;
369 
370   bool CallsEHReturn = false;
371   bool CallsUnwindInit = false;
372   bool HasEHCatchret = false;
373   bool HasEHScopes = false;
374   bool HasEHFunclets = false;
375 
376   /// Section Type for basic blocks, only relevant with basic block sections.
377   BasicBlockSection BBSectionsType = BasicBlockSection::None;
378 
379   /// List of C++ TypeInfo used.
380   std::vector<const GlobalValue *> TypeInfos;
381 
382   /// List of typeids encoding filters used.
383   std::vector<unsigned> FilterIds;
384 
385   /// List of the indices in FilterIds corresponding to filter terminators.
386   std::vector<unsigned> FilterEnds;
387 
388   EHPersonality PersonalityTypeCache = EHPersonality::Unknown;
389 
390   /// \}
391 
392   /// Clear all the members of this MachineFunction, but the ones used
393   /// to initialize again the MachineFunction.
394   /// More specifically, this deallocates all the dynamically allocated
395   /// objects and get rid of all the XXXInfo data structure, but keep
396   /// unchanged the references to Fn, Target, MMI, and FunctionNumber.
397   void clear();
398   /// Allocate and initialize the different members.
399   /// In particular, the XXXInfo data structure.
400   /// \pre Fn, Target, MMI, and FunctionNumber are properly set.
401   void init();
402 
403 public:
404   struct VariableDbgInfo {
405     const DILocalVariable *Var;
406     const DIExpression *Expr;
407     // The Slot can be negative for fixed stack objects.
408     int Slot;
409     const DILocation *Loc;
410 
411     VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
412                     int Slot, const DILocation *Loc)
413         : Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {}
414   };
415 
416   class Delegate {
417     virtual void anchor();
418 
419   public:
420     virtual ~Delegate() = default;
421     /// Callback after an insertion. This should not modify the MI directly.
422     virtual void MF_HandleInsertion(MachineInstr &MI) = 0;
423     /// Callback before a removal. This should not modify the MI directly.
424     virtual void MF_HandleRemoval(MachineInstr &MI) = 0;
425   };
426 
427   /// Structure used to represent pair of argument number after call lowering
428   /// and register used to transfer that argument.
429   /// For now we support only cases when argument is transferred through one
430   /// register.
431   struct ArgRegPair {
432     Register Reg;
433     uint16_t ArgNo;
434     ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) {
435       assert(Arg < (1 << 16) && "Arg out of range");
436     }
437   };
438   /// Vector of call argument and its forwarding register.
439   using CallSiteInfo = SmallVector<ArgRegPair, 1>;
440   using CallSiteInfoImpl = SmallVectorImpl<ArgRegPair>;
441 
442 private:
443   Delegate *TheDelegate = nullptr;
444   GISelChangeObserver *Observer = nullptr;
445 
446   using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>;
447   /// Map a call instruction to call site arguments forwarding info.
448   CallSiteInfoMap CallSitesInfo;
449 
450   /// A helper function that returns call site info for a give call
451   /// instruction if debug entry value support is enabled.
452   CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI);
453 
454   // Callbacks for insertion and removal.
455   void handleInsertion(MachineInstr &MI);
456   void handleRemoval(MachineInstr &MI);
457   friend struct ilist_traits<MachineInstr>;
458 
459 public:
460   using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>;
461   VariableDbgInfoMapTy VariableDbgInfos;
462 
463   /// A count of how many instructions in the function have had numbers
464   /// assigned to them. Used for debug value tracking, to determine the
465   /// next instruction number.
466   unsigned DebugInstrNumberingCount = 0;
467 
468   /// Set value of DebugInstrNumberingCount field. Avoid using this unless
469   /// you're deserializing this data.
470   void setDebugInstrNumberingCount(unsigned Num);
471 
472   /// Pair of instruction number and operand number.
473   using DebugInstrOperandPair = std::pair<unsigned, unsigned>;
474 
475   /// Replacement definition for a debug instruction reference. Made up of a
476   /// source instruction / operand pair, destination pair, and a qualifying
477   /// subregister indicating what bits in the operand make up the substitution.
478   // For example, a debug user
479   /// of %1:
480   ///    %0:gr32 = someinst, debug-instr-number 1
481   ///    %1:gr16 = %0.some_16_bit_subreg, debug-instr-number 2
482   /// Would receive the substitution {{2, 0}, {1, 0}, $subreg}, where $subreg is
483   /// the subregister number for some_16_bit_subreg.
484   class DebugSubstitution {
485   public:
486     DebugInstrOperandPair Src;  ///< Source instruction / operand pair.
487     DebugInstrOperandPair Dest; ///< Replacement instruction / operand pair.
488     unsigned Subreg;            ///< Qualifier for which part of Dest is read.
