1 //===- MachinePipeliner.h - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // Software pipelining (SWP) is an instruction scheduling technique for loops
12 // that overlap loop iterations and exploits ILP via a compiler transformation.
13 //
14 // Swing Modulo Scheduling is an implementation of software pipelining
15 // that generates schedules that are near optimal in terms of initiation
16 // interval, register requirements, and stage count. See the papers:
17 //
18 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
19 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
20 // Conference on Parallel Architectures and Compilation Techiniques.
21 //
22 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
23 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
24 // Transactions on Computers, Vol. 50, No. 3, 2001.
25 //
26 // "An Implementation of Swing Modulo Scheduling With Extensions for
27 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
28 // Urbana-Champaign, 2005.
29 //
30 //
31 // The SMS algorithm consists of three main steps after computing the minimal
32 // initiation interval (MII).
33 // 1) Analyze the dependence graph and compute information about each
34 //    instruction in the graph.
35 // 2) Order the nodes (instructions) by priority based upon the heuristics
36 //    described in the algorithm.
37 // 3) Attempt to schedule the nodes in the specified order using the MII.
38 //
39 //===----------------------------------------------------------------------===//
40 #ifndef LLVM_CODEGEN_MACHINEPIPELINER_H
41 #define LLVM_CODEGEN_MACHINEPIPELINER_H
42 
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/CodeGen/DFAPacketizer.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
47 #include "llvm/CodeGen/RegisterClassInfo.h"
48 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
49 #include "llvm/CodeGen/ScheduleDAGMutation.h"
50 #include "llvm/CodeGen/TargetInstrInfo.h"
51 #include "llvm/InitializePasses.h"
52 
53 #include <deque>
54 
55 namespace llvm {
56 
57 class AAResults;
58 class NodeSet;
59 class SMSchedule;
60 
61 extern cl::opt<bool> SwpEnableCopyToPhi;
62 extern cl::opt<int> SwpForceIssueWidth;
63 
64 /// The main class in the implementation of the target independent
65 /// software pipeliner pass.
66 class MachinePipeliner : public MachineFunctionPass {
67 public:
68   MachineFunction *MF = nullptr;
69   MachineOptimizationRemarkEmitter *ORE = nullptr;
70   const MachineLoopInfo *MLI = nullptr;
71   const MachineDominatorTree *MDT = nullptr;
72   const InstrItineraryData *InstrItins;
73   const TargetInstrInfo *TII = nullptr;
74   RegisterClassInfo RegClassInfo;
75   bool disabledByPragma = false;
76   unsigned II_setByPragma = 0;
77 
78 #ifndef NDEBUG
79   static int NumTries;
80 #endif
81 
82   /// Cache the target analysis information about the loop.
83   struct LoopInfo {
84     MachineBasicBlock *TBB = nullptr;
85     MachineBasicBlock *FBB = nullptr;
86     SmallVector<MachineOperand, 4> BrCond;
87     MachineInstr *LoopInductionVar = nullptr;
88     MachineInstr *LoopCompare = nullptr;
89     std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopPipelinerInfo =
90         nullptr;
91   };
92   LoopInfo LI;
93 
94   static char ID;
95 
96   MachinePipeliner() : MachineFunctionPass(ID) {
97     initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
98   }
99 
100   bool runOnMachineFunction(MachineFunction &MF) override;
101 
102   void getAnalysisUsage(AnalysisUsage &AU) const override;
103 
104 private:
105   void preprocessPhiNodes(MachineBasicBlock &B);
106   bool canPipelineLoop(MachineLoop &L);
107   bool scheduleLoop(MachineLoop &L);
108   bool swingModuloScheduler(MachineLoop &L);
109   void setPragmaPipelineOptions(MachineLoop &L);
110 };
111 
112 /// This class builds the dependence graph for the instructions in a loop,
113 /// and attempts to schedule the instructions using the SMS algorithm.
