1 //===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides an interface for customizing the standard MachineScheduler
10 // pass. Note that the entire pass may be replaced as follows:
11 //
12 // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
13 //   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
14 //   ...}
15 //
16 // The MachineScheduler pass is only responsible for choosing the regions to be
17 // scheduled. Targets can override the DAG builder and scheduler without
18 // replacing the pass as follows:
19 //
20 // ScheduleDAGInstrs *<Target>PassConfig::
21 // createMachineScheduler(MachineSchedContext *C) {
22 //   return new CustomMachineScheduler(C);
23 // }
24 //
25 // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
26 // scheduling while updating the instruction stream, register pressure, and live
27 // intervals. Most targets don't need to override the DAG builder and list
28 // scheduler, but subtargets that require custom scheduling heuristics may
29 // plugin an alternate MachineSchedStrategy. The strategy is responsible for
30 // selecting the highest priority node from the list:
31 //
32 // ScheduleDAGInstrs *<Target>PassConfig::
33 // createMachineScheduler(MachineSchedContext *C) {
34 //   return new ScheduleDAGMILive(C, CustomStrategy(C));
35 // }
36 //
37 // The DAG builder can also be customized in a sense by adding DAG mutations
38 // that will run after DAG building and before list scheduling. DAG mutations
39 // can adjust dependencies based on target-specific knowledge or add weak edges
40 // to aid heuristics:
41 //
42 // ScheduleDAGInstrs *<Target>PassConfig::
43 // createMachineScheduler(MachineSchedContext *C) {
44 //   ScheduleDAGMI *DAG = createGenericSchedLive(C);
45 //   DAG->addMutation(new CustomDAGMutation(...));
46 //   return DAG;
47 // }
48 //
49 // A target that supports alternative schedulers can use the
50 // MachineSchedRegistry to allow command line selection. This can be done by
51 // implementing the following boilerplate:
52 //
53 // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
54 //  return new CustomMachineScheduler(C);
55 // }
56 // static MachineSchedRegistry
57 // SchedCustomRegistry("custom", "Run my target's custom scheduler",
58 //                     createCustomMachineSched);
59 //
60 //
61 // Finally, subtargets that don't need to implement custom heuristics but would
62 // like to configure the GenericScheduler's policy for a given scheduler region,
63 // including scheduling direction and register pressure tracking policy, can do
64 // this:
65 //
66 // void <SubTarget>Subtarget::
67 // overrideSchedPolicy(MachineSchedPolicy &Policy,
68 //                     unsigned NumRegionInstrs) const {
69 //   Policy.<Flag> = true;
70 // }
71 //
72 //===----------------------------------------------------------------------===//
73 
74 #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
75 #define LLVM_CODEGEN_MACHINESCHEDULER_H
76 
77 #include "llvm/ADT/APInt.h"
78 #include "llvm/ADT/ArrayRef.h"
79 #include "llvm/ADT/BitVector.h"
80 #include "llvm/ADT/STLExtras.h"
81 #include "llvm/ADT/SmallVector.h"
82 #include "llvm/ADT/StringRef.h"
83 #include "llvm/ADT/Twine.h"
84 #include "llvm/CodeGen/MachineBasicBlock.h"
85 #include "llvm/CodeGen/MachinePassRegistry.h"
86 #include "llvm/CodeGen/RegisterPressure.h"
87 #include "llvm/CodeGen/ScheduleDAG.h"
88 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
89 #include "llvm/CodeGen/ScheduleDAGMutation.h"
90 #include "llvm/CodeGen/TargetSchedule.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/ErrorHandling.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <memory>
96 #include <string>
97 #include <vector>
98 
99 namespace llvm {
100 
101 extern cl::opt<bool> ForceTopDown;
102 extern cl::opt<bool> ForceBottomUp;
103 extern cl::opt<bool> VerifyScheduling;
104 #ifndef NDEBUG
105 extern cl::opt<bool> ViewMISchedDAGs;
106 extern cl::opt<bool> PrintDAGs;
107 #else
108 extern const bool ViewMISchedDAGs;
109 extern const bool PrintDAGs;
110 #endif
111 
112 class AAResults;
113 class LiveIntervals;
114 class MachineDominatorTree;
115 class MachineFunction;
116 class MachineInstr;
117 class MachineLoopInfo;
118 class RegisterClassInfo;
119 class SchedDFSResult;
120 class ScheduleHazardRecognizer;
121 class TargetInstrInfo;
122 class TargetPassConfig;
123 class TargetRegisterInfo;
124 
125 /// MachineSchedContext provides enough context from the MachineScheduler pass
126 /// for the target to instantiate a scheduler.