489 
490     DebugSubstitution(const DebugInstrOperandPair &Src,
491                       const DebugInstrOperandPair &Dest, unsigned Subreg)
492         : Src(Src), Dest(Dest), Subreg(Subreg) {}
493 
494     /// Order only by source instruction / operand pair: there should never
495     /// be duplicate entries for the same source in any collection.
496     bool operator<(const DebugSubstitution &Other) const {
497       return Src < Other.Src;
498     }
499   };
500 
501   /// Debug value substitutions: a collection of DebugSubstitution objects,
502   /// recording changes in where a value is defined. For example, when one
503   /// instruction is substituted for another. Keeping a record allows recovery
504   /// of variable locations after compilation finishes.
505   SmallVector<DebugSubstitution, 8> DebugValueSubstitutions;
506 
507   /// Location of a PHI instruction that is also a debug-info variable value,
508   /// for the duration of register allocation. Loaded by the PHI-elimination
509   /// pass, and emitted as DBG_PHI instructions during VirtRegRewriter, with
510   /// maintenance applied by intermediate passes that edit registers (such as
511   /// coalescing and the allocator passes).
512   class DebugPHIRegallocPos {
513   public:
514     MachineBasicBlock *MBB; ///< Block where this PHI was originally located.
515     Register Reg;           ///< VReg where the control-flow-merge happens.
516     unsigned SubReg;        ///< Optional subreg qualifier within Reg.
517     DebugPHIRegallocPos(MachineBasicBlock *MBB, Register Reg, unsigned SubReg)
518         : MBB(MBB), Reg(Reg), SubReg(SubReg) {}
519   };
520 
521   /// Map of debug instruction numbers to the position of their PHI instructions
522   /// during register allocation. See DebugPHIRegallocPos.
523   DenseMap<unsigned, DebugPHIRegallocPos> DebugPHIPositions;
524 
525   /// Create a substitution between one <instr,operand> value to a different,
526   /// new value.
527   void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair,
528                                   unsigned SubReg = 0);
529 
530   /// Create substitutions for any tracked values in \p Old, to point at
531   /// \p New. Needed when we re-create an instruction during optimization,
532   /// which has the same signature (i.e., def operands in the same place) but
533   /// a modified instruction type, flags, or otherwise. An example: X86 moves
534   /// are sometimes transformed into equivalent LEAs.
535   /// If the two instructions are not the same opcode, limit which operands to
536   /// examine for substitutions to the first N operands by setting
537   /// \p MaxOperand.
538   void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New,
539                                     unsigned MaxOperand = UINT_MAX);
540 
541   /// Find the underlying  defining instruction / operand for a COPY instruction
542   /// while in SSA form. Copies do not actually define values -- they move them
543   /// between registers. Labelling a COPY-like instruction with an instruction
544   /// number is to be avoided as it makes value numbers non-unique later in
545   /// compilation. This method follows the definition chain for any sequence of
546   /// COPY-like instructions to find whatever non-COPY-like instruction defines
547   /// the copied value; or for parameters, creates a DBG_PHI on entry.
548   /// May insert instructions into the entry block!
549   /// \p MI The copy-like instruction to salvage.
550   /// \p DbgPHICache A container to cache already-solved COPYs.
551   /// \returns An instruction/operand pair identifying the defining value.
552   DebugInstrOperandPair
553   salvageCopySSA(MachineInstr &MI,
554                  DenseMap<Register, DebugInstrOperandPair> &DbgPHICache);
555 
556   DebugInstrOperandPair salvageCopySSAImpl(MachineInstr &MI);
557 
558   /// Finalise any partially emitted debug instructions. These are DBG_INSTR_REF
559   /// instructions where we only knew the vreg of the value they use, not the
560   /// instruction that defines that vreg. Once isel finishes, we should have
561   /// enough information for every DBG_INSTR_REF to point at an instruction
562   /// (or DBG_PHI).
563   void finalizeDebugInstrRefs();
564 
565   /// Returns true if the function's variable locations should be tracked with
566   /// instruction referencing.
567   bool useDebugInstrRef() const;
568 
569   /// A reserved operand number representing the instructions memory operand,
570   /// for instructions that have a stack spill fused into them.
571   const static unsigned int DebugOperandMemNumber;
572 
573   MachineFunction(Function &F, const LLVMTargetMachine &Target,
574                   const TargetSubtargetInfo &STI, unsigned FunctionNum,
575                   MachineModuleInfo &MMI);
576   MachineFunction(const MachineFunction &) = delete;
577   MachineFunction &operator=(const MachineFunction &) = delete;
578   ~MachineFunction();
579 
580   /// Reset the instance as if it was just created.
581   void reset() {
582     clear();
583     init();
584   }
585 
586   /// Reset the currently registered delegate - otherwise assert.
