1 //===- lib/CodeGen/MachineTraceMetrics.h - Super-scalar metrics -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the MachineTraceMetrics analysis pass
10 // that estimates CPU resource usage and critical data dependency paths through
11 // preferred traces. This is useful for super-scalar CPUs where execution speed
12 // can be limited both by data dependencies and by limited execution resources.
13 //
14 // Out-of-order CPUs will often be executing instructions from multiple basic
15 // blocks at the same time. This makes it difficult to estimate the resource
16 // usage accurately in a single basic block. Resources can be estimated better
17 // by looking at a trace through the current basic block.
18 //
19 // For every block, the MachineTraceMetrics pass will pick a preferred trace
20 // that passes through the block. The trace is chosen based on loop structure,
21 // branch probabilities, and resource usage. The intention is to pick likely
22 // traces that would be the most affected by code transformations.
23 //
24 // It is expensive to compute a full arbitrary trace for every block, so to
25 // save some computations, traces are chosen to be convergent. This means that
26 // if the traces through basic blocks A and B ever cross when moving away from
27 // A and B, they never diverge again. This applies in both directions - If the
28 // traces meet above A and B, they won't diverge when going further back.
29 //
30 // Traces tend to align with loops. The trace through a block in an inner loop
31 // will begin at the loop entry block and end at a back edge. If there are
32 // nested loops, the trace may begin and end at those instead.
33 //
34 // For each trace, we compute the critical path length, which is the number of
35 // cycles required to execute the trace when execution is limited by data
36 // dependencies only. We also compute the resource height, which is the number
37 // of cycles required to execute all instructions in the trace when ignoring
38 // data dependencies.
39 //
40 // Every instruction in the current block has a slack - the number of cycles
41 // execution of the instruction can be delayed without extending the critical
42 // path.
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #ifndef LLVM_CODEGEN_MACHINETRACEMETRICS_H
47 #define LLVM_CODEGEN_MACHINETRACEMETRICS_H
48 
49 #include "llvm/ADT/SparseSet.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/CodeGen/MachineBasicBlock.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/TargetSchedule.h"
56 
57 namespace llvm {
58 
59 class AnalysisUsage;
60 class MachineFunction;
61 class MachineInstr;
62 class MachineLoop;
63 class MachineLoopInfo;
64 class MachineRegisterInfo;
65 struct MCSchedClassDesc;
66 class raw_ostream;
67 class TargetInstrInfo;
68 class TargetRegisterInfo;
69 
70 // Keep track of physreg data dependencies by recording each live register unit.
71 // Associate each regunit with an instruction operand. Depending on the
72 // direction instructions are scanned, it could be the operand that defined the
73 // regunit, or the highest operand to read the regunit.
74 struct LiveRegUnit {
75   unsigned RegUnit;
76   unsigned Cycle = 0;
77   const MachineInstr *MI = nullptr;
78   unsigned Op = 0;
79 
80   unsigned getSparseSetIndex() const { return RegUnit; }
81 
82   LiveRegUnit(unsigned RU) : RegUnit(RU) {}
83 };
84 
85 /// Strategies for selecting traces.
86 enum class MachineTraceStrategy {
87   /// Select the trace through a block that has the fewest instructions.
88   TS_MinInstrCount,
89   /// Select the trace that contains only the current basic block. For instance,
90   /// this strategy can be used by MachineCombiner to make better decisions when
91   /// we estimate critical path for in-order cores.
92   TS_Local,
93   TS_NumStrategies
94 };
95 
96 class MachineTraceMetrics : public MachineFunctionPass {
97   const MachineFunction *MF = nullptr;
98   const TargetInstrInfo *TII = nullptr;
99   const TargetRegisterInfo *TRI = nullptr;
100   const MachineRegisterInfo *MRI = nullptr;
101   const MachineLoopInfo *Loops = nullptr;
102   TargetSchedModel SchedModel;
103 
104 public:
105   friend class Ensemble;
106   friend class Trace;
107 
108   class Ensemble;
109 
110   static char ID;
111 
112   MachineTraceMetrics();
113 
114   void getAnalysisUsage(AnalysisUsage&) const override;
115   bool runOnMachineFunction(MachineFunction&) override;
116   void releaseMemory() override;
117   void verifyAnalysis() const override;
118 
119   /// Per-basic block information that doesn't depend on the trace through the
120   /// block.
121   struct FixedBlockInfo {
122     /// The number of non-trivial instructions in the block.
123     /// Doesn't count PHI and COPY instructions that are likely to be removed.