127 struct MachineSchedContext {
128   MachineFunction *MF = nullptr;
129   const MachineLoopInfo *MLI = nullptr;
130   const MachineDominatorTree *MDT = nullptr;
131   const TargetPassConfig *PassConfig = nullptr;
132   AAResults *AA = nullptr;
133   LiveIntervals *LIS = nullptr;
134 
135   RegisterClassInfo *RegClassInfo;
136 
137   MachineSchedContext();
138   virtual ~MachineSchedContext();
139 };
140 
141 /// MachineSchedRegistry provides a selection of available machine instruction
142 /// schedulers.
143 class MachineSchedRegistry
144     : public MachinePassRegistryNode<
145           ScheduleDAGInstrs *(*)(MachineSchedContext *)> {
146 public:
147   using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *);
148 
149   // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
150   using FunctionPassCtor = ScheduleDAGCtor;
151 
152   static MachinePassRegistry<ScheduleDAGCtor> Registry;
153 
154   MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
155       : MachinePassRegistryNode(N, D, C) {
156     Registry.Add(this);
157   }
158 
159   ~MachineSchedRegistry() { Registry.Remove(this); }
160 
161   // Accessors.
162   //
163   MachineSchedRegistry *getNext() const {
164     return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
165   }
166 
167   static MachineSchedRegistry *getList() {
168     return (MachineSchedRegistry *)Registry.getList();
169   }
170 
171   static void setListener(MachinePassRegistryListener<FunctionPassCtor> *L) {
172     Registry.setListener(L);
173   }
174 };
175 
176 class ScheduleDAGMI;
177 
178 /// Define a generic scheduling policy for targets that don't provide their own
179 /// MachineSchedStrategy. This can be overriden for each scheduling region
180 /// before building the DAG.
181 struct MachineSchedPolicy {
182   // Allow the scheduler to disable register pressure tracking.
183   bool ShouldTrackPressure = false;
184   /// Track LaneMasks to allow reordering of independent subregister writes
185   /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
186   bool ShouldTrackLaneMasks = false;
187 
188   // Allow the scheduler to force top-down or bottom-up scheduling. If neither
189   // is true, the scheduler runs in both directions and converges.
190   bool OnlyTopDown = false;
191   bool OnlyBottomUp = false;
192 
193   // Disable heuristic that tries to fetch nodes from long dependency chains
194   // first.
195   bool DisableLatencyHeuristic = false;
196 
197   // Compute DFSResult for use in scheduling heuristics.
198   bool ComputeDFSResult = false;
199 
200   MachineSchedPolicy() = default;
201 };
202 
203 /// MachineSchedStrategy - Interface to the scheduling algorithm used by
204 /// ScheduleDAGMI.
205 ///
206 /// Initialization sequence:
207 ///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
208 class MachineSchedStrategy {
209   virtual void anchor();
210 
211 public:
212   virtual ~MachineSchedStrategy() = default;
213 
214   /// Optionally override the per-region scheduling policy.
215   virtual void initPolicy(MachineBasicBlock::iterator Begin,
216                           MachineBasicBlock::iterator End,
217                           unsigned NumRegionInstrs) {}
218 
219   virtual void dumpPolicy() const {}
220 
221   /// Check if pressure tracking is needed before building the DAG and
222   /// initializing this strategy. Called after initPolicy.
223   virtual bool shouldTrackPressure() const { return true; }
224 
225   /// Returns true if lanemasks should be tracked. LaneMask tracking is
226   /// necessary to reorder independent subregister defs for the same vreg.
227   /// This has to be enabled in combination with shouldTrackPressure().
228   virtual bool shouldTrackLaneMasks() const { return false; }
229 
230   // If this method returns true, handling of the scheduling regions
231   // themselves (in case of a scheduling boundary in MBB) will be done
232   // beginning with the topmost region of MBB.
233   virtual bool doMBBSchedRegionsTopDown() const { return false; }
234 
235   /// Initialize the strategy after building the DAG for a new region.
236   virtual void initialize(ScheduleDAGMI *DAG) = 0;
237 
238   /// Tell the strategy that MBB is about to be processed.
239   virtual void enterMBB(MachineBasicBlock *MBB) {};
240 
241   /// Tell the strategy that current MBB is done.
242   virtual void leaveMBB() {};
243 
244   /// Notify this strategy that all roots have been released (including those
245   /// that depend on EntrySU or ExitSU).
246   virtual void registerRoots() {}
247 
248   /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
249   /// schedule the node at the top of the unscheduled region. Otherwise it will
250   /// be scheduled at the bottom.
251   virtual SUnit *pickNode(bool &IsTopNode) = 0;
252 
253   /// Scheduler callback to notify that a new subtree is scheduled.
254   virtual void scheduleTree(unsigned SubtreeID) {}
255 
256   /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
257   /// instruction and updated scheduled/remaining flags in the DAG nodes.
258   virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
259 
260   /// When all predecessor dependencies have been resolved, free this node for
261   /// top-down scheduling.
262   virtual void releaseTopNode(SUnit *SU) = 0;
263 
264   /// When all successor dependencies have been resolved, free this node for
265   /// bottom-up scheduling.