587   void resetDelegate(Delegate *delegate) {
588     assert(TheDelegate == delegate &&
589            "Only the current delegate can perform reset!");
590     TheDelegate = nullptr;
591   }
592 
593   /// Set the delegate. resetDelegate must be called before attempting
594   /// to set.
595   void setDelegate(Delegate *delegate) {
596     assert(delegate && !TheDelegate &&
597            "Attempted to set delegate to null, or to change it without "
598            "first resetting it!");
599 
600     TheDelegate = delegate;
601   }
602 
603   void setObserver(GISelChangeObserver *O) { Observer = O; }
604 
605   GISelChangeObserver *getObserver() const { return Observer; }
606 
607   MachineModuleInfo &getMMI() const { return MMI; }
608   MCContext &getContext() const { return Ctx; }
609 
610   /// Returns the Section this function belongs to.
611   MCSection *getSection() const { return Section; }
612 
613   /// Indicates the Section this function belongs to.
614   void setSection(MCSection *S) { Section = S; }
615 
616   PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }
617 
618   /// Return the DataLayout attached to the Module associated to this MF.
619   const DataLayout &getDataLayout() const;
620 
621   /// Return the LLVM function that this machine code represents
622   Function &getFunction() { return F; }
623 
624   /// Return the LLVM function that this machine code represents
625   const Function &getFunction() const { return F; }
626 
627   /// getName - Return the name of the corresponding LLVM function.
628   StringRef getName() const;
629 
630   /// getFunctionNumber - Return a unique ID for the current function.
631   unsigned getFunctionNumber() const { return FunctionNumber; }
632 
633   /// Returns true if this function has basic block sections enabled.
634   bool hasBBSections() const {
635     return (BBSectionsType == BasicBlockSection::All ||
636             BBSectionsType == BasicBlockSection::List ||
637             BBSectionsType == BasicBlockSection::Preset);
638   }
639 
640   /// Returns true if basic block labels are to be generated for this function.
641   bool hasBBLabels() const {
642     return BBSectionsType == BasicBlockSection::Labels;
643   }
644 
645   void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; }
646 
647   /// Assign IsBeginSection IsEndSection fields for basic blocks in this
648   /// function.
649   void assignBeginEndSections();
650 
651   /// getTarget - Return the target machine this machine code is compiled with
652   const LLVMTargetMachine &getTarget() const { return Target; }
653 
654   /// getSubtarget - Return the subtarget for which this machine code is being
655   /// compiled.
656   const TargetSubtargetInfo &getSubtarget() const { return *STI; }
657 
658   /// getSubtarget - This method returns a pointer to the specified type of
659   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
660   /// returned is of the correct type.
661   template<typename STC> const STC &getSubtarget() const {
662     return *static_cast<const STC *>(STI);
663   }
664 
665   /// getRegInfo - Return information about the registers currently in use.
666   MachineRegisterInfo &getRegInfo() { return *RegInfo; }
667   const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }
668 
669   /// getFrameInfo - Return the frame info object for the current function.
670   /// This object contains information about objects allocated on the stack
671   /// frame of the current function in an abstract way.
672   MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
673   const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }
674 
675   /// getJumpTableInfo - Return the jump table info object for the current
676   /// function.  This object contains information about jump tables in the
677   /// current function.  If the current function has no jump tables, this will
678   /// return null.
679   const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
680   MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }
681 
682   /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
683   /// does already exist, allocate one.
684   MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);
685 
686   /// getConstantPool - Return the constant pool object for the current
687   /// function.
688   MachineConstantPool *getConstantPool() { return ConstantPool; }
689   const MachineConstantPool *getConstantPool() const { return ConstantPool; }
690 
691   /// getWasmEHFuncInfo - Return information about how the current function uses
692   /// Wasm exception handling. Returns null for functions that don't use wasm
693   /// exception handling.
694   const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; }
695   WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; }
696 
697   /// getWinEHFuncInfo - Return information about how the current function uses
698   /// Windows exception handling. Returns null for functions that don't use
699   /// funclets for exception handling.
700   const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
701   WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }
702 
703   /// getAlignment - Return the alignment of the function.
704   Align getAlignment() const { return Alignment; }
705 
706   /// setAlignment - Set the alignment of the function.
707   void setAlignment(Align A) { Alignment = A; }
708 
709   /// ensureAlignment - Make sure the function is at least A bytes aligned.
710   void ensureAlignment(Align A) {
711     if (Alignment < A)
712       Alignment = A;
713   }
714 
715   /// exposesReturnsTwice - Returns true if the function calls setjmp or
716   /// any other similar functions with attribute "returns twice" without
717   /// having the attribute itself.
718   bool exposesReturnsTwice() const {
719     return ExposesReturnsTwice;
720   }
721 
722   /// setCallsSetJmp - Set a flag that indicates if there's a call to
723   /// a "returns twice" function.