114 class SwingSchedulerDAG : public ScheduleDAGInstrs {
115   MachinePipeliner &Pass;
116   /// The minimum initiation interval between iterations for this schedule.
117   unsigned MII = 0;
118   /// The maximum initiation interval between iterations for this schedule.
119   unsigned MAX_II = 0;
120   /// Set to true if a valid pipelined schedule is found for the loop.
121   bool Scheduled = false;
122   MachineLoop &Loop;
123   LiveIntervals &LIS;
124   const RegisterClassInfo &RegClassInfo;
125   unsigned II_setByPragma = 0;
126   TargetInstrInfo::PipelinerLoopInfo *LoopPipelinerInfo = nullptr;
127 
128   /// A toplogical ordering of the SUnits, which is needed for changing
129   /// dependences and iterating over the SUnits.
130   ScheduleDAGTopologicalSort Topo;
131 
132   struct NodeInfo {
133     int ASAP = 0;
134     int ALAP = 0;
135     int ZeroLatencyDepth = 0;
136     int ZeroLatencyHeight = 0;
137 
138     NodeInfo() = default;
139   };
140   /// Computed properties for each node in the graph.
141   std::vector<NodeInfo> ScheduleInfo;
142 
143   enum OrderKind { BottomUp = 0, TopDown = 1 };
144   /// Computed node ordering for scheduling.
145   SetVector<SUnit *> NodeOrder;
146 
147   using NodeSetType = SmallVector<NodeSet, 8>;
148   using ValueMapTy = DenseMap<unsigned, unsigned>;
149   using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
150   using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
151 
152   /// Instructions to change when emitting the final schedule.
153   DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
154 
155   /// We may create a new instruction, so remember it because it
156   /// must be deleted when the pass is finished.
157   DenseMap<MachineInstr*, MachineInstr *> NewMIs;
158 
159   /// Ordered list of DAG postprocessing steps.
160   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
161 
162   /// Helper class to implement Johnson's circuit finding algorithm.
163   class Circuits {
164     std::vector<SUnit> &SUnits;
165     SetVector<SUnit *> Stack;
166     BitVector Blocked;
167     SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
168     SmallVector<SmallVector<int, 4>, 16> AdjK;
169     // Node to Index from ScheduleDAGTopologicalSort
170     std::vector<int> *Node2Idx;
171     unsigned NumPaths;
172     static unsigned MaxPaths;
173 
174   public:
175     Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo)
176         : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
177       Node2Idx = new std::vector<int>(SUs.size());
178       unsigned Idx = 0;
179       for (const auto &NodeNum : Topo)
180         Node2Idx->at(NodeNum) = Idx++;
181     }
182 
183     ~Circuits() { delete Node2Idx; }
184 
185     /// Reset the data structures used in the circuit algorithm.
186     void reset() {
187       Stack.clear();
188       Blocked.reset();
189       B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
190       NumPaths = 0;
191     }
192 
193     void createAdjacencyStructure(SwingSchedulerDAG *DAG);
194     bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
195     void unblock(int U);
196   };
197 
198   struct CopyToPhiMutation : public ScheduleDAGMutation {
199     void apply(ScheduleDAGInstrs *DAG) override;
200   };
201 
202 public:
203   SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
204                     const RegisterClassInfo &rci, unsigned II,
205                     TargetInstrInfo::PipelinerLoopInfo *PLI)
206       : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
207         RegClassInfo(rci), II_setByPragma(II), LoopPipelinerInfo(PLI),
208         Topo(SUnits, &ExitSU) {
209     P.MF->getSubtarget().getSMSMutations(Mutations);
210     if (SwpEnableCopyToPhi)
211       Mutations.push_back(std::make_unique<CopyToPhiMutation>());
212   }
213 
214   void schedule() override;
215   void finishBlock() override;
216 
217   /// Return true if the loop kernel has been scheduled.
218   bool hasNewSchedule() { return Scheduled; }
219 
220   /// Return the earliest time an instruction may be scheduled.
221   int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
222 
223   /// Return the latest time an instruction my be scheduled.