266   virtual void releaseBottomNode(SUnit *SU) = 0;
267 };
268 
269 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
270 /// schedules machine instructions according to the given MachineSchedStrategy
271 /// without much extra book-keeping. This is the common functionality between
272 /// PreRA and PostRA MachineScheduler.
273 class ScheduleDAGMI : public ScheduleDAGInstrs {
274 protected:
275   AAResults *AA;
276   LiveIntervals *LIS;
277   std::unique_ptr<MachineSchedStrategy> SchedImpl;
278 
279   /// Ordered list of DAG postprocessing steps.
280   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
281 
282   /// The top of the unscheduled zone.
283   MachineBasicBlock::iterator CurrentTop;
284 
285   /// The bottom of the unscheduled zone.
286   MachineBasicBlock::iterator CurrentBottom;
287 
288   /// Record the next node in a scheduled cluster.
289   const SUnit *NextClusterPred = nullptr;
290   const SUnit *NextClusterSucc = nullptr;
291 
292 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
293   /// The number of instructions scheduled so far. Used to cut off the
294   /// scheduler at the point determined by misched-cutoff.
295   unsigned NumInstrsScheduled = 0;
296 #endif
297 
298 public:
299   ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
300                 bool RemoveKillFlags)
301       : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
302         LIS(C->LIS), SchedImpl(std::move(S)) {}
303 
304   // Provide a vtable anchor
305   ~ScheduleDAGMI() override;
306 
307   /// If this method returns true, handling of the scheduling regions
308   /// themselves (in case of a scheduling boundary in MBB) will be done
309   /// beginning with the topmost region of MBB.
310   bool doMBBSchedRegionsTopDown() const override {
311     return SchedImpl->doMBBSchedRegionsTopDown();
312   }
313 
314   // Returns LiveIntervals instance for use in DAG mutators and such.
315   LiveIntervals *getLIS() const { return LIS; }
316 
317   /// Return true if this DAG supports VReg liveness and RegPressure.
318   virtual bool hasVRegLiveness() const { return false; }
319 
320   /// Add a postprocessing step to the DAG builder.
321   /// Mutations are applied in the order that they are added after normal DAG
322   /// building and before MachineSchedStrategy initialization.
323   ///
324   /// ScheduleDAGMI takes ownership of the Mutation object.
325   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
326     if (Mutation)
327       Mutations.push_back(std::move(Mutation));
328   }
329 
330   MachineBasicBlock::iterator top() const { return CurrentTop; }
331   MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
332 
333   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
334   /// region. This covers all instructions in a block, while schedule() may only
335   /// cover a subset.
336   void enterRegion(MachineBasicBlock *bb,
337                    MachineBasicBlock::iterator begin,
338                    MachineBasicBlock::iterator end,
339                    unsigned regioninstrs) override;
340 
341   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
342   /// reorderable instructions.
343   void schedule() override;
344 
345   void startBlock(MachineBasicBlock *bb) override;
346   void finishBlock() override;
347 
348   /// Change the position of an instruction within the basic block and update
349   /// live ranges and region boundary iterators.
350   void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
351 
352   const SUnit *getNextClusterPred() const { return NextClusterPred; }
353 
354   const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
355 
356   void viewGraph(const Twine &Name, const Twine &Title) override;
357   void viewGraph() override;
358 
359 protected:
360   // Top-Level entry points for the schedule() driver...
361 
362   /// Apply each ScheduleDAGMutation step in order. This allows different
363   /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
364   void postprocessDAG();
365 
366   /// Release ExitSU predecessors and setup scheduler queues.
367   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
368 
369   /// Update scheduler DAG and queues after scheduling an instruction.
370   void updateQueues(SUnit *SU, bool IsTopNode);
371 
372   /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
373   void placeDebugValues();
374 
375   /// dump the scheduled Sequence.
376   void dumpSchedule() const;
377 
378   // Lesser helpers...
379   bool checkSchedLimit();
380 
381   void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
382                              SmallVectorImpl<SUnit*> &BotRoots);
383 
384   void releaseSucc(SUnit *SU, SDep *SuccEdge);
385   void releaseSuccessors(SUnit *SU);
386   void releasePred(SUnit *SU, SDep *PredEdge);
387   void releasePredecessors(SUnit *SU);
388 };
389 
390 /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
391 /// machine instructions while updating LiveIntervals and tracking regpressure.
392 class ScheduleDAGMILive : public ScheduleDAGMI {
393 protected:
394   RegisterClassInfo *RegClassInfo;
395 
396   /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
397   /// will be empty.
398   SchedDFSResult *DFSResult = nullptr;
399   BitVector ScheduledTrees;
400 
401   MachineBasicBlock::iterator LiveRegionEnd;
402 
403   /// Maps vregs to the SUnits of their uses in the current scheduling region.
