1 //===- RDFGraph.h -----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF)
10 // for a non-SSA program representation (e.g. post-RA machine code).
11 //
12 //
13 // *** Introduction
14 //
15 // The RDF graph is a collection of nodes, each of which denotes some element
16 // of the program. There are two main types of such elements: code and refe-
17 // rences. Conceptually, "code" is something that represents the structure
18 // of the program, e.g. basic block or a statement, while "reference" is an
19 // instance of accessing a register, e.g. a definition or a use. Nodes are
20 // connected with each other based on the structure of the program (such as
21 // blocks, instructions, etc.), and based on the data flow (e.g. reaching
22 // definitions, reached uses, etc.). The single-reaching-definition principle
23 // of SSA is generally observed, although, due to the non-SSA representation
24 // of the program, there are some differences between the graph and a "pure"
25 // SSA representation.
26 //
27 //
28 // *** Implementation remarks
29 //
30 // Since the graph can contain a large number of nodes, memory consumption
31 // was one of the major design considerations. As a result, there is a single
32 // base class NodeBase which defines all members used by all possible derived
33 // classes. The members are arranged in a union, and a derived class cannot
34 // add any data members of its own. Each derived class only defines the
35 // functional interface, i.e. member functions. NodeBase must be a POD,
36 // which implies that all of its members must also be PODs.
37 // Since nodes need to be connected with other nodes, pointers have been
38 // replaced with 32-bit identifiers: each node has an id of type NodeId.
39 // There are mapping functions in the graph that translate between actual
40 // memory addresses and the corresponding identifiers.
41 // A node id of 0 is equivalent to nullptr.
42 //
43 //
44 // *** Structure of the graph
45 //
46 // A code node is always a collection of other nodes. For example, a code
47 // node corresponding to a basic block will contain code nodes corresponding
48 // to instructions. In turn, a code node corresponding to an instruction will
49 // contain a list of reference nodes that correspond to the definitions and
50 // uses of registers in that instruction. The members are arranged into a
51 // circular list, which is yet another consequence of the effort to save
52 // memory: for each member node it should be possible to obtain its owner,
53 // and it should be possible to access all other members. There are other
54 // ways to accomplish that, but the circular list seemed the most natural.
55 //
56 // +- CodeNode -+
57 // |            | <---------------------------------------------------+
58 // +-+--------+-+                                                     |
59 //   |FirstM  |LastM                                                  |
60 //   |        +-------------------------------------+                 |
61 //   |                                              |                 |
62 //   V                                              V                 |
63 //  +----------+ Next +----------+ Next       Next +----------+ Next  |
64 //  |          |----->|          |-----> ... ----->|          |----->-+
65 //  +- Member -+      +- Member -+                 +- Member -+
66 //
67 // The order of members is such that related reference nodes (see below)
68 // should be contiguous on the member list.
69 //
70 // A reference node is a node that encapsulates an access to a register,
71 // in other words, data flowing into or out of a register. There are two
72 // major kinds of reference nodes: defs and uses. A def node will contain
73 // the id of the first reached use, and the id of the first reached def.
74 // Each def and use will contain the id of the reaching def, and also the
75 // id of the next reached def (for def nodes) or use (for use nodes).
76 // The "next node sharing the same reaching def" is denoted as "sibling".
77 // In summary:
78 // - Def node contains: reaching def, sibling, first reached def, and first
79 // reached use.
80 // - Use node contains: reaching def and sibling.
81 //
82 // +-- DefNode --+
83 // | R2 = ...    | <---+--------------------+
84 // ++---------+--+     |                    |
85 //  |Reached  |Reached |                    |
86 //  |Def      |Use     |                    |
87 //  |         |        |Reaching            |Reaching
88 //  |         V        |Def                 |Def
89 //  |      +-- UseNode --+ Sib  +-- UseNode --+ Sib       Sib
90 //  |      | ... = R2    |----->| ... = R2    |----> ... ----> 0
91 //  |      +-------------+      +-------------+
92 //  V
93 // +-- DefNode --+ Sib
94 // | R2 = ...    |----> ...
95 // ++---------+--+
96 //  |         |
97 //  |         |
98 // ...       ...
99 //
100 // To get a full picture, the circular lists connecting blocks within a
101 // function, instructions within a block, etc. should be superimposed with
102 // the def-def, def-use links shown above.
103 // To illustrate this, consider a small example in a pseudo-assembly:
104 // foo:
105 //   add r2, r0, r1   ; r2 = r0+r1
106 //   addi r0, r2, 1   ; r0 = r2+1
107 //   ret r0           ; return value in r0
108 //
109 // The graph (in a format used by the debugging functions) would look like:
110 //
111 //   DFG dump:[
112 //   f1: Function foo
113 //   b2: === %bb.0 === preds(0), succs(0):
114 //   p3: phi [d4<r0>(,d12,u9):]
115 //   p5: phi [d6<r1>(,,u10):]
116 //   s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
117 //   s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
118 //   s14: ret [u15<r0>(d12):]
119 //   ]
120 //
121 // The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
122 // kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
123 // ment, d - def, u - use).