224   int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
225 
226   /// The mobility function, which the number of slots in which
227   /// an instruction may be scheduled.
228   int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
229 
230   /// The depth, in the dependence graph, for a node.
231   unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
232 
233   /// The maximum unweighted length of a path from an arbitrary node to the
234   /// given node in which each edge has latency 0
235   int getZeroLatencyDepth(SUnit *Node) {
236     return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
237   }
238 
239   /// The height, in the dependence graph, for a node.
240   unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
241 
242   /// The maximum unweighted length of a path from the given node to an
243   /// arbitrary node in which each edge has latency 0
244   int getZeroLatencyHeight(SUnit *Node) {
245     return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
246   }
247 
248   /// Return true if the dependence is a back-edge in the data dependence graph.
249   /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
250   /// using an anti dependence from a Phi to an instruction.
251   bool isBackedge(SUnit *Source, const SDep &Dep) {
252     if (Dep.getKind() != SDep::Anti)
253       return false;
254     return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
255   }
256 
257   bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
258 
259   /// The distance function, which indicates that operation V of iteration I
260   /// depends on operations U of iteration I-distance.
261   unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
262     // Instructions that feed a Phi have a distance of 1. Computing larger
263     // values for arrays requires data dependence information.
264     if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
265       return 1;
266     return 0;
267   }
268 
269   void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
270 
271   void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
272 
273   /// Return the new base register that was stored away for the changed
274   /// instruction.
275   unsigned getInstrBaseReg(SUnit *SU) {
276     DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
277         InstrChanges.find(SU);
278     if (It != InstrChanges.end())
279       return It->second.first;
280     return 0;
281   }
282 
283   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
284     Mutations.push_back(std::move(Mutation));
285   }
286 
287   static bool classof(const ScheduleDAGInstrs *DAG) { return true; }
288 
289 private:
290   void addLoopCarriedDependences(AAResults *AA);
291   void updatePhiDependences();
292   void changeDependences();
293   unsigned calculateResMII();
294   unsigned calculateRecMII(NodeSetType &RecNodeSets);
295   void findCircuits(NodeSetType &NodeSets);
296   void fuseRecs(NodeSetType &NodeSets);
297   void removeDuplicateNodes(NodeSetType &NodeSets);
298   void computeNodeFunctions(NodeSetType &NodeSets);
299   void registerPressureFilter(NodeSetType &NodeSets);
300   void colocateNodeSets(NodeSetType &NodeSets);
301   void checkNodeSets(NodeSetType &NodeSets);
302   void groupRemainingNodes(NodeSetType &NodeSets);
303   void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
304                          SetVector<SUnit *> &NodesAdded);
305   void computeNodeOrder(NodeSetType &NodeSets);
306   void checkValidNodeOrder(const NodeSetType &Circuits) const;
307   bool schedulePipeline(SMSchedule &Schedule);
308   bool computeDelta(MachineInstr &MI, unsigned &Delta);
309   MachineInstr *findDefInLoop(Register Reg);
310   bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
311                              unsigned &OffsetPos, unsigned &NewBase,
312                              int64_t &NewOffset);
313   void postprocessDAG();
314   /// Set the Minimum Initiation Interval for this schedule attempt.
315   void setMII(unsigned ResMII, unsigned RecMII);
316   /// Set the Maximum Initiation Interval for this schedule attempt.
317   void setMAX_II();
318 };
319 
320 /// A NodeSet contains a set of SUnit DAG nodes with additional information
321 /// that assigns a priority to the set.