404   VReg2SUnitMultiMap VRegUses;
405 
406   // Map each SU to its summary of pressure changes. This array is updated for
407   // liveness during bottom-up scheduling. Top-down scheduling may proceed but
408   // has no affect on the pressure diffs.
409   PressureDiffs SUPressureDiffs;
410 
411   /// Register pressure in this region computed by initRegPressure.
412   bool ShouldTrackPressure = false;
413   bool ShouldTrackLaneMasks = false;
414   IntervalPressure RegPressure;
415   RegPressureTracker RPTracker;
416 
417   /// List of pressure sets that exceed the target's pressure limit before
418   /// scheduling, listed in increasing set ID order. Each pressure set is paired
419   /// with its max pressure in the currently scheduled regions.
420   std::vector<PressureChange> RegionCriticalPSets;
421 
422   /// The top of the unscheduled zone.
423   IntervalPressure TopPressure;
424   RegPressureTracker TopRPTracker;
425 
426   /// The bottom of the unscheduled zone.
427   IntervalPressure BotPressure;
428   RegPressureTracker BotRPTracker;
429 
430 public:
431   ScheduleDAGMILive(MachineSchedContext *C,
432                     std::unique_ptr<MachineSchedStrategy> S)
433       : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
434         RegClassInfo(C->RegClassInfo), RPTracker(RegPressure),
435         TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
436 
437   ~ScheduleDAGMILive() override;
438 
439   /// Return true if this DAG supports VReg liveness and RegPressure.
440   bool hasVRegLiveness() const override { return true; }
441 
442   /// Return true if register pressure tracking is enabled.
443   bool isTrackingPressure() const { return ShouldTrackPressure; }
444 
445   /// Get current register pressure for the top scheduled instructions.
446   const IntervalPressure &getTopPressure() const { return TopPressure; }
447   const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
448 
449   /// Get current register pressure for the bottom scheduled instructions.
450   const IntervalPressure &getBotPressure() const { return BotPressure; }
451   const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
452 
453   /// Get register pressure for the entire scheduling region before scheduling.
454   const IntervalPressure &getRegPressure() const { return RegPressure; }
455 
456   const std::vector<PressureChange> &getRegionCriticalPSets() const {
457     return RegionCriticalPSets;
458   }
459 
460   PressureDiff &getPressureDiff(const SUnit *SU) {
461     return SUPressureDiffs[SU->NodeNum];
462   }
463   const PressureDiff &getPressureDiff(const SUnit *SU) const {
464     return SUPressureDiffs[SU->NodeNum];
465   }
466 
467   /// Compute a DFSResult after DAG building is complete, and before any
468   /// queue comparisons.
469   void computeDFSResult();
470 
471   /// Return a non-null DFS result if the scheduling strategy initialized it.
472   const SchedDFSResult *getDFSResult() const { return DFSResult; }
473 
474   BitVector &getScheduledTrees() { return ScheduledTrees; }
475 
476   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
477   /// region. This covers all instructions in a block, while schedule() may only
478   /// cover a subset.
479   void enterRegion(MachineBasicBlock *bb,
480                    MachineBasicBlock::iterator begin,
481                    MachineBasicBlock::iterator end,
482                    unsigned regioninstrs) override;
483 
484   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
485   /// reorderable instructions.
486   void schedule() override;
487 
488   /// Compute the cyclic critical path through the DAG.
489   unsigned computeCyclicCriticalPath();
490 
491   void dump() const override;
492 
493 protected:
494   // Top-Level entry points for the schedule() driver...
495 
496   /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
497   /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
498   /// region, TopTracker and BottomTracker will be initialized to the top and
499   /// bottom of the DAG region without covereing any unscheduled instruction.
500   void buildDAGWithRegPressure();
501 
502   /// Release ExitSU predecessors and setup scheduler queues. Re-position
503   /// the Top RP tracker in case the region beginning has changed.
504   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
505 
506   /// Move an instruction and update register pressure.
507   void scheduleMI(SUnit *SU, bool IsTopNode);
508 
509   // Lesser helpers...
510 
511   void initRegPressure();
512 
513   void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);
514 
515   void updateScheduledPressure(const SUnit *SU,
516                                const std::vector<unsigned> &NewMaxPressure);
517 
518   void collectVRegUses(SUnit &SU);
519 };
520 
521 //===----------------------------------------------------------------------===//
522 ///
523 /// Helpers for implementing custom MachineSchedStrategy classes. These take
524 /// care of the book-keeping associated with list scheduling heuristics.
525 ///
526 //===----------------------------------------------------------------------===//
527 
528 /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
529 /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
530 /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
531 ///
532 /// This is a convenience class that may be used by implementations of
533 /// MachineSchedStrategy.
534 class ReadyQueue {
535   unsigned ID;
536   std::string Name;
537   std::vector<SUnit*> Queue;
538 
539 public:
540   ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
541 
542   unsigned getID() const { return ID; }
543 
544   StringRef getName() const { return Name; }
545 
546   // SU is in this queue if it's NodeQueueID is a superset of this ID.