724   void setExposesReturnsTwice(bool B) {
725     ExposesReturnsTwice = B;
726   }
727 
728   /// Returns true if the function contains any inline assembly.
729   bool hasInlineAsm() const {
730     return HasInlineAsm;
731   }
732 
733   /// Set a flag that indicates that the function contains inline assembly.
734   void setHasInlineAsm(bool B) {
735     HasInlineAsm = B;
736   }
737 
738   bool hasWinCFI() const {
739     return HasWinCFI;
740   }
741   void setHasWinCFI(bool v) { HasWinCFI = v; }
742 
743   /// True if this function needs frame moves for debug or exceptions.
744   bool needsFrameMoves() const;
745 
746   /// Get the function properties
747   const MachineFunctionProperties &getProperties() const { return Properties; }
748   MachineFunctionProperties &getProperties() { return Properties; }
749 
750   /// getInfo - Keep track of various per-function pieces of information for
751   /// backends that would like to do so.
752   ///
753   template<typename Ty>
754   Ty *getInfo() {
755     if (!MFInfo)
756       MFInfo = Ty::template create<Ty>(Allocator, *this);
757     return static_cast<Ty*>(MFInfo);
758   }
759 
760   template<typename Ty>
761   const Ty *getInfo() const {
762      return const_cast<MachineFunction*>(this)->getInfo<Ty>();
763   }
764 
765   template <typename Ty> Ty *cloneInfo(const Ty &Old) {
766     assert(!MFInfo);
767     MFInfo = Ty::template create<Ty>(Allocator, Old);
768     return static_cast<Ty *>(MFInfo);
769   }
770 
771   MachineFunctionInfo *cloneInfoFrom(
772       const MachineFunction &OrigMF,
773       const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) {
774     assert(!MFInfo && "new function already has MachineFunctionInfo");
775     if (!OrigMF.MFInfo)
776       return nullptr;
777     return OrigMF.MFInfo->clone(Allocator, *this, Src2DstMBB);
778   }
779 
780   /// Returns the denormal handling type for the default rounding mode of the
781   /// function.
782   DenormalMode getDenormalMode(const fltSemantics &FPType) const;
783 
784   /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
785   /// are inserted into the machine function.  The block number for a machine
786   /// basic block can be found by using the MBB::getNumber method, this method
787   /// provides the inverse mapping.
788   MachineBasicBlock *getBlockNumbered(unsigned N) const {
789     assert(N < MBBNumbering.size() && "Illegal block number");
790     assert(MBBNumbering[N] && "Block was removed from the machine function!");
791     return MBBNumbering[N];
792   }
793 
794   /// Should we be emitting segmented stack stuff for the function
795   bool shouldSplitStack() const;
796 
797   /// getNumBlockIDs - Return the number of MBB ID's allocated.
798   unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }
799 
800   /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
801   /// recomputes them.  This guarantees that the MBB numbers are sequential,
802   /// dense, and match the ordering of the blocks within the function.  If a
803   /// specific MachineBasicBlock is specified, only that block and those after
804   /// it are renumbered.
805   void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);
806 
807   /// print - Print out the MachineFunction in a format suitable for debugging
808   /// to the specified stream.
809   void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
810 
811   /// viewCFG - This function is meant for use from the debugger.  You can just
812   /// say 'call F->viewCFG()' and a ghostview window should pop up from the
813   /// program, displaying the CFG of the current function with the code for each
814   /// basic block inside.  This depends on there being a 'dot' and 'gv' program
815   /// in your path.
816   void viewCFG() const;
817 
818   /// viewCFGOnly - This function is meant for use from the debugger.  It works
819   /// just like viewCFG, but it does not include the contents of basic blocks
820   /// into the nodes, just the label.  If you are only interested in the CFG
821   /// this can make the graph smaller.
822   ///
823   void viewCFGOnly() const;
824 
825   /// dump - Print the current MachineFunction to cerr, useful for debugger use.
826   void dump() const;
827 
828   /// Run the current MachineFunction through the machine code verifier, useful
829   /// for debugger use.
830   /// \returns true if no problems were found.
831   bool verify(Pass *p = nullptr, const char *Banner = nullptr,
832               bool AbortOnError = true) const;
833 
834   // Provide accessors for the MachineBasicBlock list...
835   using iterator = BasicBlockListType::iterator;
836   using const_iterator = BasicBlockListType::const_iterator;
837   using const_reverse_iterator = BasicBlockListType::const_reverse_iterator;
838   using reverse_iterator = BasicBlockListType::reverse_iterator;
839 
840   /// Support for MachineBasicBlock::getNextNode().