322 class NodeSet {
323   SetVector<SUnit *> Nodes;
324   bool HasRecurrence = false;
325   unsigned RecMII = 0;
326   int MaxMOV = 0;
327   unsigned MaxDepth = 0;
328   unsigned Colocate = 0;
329   SUnit *ExceedPressure = nullptr;
330   unsigned Latency = 0;
331 
332 public:
333   using iterator = SetVector<SUnit *>::const_iterator;
334 
335   NodeSet() = default;
336   NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
337     Latency = 0;
338     for (const SUnit *Node : Nodes) {
339       DenseMap<SUnit *, unsigned> SuccSUnitLatency;
340       for (const SDep &Succ : Node->Succs) {
341         auto SuccSUnit = Succ.getSUnit();
342         if (!Nodes.count(SuccSUnit))
343           continue;
344         unsigned CurLatency = Succ.getLatency();
345         unsigned MaxLatency = 0;
346         if (SuccSUnitLatency.count(SuccSUnit))
347           MaxLatency = SuccSUnitLatency[SuccSUnit];
348         if (CurLatency > MaxLatency)
349           SuccSUnitLatency[SuccSUnit] = CurLatency;
350       }
351       for (auto SUnitLatency : SuccSUnitLatency)
352         Latency += SUnitLatency.second;
353     }
354   }
355 
356   bool insert(SUnit *SU) { return Nodes.insert(SU); }
357 
358   void insert(iterator S, iterator E) { Nodes.insert(S, E); }
359 
360   template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
361     return Nodes.remove_if(P);
362   }
363 
364   unsigned count(SUnit *SU) const { return Nodes.count(SU); }
365 
366   bool hasRecurrence() { return HasRecurrence; };
367 
368   unsigned size() const { return Nodes.size(); }
369 
370   bool empty() const { return Nodes.empty(); }
371 
372   SUnit *getNode(unsigned i) const { return Nodes[i]; };
373 
374   void setRecMII(unsigned mii) { RecMII = mii; };
375 
376   void setColocate(unsigned c) { Colocate = c; };
377 
378   void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
379 
380   bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
381 
382   int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
383 
384   int getRecMII() { return RecMII; }
385 
386   /// Summarize node functions for the entire node set.
387   void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
388     for (SUnit *SU : *this) {
389       MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
390       MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
391     }
392   }
393 
394   unsigned getLatency() { return Latency; }
395 
396   unsigned getMaxDepth() { return MaxDepth; }
397 
398   void clear() {
399     Nodes.clear();
400     RecMII = 0;
401     HasRecurrence = false;
402     MaxMOV = 0;
403     MaxDepth = 0;
404     Colocate = 0;
405     ExceedPressure = nullptr;
406   }
407 
408   operator SetVector<SUnit *> &() { return Nodes; }
409 
410   /// Sort the node sets by importance. First, rank them by recurrence MII,
411   /// then by mobility (least mobile done first), and finally by depth.
412   /// Each node set may contain a colocate value which is used as the first
413   /// tie breaker, if it's set.
414   bool operator>(const NodeSet &RHS) const {
415     if (RecMII == RHS.RecMII) {
416       if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
417         return Colocate < RHS.Colocate;
418       if (MaxMOV == RHS.MaxMOV)
419         return MaxDepth > RHS.MaxDepth;
420       return MaxMOV < RHS.MaxMOV;
421     }
422     return RecMII > RHS.RecMII;
423   }
424 
425   bool operator==(const NodeSet &RHS) const {
426     return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
427            MaxDepth == RHS.MaxDepth;
428   }
429 
430   bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
431 
432   iterator begin() { return Nodes.begin(); }
433   iterator end() { return Nodes.end(); }
434   void print(raw_ostream &os) const;
435 
436 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
437   LLVM_DUMP_METHOD void dump() const;
438 #endif
439 };
440 
441 // 16 was selected based on the number of ProcResource kinds for all
442 // existing Subtargets, so that SmallVector don't need to resize too often.