547   bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
548 
549   bool empty() const { return Queue.empty(); }
550 
551   void clear() { Queue.clear(); }
552 
553   unsigned size() const { return Queue.size(); }
554 
555   using iterator = std::vector<SUnit*>::iterator;
556 
557   iterator begin() { return Queue.begin(); }
558 
559   iterator end() { return Queue.end(); }
560 
561   ArrayRef<SUnit*> elements() { return Queue; }
562 
563   iterator find(SUnit *SU) { return llvm::find(Queue, SU); }
564 
565   void push(SUnit *SU) {
566     Queue.push_back(SU);
567     SU->NodeQueueId |= ID;
568   }
569 
570   iterator remove(iterator I) {
571     (*I)->NodeQueueId &= ~ID;
572     *I = Queue.back();
573     unsigned idx = I - Queue.begin();
574     Queue.pop_back();
575     return Queue.begin() + idx;
576   }
577 
578   void dump() const;
579 };
580 
581 /// Summarize the unscheduled region.
582 struct SchedRemainder {
583   // Critical path through the DAG in expected latency.
584   unsigned CriticalPath;
585   unsigned CyclicCritPath;
586 
587   // Scaled count of micro-ops left to schedule.
588   unsigned RemIssueCount;
589 
590   bool IsAcyclicLatencyLimited;
591 
592   // Unscheduled resources
593   SmallVector<unsigned, 16> RemainingCounts;
594 
595   SchedRemainder() { reset(); }
596 
597   void reset() {
598     CriticalPath = 0;
599     CyclicCritPath = 0;
600     RemIssueCount = 0;
601     IsAcyclicLatencyLimited = false;
602     RemainingCounts.clear();
603   }
604 
605   void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
606 };
607 
608 /// Each Scheduling boundary is associated with ready queues. It tracks the
609 /// current cycle in the direction of movement, and maintains the state
610 /// of "hazards" and other interlocks at the current cycle.
611 class SchedBoundary {
612 public:
613   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
614   enum {
615     TopQID = 1,
616     BotQID = 2,
617     LogMaxQID = 2
618   };
619 
620   ScheduleDAGMI *DAG = nullptr;
621   const TargetSchedModel *SchedModel = nullptr;
622   SchedRemainder *Rem = nullptr;
623 
624   ReadyQueue Available;
625   ReadyQueue Pending;
626 
627   ScheduleHazardRecognizer *HazardRec = nullptr;
628 
629 private:
630   /// True if the pending Q should be checked/updated before scheduling another
631   /// instruction.
632   bool CheckPending;
633 
634   /// Number of cycles it takes to issue the instructions scheduled in this
635   /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
636   /// See getStalls().
637   unsigned CurrCycle;
638 
639   /// Micro-ops issued in the current cycle
640   unsigned CurrMOps;
641 
642   /// MinReadyCycle - Cycle of the soonest available instruction.
643   unsigned MinReadyCycle;
644 
645   // The expected latency of the critical path in this scheduled zone.
646   unsigned ExpectedLatency;
647 
648   // The latency of dependence chains leading into this zone.
649   // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
650   // For each cycle scheduled: DLat -= 1.
651   unsigned DependentLatency;
652 
653   /// Count the scheduled (issued) micro-ops that can be retired by
654   /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
655   unsigned RetiredMOps;
656 
657   // Count scheduled resources that have been executed. Resources are
658   // considered executed if they become ready in the time that it takes to
659   // saturate any resource including the one in question. Counts are scaled
660   // for direct comparison with other resources. Counts can be compared with
661   // MOps * getMicroOpFactor and Latency * getLatencyFactor.
662   SmallVector<unsigned, 16> ExecutedResCounts;
663 
664   /// Cache the max count for a single resource.
665   unsigned MaxExecutedResCount;
666 
667   // Cache the critical resources ID in this scheduled zone.
668   unsigned ZoneCritResIdx;
669 
670   // Is the scheduled region resource limited vs. latency limited.
671   bool IsResourceLimited;
672 
673   // Record the highest cycle at which each resource has been reserved by a
674   // scheduled instruction.
675   SmallVector<unsigned, 16> ReservedCycles;
676 
677   // For each PIdx, stores first index into ReservedCycles that corresponds to
678   // it.
679   SmallVector<unsigned, 16> ReservedCyclesIndex;
680 
681   // For each PIdx, stores the resource group IDs of its subunits
682   SmallVector<APInt, 16> ResourceGroupSubUnitMasks;
683 
684 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
685   // Remember the greatest possible stall as an upper bound on the number of
686   // times we should retry the pending queue because of a hazard.
687   unsigned MaxObservedStall;
688 #endif
689 
690 public:
691   /// Pending queues extend the ready queues with the same ID and the
692   /// PendingFlag set.