124     unsigned InstrCount = ~0u;
125 
126     /// True when the block contains calls.
127     bool HasCalls = false;
128 
129     FixedBlockInfo() = default;
130 
131     /// Returns true when resource information for this block has been computed.
132     bool hasResources() const { return InstrCount != ~0u; }
133 
134     /// Invalidate resource information.
135     void invalidate() { InstrCount = ~0u; }
136   };
137 
138   /// Get the fixed resource information about MBB. Compute it on demand.
139   const FixedBlockInfo *getResources(const MachineBasicBlock*);
140 
141   /// Get the scaled number of cycles used per processor resource in MBB.
142   /// This is an array with SchedModel.getNumProcResourceKinds() entries.
143   /// The getResources() function above must have been called first.
144   ///
145   /// These numbers have already been scaled by SchedModel.getResourceFactor().
146   ArrayRef<unsigned> getProcReleaseAtCycles(unsigned MBBNum) const;
147 
148   /// A virtual register or regunit required by a basic block or its trace
149   /// successors.
150   struct LiveInReg {
151     /// The virtual register required, or a register unit.
152     Register Reg;
153 
154     /// For virtual registers: Minimum height of the defining instruction.
155     /// For regunits: Height of the highest user in the trace.
156     unsigned Height;
157 
158     LiveInReg(Register Reg, unsigned Height = 0) : Reg(Reg), Height(Height) {}
159   };
160 
161   /// Per-basic block information that relates to a specific trace through the
162   /// block. Convergent traces means that only one of these is required per
163   /// block in a trace ensemble.
164   struct TraceBlockInfo {
165     /// Trace predecessor, or NULL for the first block in the trace.
166     /// Valid when hasValidDepth().
167     const MachineBasicBlock *Pred = nullptr;
168 
169     /// Trace successor, or NULL for the last block in the trace.
170     /// Valid when hasValidHeight().
171     const MachineBasicBlock *Succ = nullptr;
172 
173     /// The block number of the head of the trace. (When hasValidDepth()).
174     unsigned Head;
175 
176     /// The block number of the tail of the trace. (When hasValidHeight()).
177     unsigned Tail;
178 
179     /// Accumulated number of instructions in the trace above this block.
180     /// Does not include instructions in this block.
181     unsigned InstrDepth = ~0u;
182 
183     /// Accumulated number of instructions in the trace below this block.
184     /// Includes instructions in this block.
185     unsigned InstrHeight = ~0u;
186 
187     TraceBlockInfo() = default;
188 
189     /// Returns true if the depth resources have been computed from the trace
190     /// above this block.
191     bool hasValidDepth() const { return InstrDepth != ~0u; }
192 
193     /// Returns true if the height resources have been computed from the trace
194     /// below this block.
195     bool hasValidHeight() const { return InstrHeight != ~0u; }
196 
197     /// Invalidate depth resources when some block above this one has changed.
198     void invalidateDepth() { InstrDepth = ~0u; HasValidInstrDepths = false; }
199 
200     /// Invalidate height resources when a block below this one has changed.
201     void invalidateHeight() { InstrHeight = ~0u; HasValidInstrHeights = false; }
202 
203     /// Assuming that this is a dominator of TBI, determine if it contains
204     /// useful instruction depths. A dominating block can be above the current
205     /// trace head, and any dependencies from such a far away dominator are not
206     /// expected to affect the critical path.
207     ///
208     /// Also returns true when TBI == this.
209     bool isUsefulDominator(const TraceBlockInfo &TBI) const {
210       // The trace for TBI may not even be calculated yet.
211       if (!hasValidDepth() || !TBI.hasValidDepth())
212         return false;
213       // Instruction depths are only comparable if the traces share a head.
214       if (Head != TBI.Head)
215         return false;
216       // It is almost always the case that TBI belongs to the same trace as
217       // this block, but rare convoluted cases involving irreducible control
218       // flow, a dominator may share a trace head without actually being on the
219       // same trace as TBI. This is not a big problem as long as it doesn't
220       // increase the instruction depth.
221       return HasValidInstrDepths && InstrDepth <= TBI.InstrDepth;
222     }
223 
224     // Data-dependency-related information. Per-instruction depth and height
225     // are computed from data dependencies in the current trace, using
226     // itinerary data.
227 
228     /// Instruction depths have been computed. This implies hasValidDepth().
229     bool HasValidInstrDepths = false;
230 
231     /// Instruction heights have been computed. This implies hasValidHeight().