443 static const int DefaultProcResSize = 16;
444 
445 class ResourceManager {
446 private:
447   const MCSubtargetInfo *STI;
448   const MCSchedModel &SM;
449   const TargetSubtargetInfo *ST;
450   const TargetInstrInfo *TII;
451   SwingSchedulerDAG *DAG;
452   const bool UseDFA;
453   /// DFA resources for each slot
454   llvm::SmallVector<std::unique_ptr<DFAPacketizer>> DFAResources;
455   /// Modulo Reservation Table. When a resource with ID R is consumed in cycle
456   /// C, it is counted in MRT[C mod II][R]. (Used when UseDFA == F)
457   llvm::SmallVector<llvm::SmallVector<uint64_t, DefaultProcResSize>> MRT;
458   /// The number of scheduled micro operations for each slot. Micro operations
459   /// are assumed to be scheduled one per cycle, starting with the cycle in
460   /// which the instruction is scheduled.
461   llvm::SmallVector<int> NumScheduledMops;
462   /// Each processor resource is associated with a so-called processor resource
463   /// mask. This vector allows to correlate processor resource IDs with
464   /// processor resource masks. There is exactly one element per each processor
465   /// resource declared by the scheduling model.
466   llvm::SmallVector<uint64_t, DefaultProcResSize> ProcResourceMasks;
467   int InitiationInterval;
468   /// The number of micro operations that can be scheduled at a cycle.
469   int IssueWidth;
470 
471   int calculateResMIIDFA() const;
472   /// Check if MRT is overbooked
473   bool isOverbooked() const;
474   /// Reserve resources on MRT
475   void reserveResources(const MCSchedClassDesc *SCDesc, int Cycle);
476   /// Unreserve resources on MRT
477   void unreserveResources(const MCSchedClassDesc *SCDesc, int Cycle);
478 
479   /// Return M satisfying Dividend = Divisor * X + M, 0 < M < Divisor.
480   /// The slot on MRT to reserve a resource for the cycle C is positiveModulo(C,
481   /// II).
482   int positiveModulo(int Dividend, int Divisor) const {
483     assert(Divisor > 0);
484     int R = Dividend % Divisor;
485     if (R < 0)
486       R += Divisor;
487     return R;
488   }
489 
490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
491   LLVM_DUMP_METHOD void dumpMRT() const;
492 #endif
493 
494 public:
495   ResourceManager(const TargetSubtargetInfo *ST, SwingSchedulerDAG *DAG)
496       : STI(ST), SM(ST->getSchedModel()), ST(ST), TII(ST->getInstrInfo()),
497         DAG(DAG), UseDFA(ST->useDFAforSMS()),
498         ProcResourceMasks(SM.getNumProcResourceKinds(), 0),
499         IssueWidth(SM.IssueWidth) {
500     initProcResourceVectors(SM, ProcResourceMasks);
501     if (IssueWidth <= 0)
502       // If IssueWidth is not specified, set a sufficiently large value
503       IssueWidth = 100;
504     if (SwpForceIssueWidth > 0)
505       IssueWidth = SwpForceIssueWidth;
506   }
507 
508   void initProcResourceVectors(const MCSchedModel &SM,
509                                SmallVectorImpl<uint64_t> &Masks);
510 
511   /// Check if the resources occupied by a machine instruction are available
512   /// in the current state.
513   bool canReserveResources(SUnit &SU, int Cycle);
514 
515   /// Reserve the resources occupied by a machine instruction and change the
516   /// current state to reflect that change.
517   void reserveResources(SUnit &SU, int Cycle);
518 
519   int calculateResMII() const;
520 
521   /// Initialize resources with the initiation interval II.
522   void init(int II);
523 };
524 
525 /// This class represents the scheduled code.  The main data structure is a
526 /// map from scheduled cycle to instructions.  During scheduling, the
527 /// data structure explicitly represents all stages/iterations.   When
528 /// the algorithm finshes, the schedule is collapsed into a single stage,
529 /// which represents instructions from different loop iterations.
530 ///
531 /// The SMS algorithm allows negative values for cycles, so the first cycle
532 /// in the schedule is the smallest cycle value.
533 class SMSchedule {
534 private:
535   /// Map from execution cycle to instructions.
536   DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
537 
538   /// Map from instruction to execution cycle.
539   std::map<SUnit *, int> InstrToCycle;
540 
541   /// Keep track of the first cycle value in the schedule.  It starts
542   /// as zero, but the algorithm allows negative values.