841   static BasicBlockListType MachineFunction::*
842   getSublistAccess(MachineBasicBlock *) {
843     return &MachineFunction::BasicBlocks;
844   }
845 
846   /// addLiveIn - Add the specified physical register as a live-in value and
847   /// create a corresponding virtual register for it.
848   Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC);
849 
850   //===--------------------------------------------------------------------===//
851   // BasicBlock accessor functions.
852   //
853   iterator                 begin()       { return BasicBlocks.begin(); }
854   const_iterator           begin() const { return BasicBlocks.begin(); }
855   iterator                 end  ()       { return BasicBlocks.end();   }
856   const_iterator           end  () const { return BasicBlocks.end();   }
857 
858   reverse_iterator        rbegin()       { return BasicBlocks.rbegin(); }
859   const_reverse_iterator  rbegin() const { return BasicBlocks.rbegin(); }
860   reverse_iterator        rend  ()       { return BasicBlocks.rend();   }
861   const_reverse_iterator  rend  () const { return BasicBlocks.rend();   }
862 
863   unsigned                  size() const { return (unsigned)BasicBlocks.size();}
864   bool                     empty() const { return BasicBlocks.empty(); }
865   const MachineBasicBlock &front() const { return BasicBlocks.front(); }
866         MachineBasicBlock &front()       { return BasicBlocks.front(); }
867   const MachineBasicBlock & back() const { return BasicBlocks.back(); }
868         MachineBasicBlock & back()       { return BasicBlocks.back(); }
869 
870   void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
871   void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
872   void insert(iterator MBBI, MachineBasicBlock *MBB) {
873     BasicBlocks.insert(MBBI, MBB);
874   }
875   void splice(iterator InsertPt, iterator MBBI) {
876     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
877   }
878   void splice(iterator InsertPt, MachineBasicBlock *MBB) {
879     BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
880   }
881   void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
882     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
883   }
884 
885   void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
886   void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
887   void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
888   void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }
889 
890   template <typename Comp>
891   void sort(Comp comp) {
892     BasicBlocks.sort(comp);
893   }
894 
895   /// Return the number of \p MachineInstrs in this \p MachineFunction.
896   unsigned getInstructionCount() const {
897     unsigned InstrCount = 0;
898     for (const MachineBasicBlock &MBB : BasicBlocks)
899       InstrCount += MBB.size();
900     return InstrCount;
901   }
902 
903   //===--------------------------------------------------------------------===//
904   // Internal functions used to automatically number MachineBasicBlocks
905 
906   /// Adds the MBB to the internal numbering. Returns the unique number
907   /// assigned to the MBB.
908   unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
909     MBBNumbering.push_back(MBB);
910     return (unsigned)MBBNumbering.size()-1;
911   }
912 
913   /// removeFromMBBNumbering - Remove the specific machine basic block from our
914   /// tracker, this is only really to be used by the MachineBasicBlock
915   /// implementation.
916   void removeFromMBBNumbering(unsigned N) {
917     assert(N < MBBNumbering.size() && "Illegal basic block #");
918     MBBNumbering[N] = nullptr;
919   }
920 
921   /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
922   /// of `new MachineInstr'.
923   MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL,
924                                    bool NoImplicit = false);
925 
926   /// Create a new MachineInstr which is a copy of \p Orig, identical in all
927   /// ways except the instruction has no parent, prev, or next. Bundling flags
928   /// are reset.
929   ///
930   /// Note: Clones a single instruction, not whole instruction bundles.
931   /// Does not perform target specific adjustments; consider using
932   /// TargetInstrInfo::duplicate() instead.
933   MachineInstr *CloneMachineInstr(const MachineInstr *Orig);
934 
935   /// Clones instruction or the whole instruction bundle \p Orig and insert
936   /// into \p MBB before \p InsertBefore.
937   ///
938   /// Note: Does not perform target specific adjustments; consider using
939   /// TargetInstrInfo::duplicate() intead.
940   MachineInstr &
941   cloneMachineInstrBundle(MachineBasicBlock &MBB,
942                           MachineBasicBlock::iterator InsertBefore,
943                           const MachineInstr &Orig);
944 
945   /// DeleteMachineInstr - Delete the given MachineInstr.
946   void deleteMachineInstr(MachineInstr *MI);
947 
948   /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
949   /// instead of `new MachineBasicBlock'.
950   MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr);
951 
952   /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
953   void deleteMachineBasicBlock(MachineBasicBlock *MBB);
954 
955   /// getMachineMemOperand - Allocate a new MachineMemOperand.
956   /// MachineMemOperands are owned by the MachineFunction and need not be
957   /// explicitly deallocated.
958   MachineMemOperand *getMachineMemOperand(
959       MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
960       Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
961       const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
962       AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
963       AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
964 
965   MachineMemOperand *getMachineMemOperand(
966       MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
967       Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
968       const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
969       AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
970       AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
971 
972   /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
973   /// an existing one, adjusting by an offset and using the given size.