693   SchedBoundary(unsigned ID, const Twine &Name):
694     Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") {
695     reset();
696   }
697 
698   ~SchedBoundary();
699 
700   void reset();
701 
702   void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
703             SchedRemainder *rem);
704 
705   bool isTop() const {
706     return Available.getID() == TopQID;
707   }
708 
709   /// Number of cycles to issue the instructions scheduled in this zone.
710   unsigned getCurrCycle() const { return CurrCycle; }
711 
712   /// Micro-ops issued in the current cycle
713   unsigned getCurrMOps() const { return CurrMOps; }
714 
715   // The latency of dependence chains leading into this zone.
716   unsigned getDependentLatency() const { return DependentLatency; }
717 
718   /// Get the number of latency cycles "covered" by the scheduled
719   /// instructions. This is the larger of the critical path within the zone
720   /// and the number of cycles required to issue the instructions.
721   unsigned getScheduledLatency() const {
722     return std::max(ExpectedLatency, CurrCycle);
723   }
724 
725   unsigned getUnscheduledLatency(SUnit *SU) const {
726     return isTop() ? SU->getHeight() : SU->getDepth();
727   }
728 
729   unsigned getResourceCount(unsigned ResIdx) const {
730     return ExecutedResCounts[ResIdx];
731   }
732 
733   /// Get the scaled count of scheduled micro-ops and resources, including
734   /// executed resources.
735   unsigned getCriticalCount() const {
736     if (!ZoneCritResIdx)
737       return RetiredMOps * SchedModel->getMicroOpFactor();
738     return getResourceCount(ZoneCritResIdx);
739   }
740 
741   /// Get a scaled count for the minimum execution time of the scheduled
742   /// micro-ops that are ready to execute by getExecutedCount. Notice the
743   /// feedback loop.
744   unsigned getExecutedCount() const {
745     return std::max(CurrCycle * SchedModel->getLatencyFactor(),
746                     MaxExecutedResCount);
747   }
748 
749   unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
750 
751   // Is the scheduled region resource limited vs. latency limited.
752   bool isResourceLimited() const { return IsResourceLimited; }
753 
754   /// Get the difference between the given SUnit's ready time and the current
755   /// cycle.
756   unsigned getLatencyStallCycles(SUnit *SU);
757 
758   unsigned getNextResourceCycleByInstance(unsigned InstanceIndex,
759                                           unsigned Cycles);
760 
761   std::pair<unsigned, unsigned> getNextResourceCycle(const MCSchedClassDesc *SC,
762                                                      unsigned PIdx,
763                                                      unsigned Cycles);
764 
765   bool isUnbufferedGroup(unsigned PIdx) const {
766     return SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin &&
767            !SchedModel->getProcResource(PIdx)->BufferSize;
768   }
769 
770   bool checkHazard(SUnit *SU);
771 
772   unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
773 
774   unsigned getOtherResourceCount(unsigned &OtherCritIdx);
775 
776   /// Release SU to make it ready. If it's not in hazard, remove it from
777   /// pending queue (if already in) and push into available queue.
778   /// Otherwise, push the SU into pending queue.
779   ///
780   /// @param SU The unit to be released.
781   /// @param ReadyCycle Until which cycle the unit is ready.
782   /// @param InPQueue Whether SU is already in pending queue.
783   /// @param Idx Position offset in pending queue (if in it).
784   void releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
785                    unsigned Idx = 0);
786 
787   void bumpCycle(unsigned NextCycle);
788 
789   void incExecutedResources(unsigned PIdx, unsigned Count);
790 
791   unsigned countResource(const MCSchedClassDesc *SC, unsigned PIdx,
792                          unsigned Cycles, unsigned ReadyCycle);
793 
794   void bumpNode(SUnit *SU);
795 
796   void releasePending();
797 
798   void removeReady(SUnit *SU);
799 
800   /// Call this before applying any other heuristics to the Available queue.
801   /// Updates the Available/Pending Q's if necessary and returns the single
802   /// available instruction, or NULL if there are multiple candidates.
803   SUnit *pickOnlyChoice();
804 
805   void dumpScheduledState() const;
806 };
807 
808 /// Base class for GenericScheduler. This class maintains information about
809 /// scheduling candidates based on TargetSchedModel making it easy to implement
810 /// heuristics for either preRA or postRA scheduling.
811 class GenericSchedulerBase : public MachineSchedStrategy {
812 public:
813   /// Represent the type of SchedCandidate found within a single queue.
814   /// pickNodeBidirectional depends on these listed by decreasing priority.
815   enum CandReason : uint8_t {
816     NoCand, Only1, PhysReg, RegExcess, RegCritical, Stall, Cluster, Weak,
817     RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
818     TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
819 
820 #ifndef NDEBUG
821   static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
822 #endif
823 
824   /// Policy for scheduling the next instruction in the candidate's zone.