232     bool HasValidInstrHeights = false;
233 
234     /// Critical path length. This is the number of cycles in the longest data
235     /// dependency chain through the trace. This is only valid when both
236     /// HasValidInstrDepths and HasValidInstrHeights are set.
237     unsigned CriticalPath;
238 
239     /// Live-in registers. These registers are defined above the current block
240     /// and used by this block or a block below it.
241     /// This does not include PHI uses in the current block, but it does
242     /// include PHI uses in deeper blocks.
243     SmallVector<LiveInReg, 4> LiveIns;
244 
245     void print(raw_ostream&) const;
246   };
247 
248   /// InstrCycles represents the cycle height and depth of an instruction in a
249   /// trace.
250   struct InstrCycles {
251     /// Earliest issue cycle as determined by data dependencies and instruction
252     /// latencies from the beginning of the trace. Data dependencies from
253     /// before the trace are not included.
254     unsigned Depth;
255 
256     /// Minimum number of cycles from this instruction is issued to the of the
257     /// trace, as determined by data dependencies and instruction latencies.
258     unsigned Height;
259   };
260 
261   /// A trace represents a plausible sequence of executed basic blocks that
262   /// passes through the current basic block one. The Trace class serves as a
263   /// handle to internal cached data structures.
264   class Trace {
265     Ensemble &TE;
266     TraceBlockInfo &TBI;
267 
268     unsigned getBlockNum() const { return &TBI - &TE.BlockInfo[0]; }
269 
270   public:
271     explicit Trace(Ensemble &te, TraceBlockInfo &tbi) : TE(te), TBI(tbi) {}
272 
273     void print(raw_ostream&) const;
274 
275     /// Compute the total number of instructions in the trace.
276     unsigned getInstrCount() const {
277       return TBI.InstrDepth + TBI.InstrHeight;
278     }
279 
280     /// Return the resource depth of the top/bottom of the trace center block.
281     /// This is the number of cycles required to execute all instructions from
282     /// the trace head to the trace center block. The resource depth only
283     /// considers execution resources, it ignores data dependencies.
284     /// When Bottom is set, instructions in the trace center block are included.
285     unsigned getResourceDepth(bool Bottom) const;
286 
287     /// Return the resource length of the trace. This is the number of cycles
288     /// required to execute the instructions in the trace if they were all
289     /// independent, exposing the maximum instruction-level parallelism.
290     ///
291     /// Any blocks in Extrablocks are included as if they were part of the
292     /// trace. Likewise, extra resources required by the specified scheduling
293     /// classes are included. For the caller to account for extra machine
294     /// instructions, it must first resolve each instruction's scheduling class.
295     unsigned getResourceLength(
296         ArrayRef<const MachineBasicBlock *> Extrablocks = std::nullopt,
297         ArrayRef<const MCSchedClassDesc *> ExtraInstrs = std::nullopt,
298         ArrayRef<const MCSchedClassDesc *> RemoveInstrs = std::nullopt) const;
299 
300     /// Return the length of the (data dependency) critical path through the
301     /// trace.
302     unsigned getCriticalPath() const { return TBI.CriticalPath; }
303 
304     /// Return the depth and height of MI. The depth is only valid for
305     /// instructions in or above the trace center block. The height is only
306     /// valid for instructions in or below the trace center block.
307     InstrCycles getInstrCycles(const MachineInstr &MI) const {
308       return TE.Cycles.lookup(&MI);
309     }
310 
311     /// Return the slack of MI. This is the number of cycles MI can be delayed
312     /// before the critical path becomes longer.
313     /// MI must be an instruction in the trace center block.
314     unsigned getInstrSlack(const MachineInstr &MI) const;
315 
316     /// Return the Depth of a PHI instruction in a trace center block successor.
317     /// The PHI does not have to be part of the trace.
318     unsigned getPHIDepth(const MachineInstr &PHI) const;
319 
320     /// A dependence is useful if the basic block of the defining instruction
321     /// is part of the trace of the user instruction. It is assumed that DefMI
322     /// dominates UseMI (see also isUsefulDominator).
323     bool isDepInTrace(const MachineInstr &DefMI,
324                       const MachineInstr &UseMI) const;
325   };
326 
327   /// A trace ensemble is a collection of traces selected using the same
328   /// strategy, for example 'minimum resource height'. There is one trace for
329   /// every block in the function.