974   /// MachineMemOperands are owned by the MachineFunction and need not be
975   /// explicitly deallocated.
976   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
977                                           int64_t Offset, LLT Ty);
978   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
979                                           int64_t Offset, uint64_t Size) {
980     return getMachineMemOperand(
981         MMO, Offset, Size == ~UINT64_C(0) ? LLT() : LLT::scalar(8 * Size));
982   }
983 
984   /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
985   /// an existing one, replacing only the MachinePointerInfo and size.
986   /// MachineMemOperands are owned by the MachineFunction and need not be
987   /// explicitly deallocated.
988   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
989                                           const MachinePointerInfo &PtrInfo,
990                                           uint64_t Size);
991   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
992                                           const MachinePointerInfo &PtrInfo,
993                                           LLT Ty);
994 
995   /// Allocate a new MachineMemOperand by copying an existing one,
996   /// replacing only AliasAnalysis information. MachineMemOperands are owned
997   /// by the MachineFunction and need not be explicitly deallocated.
998   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
999                                           const AAMDNodes &AAInfo);
1000 
1001   /// Allocate a new MachineMemOperand by copying an existing one,
1002   /// replacing the flags. MachineMemOperands are owned
1003   /// by the MachineFunction and need not be explicitly deallocated.
1004   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1005                                           MachineMemOperand::Flags Flags);
1006 
1007   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
1008 
1009   /// Allocate an array of MachineOperands. This is only intended for use by
1010   /// internal MachineInstr functions.
1011   MachineOperand *allocateOperandArray(OperandCapacity Cap) {
1012     return OperandRecycler.allocate(Cap, Allocator);
1013   }
1014 
1015   /// Dellocate an array of MachineOperands and recycle the memory. This is
1016   /// only intended for use by internal MachineInstr functions.
1017   /// Cap must be the same capacity that was used to allocate the array.
1018   void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
1019     OperandRecycler.deallocate(Cap, Array);
1020   }
1021 
1022   /// Allocate and initialize a register mask with @p NumRegister bits.
1023   uint32_t *allocateRegMask();
1024 
1025   ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask);
1026 
1027   /// Allocate and construct an extra info structure for a `MachineInstr`.
1028   ///
1029   /// This is allocated on the function's allocator and so lives the life of
1030   /// the function.
1031   MachineInstr::ExtraInfo *createMIExtraInfo(
1032       ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr,
1033       MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr);
1034 
1035   /// Allocate a string and populate it with the given external symbol name.
1036   const char *createExternalSymbolName(StringRef Name);
1037 
1038   //===--------------------------------------------------------------------===//
1039   // Label Manipulation.
1040 
1041   /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
1042   /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
1043   /// normal 'L' label is returned.
1044   MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
1045                          bool isLinkerPrivate = false) const;
1046 
1047   /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
1048   /// base.
1049   MCSymbol *getPICBaseSymbol() const;
1050 
1051   /// Returns a reference to a list of cfi instructions in the function's
1052   /// prologue.  Used to construct frame maps for debug and exception handling
1053   /// comsumers.
1054   const std::vector<MCCFIInstruction> &getFrameInstructions() const {
1055     return FrameInstructions;
1056   }
1057 
1058   LLVM_NODISCARD unsigned addFrameInst(const MCCFIInstruction &Inst);
1059 
1060   /// Returns a reference to a list of symbols immediately following calls to
1061   /// _setjmp in the function. Used to construct the longjmp target table used
1062   /// by Windows Control Flow Guard.
1063   const std::vector<MCSymbol *> &getLongjmpTargets() const {
1064     return LongjmpTargets;
1065   }
1066 
1067   /// Add the specified symbol to the list of valid longjmp targets for Windows
1068   /// Control Flow Guard.
1069   void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); }
1070 
1071   /// Returns a reference to a list of symbols that we have catchrets.
1072   /// Used to construct the catchret target table used by Windows EHCont Guard.
1073   const std::vector<MCSymbol *> &getCatchretTargets() const {
1074     return CatchretTargets;
1075   }
1076 
1077   /// Add the specified symbol to the list of valid catchret targets for Windows
1078   /// EHCont Guard.
1079   void addCatchretTarget(MCSymbol *Target) {
1080     CatchretTargets.push_back(Target);
1081   }
1082 
1083   /// \name Exception Handling
1084   /// \{
1085 
1086   bool callsEHReturn() const { return CallsEHReturn; }
1087   void setCallsEHReturn(bool b) { CallsEHReturn = b; }
1088 
1089   bool callsUnwindInit() const { return CallsUnwindInit; }
1090   void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
1091 
1092   bool hasEHCatchret() const { return HasEHCatchret; }
1093   void setHasEHCatchret(bool V) { HasEHCatchret = V; }
1094 
1095   bool hasEHScopes() const { return HasEHScopes; }
1096   void setHasEHScopes(bool V) { HasEHScopes = V; }
1097 
1098   bool hasEHFunclets() const { return HasEHFunclets; }
1099   void setHasEHFunclets(bool V) { HasEHFunclets = V; }
1100 
1101   /// Find or create an LandingPadInfo for the specified MachineBasicBlock.