825   struct CandPolicy {
826     bool ReduceLatency = false;
827     unsigned ReduceResIdx = 0;
828     unsigned DemandResIdx = 0;
829 
830     CandPolicy() = default;
831 
832     bool operator==(const CandPolicy &RHS) const {
833       return ReduceLatency == RHS.ReduceLatency &&
834              ReduceResIdx == RHS.ReduceResIdx &&
835              DemandResIdx == RHS.DemandResIdx;
836     }
837     bool operator!=(const CandPolicy &RHS) const {
838       return !(*this == RHS);
839     }
840   };
841 
842   /// Status of an instruction's critical resource consumption.
843   struct SchedResourceDelta {
844     // Count critical resources in the scheduled region required by SU.
845     unsigned CritResources = 0;
846 
847     // Count critical resources from another region consumed by SU.
848     unsigned DemandedResources = 0;
849 
850     SchedResourceDelta() = default;
851 
852     bool operator==(const SchedResourceDelta &RHS) const {
853       return CritResources == RHS.CritResources
854         && DemandedResources == RHS.DemandedResources;
855     }
856     bool operator!=(const SchedResourceDelta &RHS) const {
857       return !operator==(RHS);
858     }
859   };
860 
861   /// Store the state used by GenericScheduler heuristics, required for the
862   /// lifetime of one invocation of pickNode().
863   struct SchedCandidate {
864     CandPolicy Policy;
865 
866     // The best SUnit candidate.
867     SUnit *SU;
868 
869     // The reason for this candidate.
870     CandReason Reason;
871 
872     // Whether this candidate should be scheduled at top/bottom.
873     bool AtTop;
874 
875     // Register pressure values for the best candidate.
876     RegPressureDelta RPDelta;
877 
878     // Critical resource consumption of the best candidate.
879     SchedResourceDelta ResDelta;
880 
881     SchedCandidate() { reset(CandPolicy()); }
882     SchedCandidate(const CandPolicy &Policy) { reset(Policy); }
883 
884     void reset(const CandPolicy &NewPolicy) {
885       Policy = NewPolicy;
886       SU = nullptr;
887       Reason = NoCand;
888       AtTop = false;
889       RPDelta = RegPressureDelta();
890       ResDelta = SchedResourceDelta();
891     }
892 
893     bool isValid() const { return SU; }
894 
895     // Copy the status of another candidate without changing policy.
896     void setBest(SchedCandidate &Best) {
897       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
898       SU = Best.SU;
899       Reason = Best.Reason;
900       AtTop = Best.AtTop;
901       RPDelta = Best.RPDelta;
902       ResDelta = Best.ResDelta;
903     }
904 
905     void initResourceDelta(const ScheduleDAGMI *DAG,
906                            const TargetSchedModel *SchedModel);
907   };
908 
909 protected:
910   const MachineSchedContext *Context;
911   const TargetSchedModel *SchedModel = nullptr;
912   const TargetRegisterInfo *TRI = nullptr;
913 
914   SchedRemainder Rem;
915 
916   GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {}
917 
918   void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
919                  SchedBoundary *OtherZone);
920 
921 #ifndef NDEBUG
922   void traceCandidate(const SchedCandidate &Cand);
923 #endif
924 
925 private:
926   bool shouldReduceLatency(const CandPolicy &Policy, SchedBoundary &CurrZone,
927                            bool ComputeRemLatency, unsigned &RemLatency) const;
928 };
929 
930 // Utility functions used by heuristics in tryCandidate().
931 bool tryLess(int TryVal, int CandVal,
932              GenericSchedulerBase::SchedCandidate &TryCand,
933              GenericSchedulerBase::SchedCandidate &Cand,
934              GenericSchedulerBase::CandReason Reason);
935 bool tryGreater(int TryVal, int CandVal,
936                 GenericSchedulerBase::SchedCandidate &TryCand,
937                 GenericSchedulerBase::SchedCandidate &Cand,
938                 GenericSchedulerBase::CandReason Reason);
939 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
940                 GenericSchedulerBase::SchedCandidate &Cand,
941                 SchedBoundary &Zone);
942 bool tryPressure(const PressureChange &TryP,
943                  const PressureChange &CandP,
944                  GenericSchedulerBase::SchedCandidate &TryCand,
945                  GenericSchedulerBase::SchedCandidate &Cand,
946                  GenericSchedulerBase::CandReason Reason,
947                  const TargetRegisterInfo *TRI,
948                  const MachineFunction &MF);
949 unsigned getWeakLeft(const SUnit *SU, bool isTop);
950 int biasPhysReg(const SUnit *SU, bool isTop);
951 
952 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
953 /// the schedule.