330   class Ensemble {
331     friend class Trace;
332 
333     SmallVector<TraceBlockInfo, 4> BlockInfo;
334     DenseMap<const MachineInstr*, InstrCycles> Cycles;
335     SmallVector<unsigned, 0> ProcResourceDepths;
336     SmallVector<unsigned, 0> ProcResourceHeights;
337 
338     void computeTrace(const MachineBasicBlock*);
339     void computeDepthResources(const MachineBasicBlock*);
340     void computeHeightResources(const MachineBasicBlock*);
341     unsigned computeCrossBlockCriticalPath(const TraceBlockInfo&);
342     void computeInstrDepths(const MachineBasicBlock*);
343     void computeInstrHeights(const MachineBasicBlock*);
344     void addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
345                     ArrayRef<const MachineBasicBlock*> Trace);
346 
347   protected:
348     MachineTraceMetrics &MTM;
349 
350     explicit Ensemble(MachineTraceMetrics*);
351 
352     virtual const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) =0;
353     virtual const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) =0;
354     const MachineLoop *getLoopFor(const MachineBasicBlock*) const;
355     const TraceBlockInfo *getDepthResources(const MachineBasicBlock*) const;
356     const TraceBlockInfo *getHeightResources(const MachineBasicBlock*) const;
357     ArrayRef<unsigned> getProcResourceDepths(unsigned MBBNum) const;
358     ArrayRef<unsigned> getProcResourceHeights(unsigned MBBNum) const;
359 
360   public:
361     virtual ~Ensemble();
362 
363     virtual const char *getName() const = 0;
364     void print(raw_ostream&) const;
365     void invalidate(const MachineBasicBlock *MBB);
366     void verify() const;
367 
368     /// Get the trace that passes through MBB.
369     /// The trace is computed on demand.
370     Trace getTrace(const MachineBasicBlock *MBB);
371 
372     /// Updates the depth of an machine instruction, given RegUnits.
373     void updateDepth(TraceBlockInfo &TBI, const MachineInstr&,
374                      SparseSet<LiveRegUnit> &RegUnits);
375     void updateDepth(const MachineBasicBlock *, const MachineInstr&,
376                      SparseSet<LiveRegUnit> &RegUnits);
377 
378     /// Updates the depth of the instructions from Start to End.
379     void updateDepths(MachineBasicBlock::iterator Start,
380                       MachineBasicBlock::iterator End,
381                       SparseSet<LiveRegUnit> &RegUnits);
382 
383   };
384 
385   /// Get the trace ensemble representing the given trace selection strategy.
386   /// The returned Ensemble object is owned by the MachineTraceMetrics analysis,
387   /// and valid for the lifetime of the analysis pass.
388   Ensemble *getEnsemble(MachineTraceStrategy);
389 
390   /// Invalidate cached information about MBB. This must be called *before* MBB
391   /// is erased, or the CFG is otherwise changed.
392   ///
393   /// This invalidates per-block information about resource usage for MBB only,
394   /// and it invalidates per-trace information for any trace that passes
395   /// through MBB.
396   ///
397   /// Call Ensemble::getTrace() again to update any trace handles.
398   void invalidate(const MachineBasicBlock *MBB);
399 
400 private:
401   // One entry per basic block, indexed by block number.
402   SmallVector<FixedBlockInfo, 4> BlockInfo;
403 
404   // Cycles consumed on each processor resource per block.
405   // The number of processor resource kinds is constant for a given subtarget,
406   // but it is not known at compile time. The number of cycles consumed by
407   // block B on processor resource R is at ProcReleaseAtCycles[B*Kinds + R]
408   // where Kinds = SchedModel.getNumProcResourceKinds().
409   SmallVector<unsigned, 0> ProcReleaseAtCycles;
410 
411   // One ensemble per strategy.
412   Ensemble
413       *Ensembles[static_cast<size_t>(MachineTraceStrategy::TS_NumStrategies)];
414 
415   // Convert scaled resource usage to a cycle count that can be compared with
416   // latencies.
417   unsigned getCycles(unsigned Scaled) {
418     unsigned Factor = SchedModel.getLatencyFactor();
419     return (Scaled + Factor - 1) / Factor;
420   }
421 };
422 
423 inline raw_ostream &operator<<(raw_ostream &OS,
424                                const MachineTraceMetrics::Trace &Tr) {
425   Tr.print(OS);
426   return OS;
427 }
428 
429 inline raw_ostream &operator<<(raw_ostream &OS,
430                                const MachineTraceMetrics::Ensemble &En) {
431   En.print(OS);
432   return OS;
433 }
434 
435 } // end namespace llvm
436 
437 #endif // LLVM_CODEGEN_MACHINETRACEMETRICS_H
438