1102   LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);
1103 
1104   /// Remap landing pad labels and remove any deleted landing pads.
1105   void tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap = nullptr,
1106                        bool TidyIfNoBeginLabels = true);
1107 
1108   /// Return a reference to the landing pad info for the current function.
1109   const std::vector<LandingPadInfo> &getLandingPads() const {
1110     return LandingPads;
1111   }
1112 
1113   /// Provide the begin and end labels of an invoke style call and associate it
1114   /// with a try landing pad block.
1115   void addInvoke(MachineBasicBlock *LandingPad,
1116                  MCSymbol *BeginLabel, MCSymbol *EndLabel);
1117 
1118   /// Add a new panding pad, and extract the exception handling information from
1119   /// the landingpad instruction. Returns the label ID for the landing pad
1120   /// entry.
1121   MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
1122 
1123   /// Provide the catch typeinfo for a landing pad.
1124   void addCatchTypeInfo(MachineBasicBlock *LandingPad,
1125                         ArrayRef<const GlobalValue *> TyInfo);
1126 
1127   /// Provide the filter typeinfo for a landing pad.
1128   void addFilterTypeInfo(MachineBasicBlock *LandingPad,
1129                          ArrayRef<const GlobalValue *> TyInfo);
1130 
1131   /// Add a cleanup action for a landing pad.
1132   void addCleanup(MachineBasicBlock *LandingPad);
1133 
1134   /// Return the type id for the specified typeinfo.  This is function wide.
1135   unsigned getTypeIDFor(const GlobalValue *TI);
1136 
1137   /// Return the id of the filter encoded by TyIds.  This is function wide.
1138   int getFilterIDFor(std::vector<unsigned> &TyIds);
1139 
1140   /// Map the landing pad's EH symbol to the call site indexes.
1141   void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);
1142 
1143   /// Return if there is any wasm exception handling.
1144   bool hasAnyWasmLandingPadIndex() const {
1145     return !WasmLPadToIndexMap.empty();
1146   }
1147 
1148   /// Map the landing pad to its index. Used for Wasm exception handling.
1149   void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) {
1150     WasmLPadToIndexMap[LPad] = Index;
1151   }
1152 
1153   /// Returns true if the landing pad has an associate index in wasm EH.
1154   bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1155     return WasmLPadToIndexMap.count(LPad);
1156   }
1157 
1158   /// Get the index in wasm EH for a given landing pad.
1159   unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1160     assert(hasWasmLandingPadIndex(LPad));
1161     return WasmLPadToIndexMap.lookup(LPad);
1162   }
1163 
1164   bool hasAnyCallSiteLandingPad() const {
1165     return !LPadToCallSiteMap.empty();
1166   }
1167 
1168   /// Get the call site indexes for a landing pad EH symbol.
1169   SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
1170     assert(hasCallSiteLandingPad(Sym) &&
1171            "missing call site number for landing pad!");
1172     return LPadToCallSiteMap[Sym];
1173   }
1174 
1175   /// Return true if the landing pad Eh symbol has an associated call site.
1176   bool hasCallSiteLandingPad(MCSymbol *Sym) {
1177     return !LPadToCallSiteMap[Sym].empty();
1178   }
1179 
1180   bool hasAnyCallSiteLabel() const {
1181     return !CallSiteMap.empty();
1182   }
1183 
1184   /// Map the begin label for a call site.
1185   void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
1186     CallSiteMap[BeginLabel] = Site;
1187   }
1188 
1189   /// Get the call site number for a begin label.
1190   unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1191     assert(hasCallSiteBeginLabel(BeginLabel) &&
1192            "Missing call site number for EH_LABEL!");
1193     return CallSiteMap.lookup(BeginLabel);
1194   }
1195 
1196   /// Return true if the begin label has a call site number associated with it.
1197   bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1198     return CallSiteMap.count(BeginLabel);
1199   }
1200 
1201   /// Record annotations associated with a particular label.
1202   void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) {
1203     CodeViewAnnotations.push_back({Label, MD});
1204   }
1205 
1206   ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const {
1207     return CodeViewAnnotations;
1208   }
1209 
1210   /// Return a reference to the C++ typeinfo for the current function.