543   int FirstCycle = 0;
544 
545   /// Keep track of the last cycle value in the schedule.
546   int LastCycle = 0;
547 
548   /// The initiation interval (II) for the schedule.
549   int InitiationInterval = 0;
550 
551   /// Target machine information.
552   const TargetSubtargetInfo &ST;
553 
554   /// Virtual register information.
555   MachineRegisterInfo &MRI;
556 
557   ResourceManager ProcItinResources;
558 
559 public:
560   SMSchedule(MachineFunction *mf, SwingSchedulerDAG *DAG)
561       : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
562         ProcItinResources(&ST, DAG) {}
563 
564   void reset() {
565     ScheduledInstrs.clear();
566     InstrToCycle.clear();
567     FirstCycle = 0;
568     LastCycle = 0;
569     InitiationInterval = 0;
570   }
571 
572   /// Set the initiation interval for this schedule.
573   void setInitiationInterval(int ii) {
574     InitiationInterval = ii;
575     ProcItinResources.init(ii);
576   }
577 
578   /// Return the initiation interval for this schedule.
579   int getInitiationInterval() const { return InitiationInterval; }
580 
581   /// Return the first cycle in the completed schedule.  This
582   /// can be a negative value.
583   int getFirstCycle() const { return FirstCycle; }
584 
585   /// Return the last cycle in the finalized schedule.
586   int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
587 
588   /// Return the cycle of the earliest scheduled instruction in the dependence
589   /// chain.
590   int earliestCycleInChain(const SDep &Dep);
591 
592   /// Return the cycle of the latest scheduled instruction in the dependence
593   /// chain.
594   int latestCycleInChain(const SDep &Dep);
595 
596   void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
597                     int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
598   bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
599 
600   /// Iterators for the cycle to instruction map.
601   using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
602   using const_sched_iterator =
603       DenseMap<int, std::deque<SUnit *>>::const_iterator;
604 
605   /// Return true if the instruction is scheduled at the specified stage.
606   bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
607     return (stageScheduled(SU) == (int)StageNum);
608   }
609 
610   /// Return the stage for a scheduled instruction.  Return -1 if
611   /// the instruction has not been scheduled.
612   int stageScheduled(SUnit *SU) const {
613     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
614     if (it == InstrToCycle.end())
615       return -1;
616     return (it->second - FirstCycle) / InitiationInterval;
617   }
618 
619   /// Return the cycle for a scheduled instruction. This function normalizes
620   /// the first cycle to be 0.
621   unsigned cycleScheduled(SUnit *SU) const {
622     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
623     assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
624     return (it->second - FirstCycle) % InitiationInterval;
625   }
626 
627   /// Return the maximum stage count needed for this schedule.
628   unsigned getMaxStageCount() {
629     return (LastCycle - FirstCycle) / InitiationInterval;
630   }
631 
632   /// Return the instructions that are scheduled at the specified cycle.
633   std::deque<SUnit *> &getInstructions(int cycle) {
634     return ScheduledInstrs[cycle];
635   }
636 
637   SmallSet<SUnit *, 8>
638   computeUnpipelineableNodes(SwingSchedulerDAG *SSD,
639                              TargetInstrInfo::PipelinerLoopInfo *PLI);
640 
641   bool
642   normalizeNonPipelinedInstructions(SwingSchedulerDAG *SSD,
643                                     TargetInstrInfo::PipelinerLoopInfo *PLI);
644   bool isValidSchedule(SwingSchedulerDAG *SSD);
645   void finalizeSchedule(SwingSchedulerDAG *SSD);
646   void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
647                        std::deque<SUnit *> &Insts);
648   bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
649   bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
650                              MachineOperand &MO);
651   void print(raw_ostream &os) const;
652   void dump() const;
653 };
654 
655 } // end namespace llvm
656 
657 #endif // LLVM_CODEGEN_MACHINEPIPELINER_H
658