954 class GenericScheduler : public GenericSchedulerBase {
955 public:
956   GenericScheduler(const MachineSchedContext *C):
957     GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"),
958     Bot(SchedBoundary::BotQID, "BotQ") {}
959 
960   void initPolicy(MachineBasicBlock::iterator Begin,
961                   MachineBasicBlock::iterator End,
962                   unsigned NumRegionInstrs) override;
963 
964   void dumpPolicy() const override;
965 
966   bool shouldTrackPressure() const override {
967     return RegionPolicy.ShouldTrackPressure;
968   }
969 
970   bool shouldTrackLaneMasks() const override {
971     return RegionPolicy.ShouldTrackLaneMasks;
972   }
973 
974   void initialize(ScheduleDAGMI *dag) override;
975 
976   SUnit *pickNode(bool &IsTopNode) override;
977 
978   void schedNode(SUnit *SU, bool IsTopNode) override;
979 
980   void releaseTopNode(SUnit *SU) override {
981     if (SU->isScheduled)
982       return;
983 
984     Top.releaseNode(SU, SU->TopReadyCycle, false);
985     TopCand.SU = nullptr;
986   }
987 
988   void releaseBottomNode(SUnit *SU) override {
989     if (SU->isScheduled)
990       return;
991 
992     Bot.releaseNode(SU, SU->BotReadyCycle, false);
993     BotCand.SU = nullptr;
994   }
995 
996   void registerRoots() override;
997 
998 protected:
999   ScheduleDAGMILive *DAG = nullptr;
1000 
1001   MachineSchedPolicy RegionPolicy;
1002 
1003   // State of the top and bottom scheduled instruction boundaries.
1004   SchedBoundary Top;
1005   SchedBoundary Bot;
1006 
1007   /// Candidate last picked from Top boundary.
1008   SchedCandidate TopCand;
1009   /// Candidate last picked from Bot boundary.
1010   SchedCandidate BotCand;
1011 
1012   void checkAcyclicLatency();
1013 
1014   void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
1015                      const RegPressureTracker &RPTracker,
1016                      RegPressureTracker &TempTracker);
1017 
1018   virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand,
1019                             SchedBoundary *Zone) const;
1020 
1021   SUnit *pickNodeBidirectional(bool &IsTopNode);
1022 
1023   void pickNodeFromQueue(SchedBoundary &Zone,
1024                          const CandPolicy &ZonePolicy,
1025                          const RegPressureTracker &RPTracker,
1026                          SchedCandidate &Candidate);
1027 
1028   void reschedulePhysReg(SUnit *SU, bool isTop);
1029 };
1030 
1031 /// PostGenericScheduler - Interface to the scheduling algorithm used by
1032 /// ScheduleDAGMI.
1033 ///
1034 /// Callbacks from ScheduleDAGMI:
1035 ///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
1036 class PostGenericScheduler : public GenericSchedulerBase {
1037 protected:
1038   ScheduleDAGMI *DAG = nullptr;
1039   SchedBoundary Top;
1040   SmallVector<SUnit*, 8> BotRoots;
1041 
1042 public:
1043   PostGenericScheduler(const MachineSchedContext *C):
1044     GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
1045 
1046   ~PostGenericScheduler() override = default;
1047 
1048   void initPolicy(MachineBasicBlock::iterator Begin,
1049                   MachineBasicBlock::iterator End,
1050                   unsigned NumRegionInstrs) override {
1051     /* no configurable policy */
1052   }
1053 
1054   /// PostRA scheduling does not track pressure.
1055   bool shouldTrackPressure() const override { return false; }
1056 
1057   void initialize(ScheduleDAGMI *Dag) override;
1058 
1059   void registerRoots() override;
1060 
1061   SUnit *pickNode(bool &IsTopNode) override;
1062 
1063   void scheduleTree(unsigned SubtreeID) override {
1064     llvm_unreachable("PostRA scheduler does not support subtree analysis.");
1065   }
1066 
1067   void schedNode(SUnit *SU, bool IsTopNode) override;
1068 
1069   void releaseTopNode(SUnit *SU) override {
1070     if (SU->isScheduled)
1071       return;
1072     Top.releaseNode(SU, SU->TopReadyCycle, false);
1073   }
1074 
1075   // Only called for roots.
1076   void releaseBottomNode(SUnit *SU) override {
1077     BotRoots.push_back(SU);
1078   }
1079 
1080 protected:
1081   virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
1082 
1083   void pickNodeFromQueue(SchedCandidate &Cand);
1084 };
1085 
1086 /// Create the standard converging machine scheduler. This will be used as the
1087 /// default scheduler if the target does not set a default.
1088 /// Adds default DAG mutations.
1089 ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C);
1090 
1091 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
1092 ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C);
1093 
1094 std::unique_ptr<ScheduleDAGMutation>
1095 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1096                              const TargetRegisterInfo *TRI);
1097 
1098 std::unique_ptr<ScheduleDAGMutation>
1099 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1100                               const TargetRegisterInfo *TRI);
1101 
1102 std::unique_ptr<ScheduleDAGMutation>
1103 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1104                                const TargetRegisterInfo *TRI);
1105 
1106 } // end namespace llvm
1107 
1108 #endif // LLVM_CODEGEN_MACHINESCHEDULER_H
1109