1211   const std::vector<const GlobalValue *> &getTypeInfos() const {
1212     return TypeInfos;
1213   }
1214 
1215   /// Return a reference to the typeids encoding filters used in the current
1216   /// function.
1217   const std::vector<unsigned> &getFilterIds() const {
1218     return FilterIds;
1219   }
1220 
1221   /// \}
1222 
1223   /// Collect information used to emit debugging information of a variable.
1224   void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
1225                           int Slot, const DILocation *Loc) {
1226     VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
1227   }
1228 
1229   VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
1230   const VariableDbgInfoMapTy &getVariableDbgInfo() const {
1231     return VariableDbgInfos;
1232   }
1233 
1234   /// Start tracking the arguments passed to the call \p CallI.
1235   void addCallArgsForwardingRegs(const MachineInstr *CallI,
1236                                  CallSiteInfoImpl &&CallInfo) {
1237     assert(CallI->isCandidateForCallSiteEntry());
1238     bool Inserted =
1239         CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second;
1240     (void)Inserted;
1241     assert(Inserted && "Call site info not unique");
1242   }
1243 
1244   const CallSiteInfoMap &getCallSitesInfo() const {
1245     return CallSitesInfo;
1246   }
1247 
1248   /// Following functions update call site info. They should be called before
1249   /// removing, replacing or copying call instruction.
1250 
1251   /// Erase the call site info for \p MI. It is used to remove a call
1252   /// instruction from the instruction stream.
1253   void eraseCallSiteInfo(const MachineInstr *MI);
1254   /// Copy the call site info from \p Old to \ New. Its usage is when we are
1255   /// making a copy of the instruction that will be inserted at different point
1256   /// of the instruction stream.
1257   void copyCallSiteInfo(const MachineInstr *Old,
1258                         const MachineInstr *New);
1259 
1260   /// Move the call site info from \p Old to \New call site info. This function
1261   /// is used when we are replacing one call instruction with another one to
1262   /// the same callee.
1263   void moveCallSiteInfo(const MachineInstr *Old,
1264                         const MachineInstr *New);
1265 
1266   unsigned getNewDebugInstrNum() {
1267     return ++DebugInstrNumberingCount;
1268   }
1269 };
1270 
1271 //===--------------------------------------------------------------------===//
1272 // GraphTraits specializations for function basic block graphs (CFGs)
1273 //===--------------------------------------------------------------------===//
1274 
1275 // Provide specializations of GraphTraits to be able to treat a
1276 // machine function as a graph of machine basic blocks... these are
1277 // the same as the machine basic block iterators, except that the root
1278 // node is implicitly the first node of the function.
1279 //
1280 template <> struct GraphTraits<MachineFunction*> :
1281   public GraphTraits<MachineBasicBlock*> {
1282   static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }
1283 
1284   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1285   using nodes_iterator = pointer_iterator<MachineFunction::iterator>;
1286 
1287   static nodes_iterator nodes_begin(MachineFunction *F) {
1288     return nodes_iterator(F->begin());
1289   }
1290 
1291   static nodes_iterator nodes_end(MachineFunction *F) {
1292     return nodes_iterator(F->end());
1293   }
1294 
1295   static unsigned       size       (MachineFunction *F) { return F->size(); }
1296 };
1297 template <> struct GraphTraits<const MachineFunction*> :
1298   public GraphTraits<const MachineBasicBlock*> {
1299   static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }
1300 
1301   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1302   using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>;
1303 
1304   static nodes_iterator nodes_begin(const MachineFunction *F) {
1305     return nodes_iterator(F->begin());
1306   }
1307 
1308   static nodes_iterator nodes_end  (const MachineFunction *F) {
1309     return nodes_iterator(F->end());
1310   }
1311 
1312   static unsigned       size       (const MachineFunction *F)  {
1313     return F->size();
1314   }
1315 };
1316 
1317 // Provide specializations of GraphTraits to be able to treat a function as a
1318 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
1319 // a function is considered to be when traversing the predecessor edges of a BB
1320 // instead of the successor edges.
1321 //
1322 template <> struct GraphTraits<Inverse<MachineFunction*>> :
1323   public GraphTraits<Inverse<MachineBasicBlock*>> {
1324   static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
1325     return &G.Graph->front();
1326   }
1327 };
1328 template <> struct GraphTraits<Inverse<const MachineFunction*>> :
1329   public GraphTraits<Inverse<const MachineBasicBlock*>> {
1330   static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
1331     return &G.Graph->front();
1332   }
1333 };
1334 
1335 class MachineFunctionAnalysisManager;
1336 void verifyMachineFunction(MachineFunctionAnalysisManager *,
1337                            const std::string &Banner,
1338                            const MachineFunction &MF);
1339 
1340 } // end namespace llvm
1341 
1342 #endif // LLVM_CODEGEN_MACHINEFUNCTION_H
1343