124 // The format of a def node is:
125 //   dN<R>(rd,d,u):sib,
126 // where
127 //   N   - numeric node id,
128 //   R   - register being defined
129 //   rd  - reaching def,
130 //   d   - reached def,
131 //   u   - reached use,
132 //   sib - sibling.
133 // The format of a use node is:
134 //   uN<R>[!](rd):sib,
135 // where
136 //   N   - numeric node id,
137 //   R   - register being used,
138 //   rd  - reaching def,
139 //   sib - sibling.
140 // Possible annotations (usually preceding the node id):
141 //   +   - preserving def,
142 //   ~   - clobbering def,
143 //   "   - shadow ref (follows the node id),
144 //   !   - fixed register (appears after register name).
145 //
146 // The circular lists are not explicit in the dump.
147 //
148 //
149 // *** Node attributes
150 //
151 // NodeBase has a member "Attrs", which is the primary way of determining
152 // the node's characteristics. The fields in this member decide whether
153 // the node is a code node or a reference node (i.e. node's "type"), then
154 // within each type, the "kind" determines what specifically this node
155 // represents. The remaining bits, "flags", contain additional information
156 // that is even more detailed than the "kind".
157 // CodeNode's kinds are:
158 // - Phi:   Phi node, members are reference nodes.
159 // - Stmt:  Statement, members are reference nodes.
160 // - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
161 // - Func:  The whole function. The members are basic block nodes.
162 // RefNode's kinds are:
163 // - Use.
164 // - Def.
165 //
166 // Meaning of flags:
167 // - Preserving: applies only to defs. A preserving def is one that can
168 //   preserve some of the original bits among those that are included in
169 //   the register associated with that def. For example, if R0 is a 32-bit
170 //   register, but a def can only change the lower 16 bits, then it will
171 //   be marked as preserving.
172 // - Shadow: a reference that has duplicates holding additional reaching
173 //   defs (see more below).
174 // - Clobbering: applied only to defs, indicates that the value generated
175 //   by this def is unspecified. A typical example would be volatile registers
176 //   after function calls.
177 // - Fixed: the register in this def/use cannot be replaced with any other
178 //   register. A typical case would be a parameter register to a call, or
179 //   the register with the return value from a function.
180 // - Undef: the register in this reference the register is assumed to have
181 //   no pre-existing value, even if it appears to be reached by some def.
182 //   This is typically used to prevent keeping registers artificially live
183 //   in cases when they are defined via predicated instructions. For example:
184 //     r0 = add-if-true cond, r10, r11                (1)
185 //     r0 = add-if-false cond, r12, r13, implicit r0  (2)
186 //     ... = r0                                       (3)
187 //   Before (1), r0 is not intended to be live, and the use of r0 in (3) is
188 //   not meant to be reached by any def preceding (1). However, since the
189 //   defs in (1) and (2) are both preserving, these properties alone would
190 //   imply that the use in (3) may indeed be reached by some prior def.
191 //   Adding Undef flag to the def in (1) prevents that. The Undef flag
192 //   may be applied to both defs and uses.
193 // - Dead: applies only to defs. The value coming out of a "dead" def is
194 //   assumed to be unused, even if the def appears to be reaching other defs
195 //   or uses. The motivation for this flag comes from dead defs on function
196 //   calls: there is no way to determine if such a def is dead without
197 //   analyzing the target's ABI. Hence the graph should contain this info,
198 //   as it is unavailable otherwise. On the other hand, a def without any
199 //   uses on a typical instruction is not the intended target for this flag.
200 //
201 // *** Shadow references
202 //
203 // It may happen that a super-register can have two (or more) non-overlapping
204 // sub-registers. When both of these sub-registers are defined and followed
205 // by a use of the super-register, the use of the super-register will not
206 // have a unique reaching def: both defs of the sub-registers need to be
207 // accounted for. In such cases, a duplicate use of the super-register is
208 // added and it points to the extra reaching def. Both uses are marked with
209 // a flag "shadow". Example:
210 // Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
211 //   set r0, 1        ; r0 = 1
212 //   set r1, 1        ; r1 = 1
213 //   addi t1, t0, 1   ; t1 = t0+1
214 //
215 // The DFG:
216 //   s1: set [d2<r0>(,,u9):]
217 //   s3: set [d4<r1>(,,u10):]
218 //   s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
219 //
220 // The statement s5 has two use nodes for t0: u7" and u9". The quotation
221 // mark " indicates that the node is a shadow.
222 //
223 
224 #ifndef LLVM_CODEGEN_RDFGRAPH_H
225 #define LLVM_CODEGEN_RDFGRAPH_H
226 
227 #include "RDFRegisters.h"
228 #include "llvm/ADT/ArrayRef.h"
229 #include "llvm/ADT/SmallVector.h"
230 #include "llvm/MC/LaneBitmask.h"
231 #include "llvm/Support/Allocator.h"
232 #include "llvm/Support/MathExtras.h"
233 #include <cassert>
234 #include <cstdint>
235 #include <cstring>
236 #include <map>
237 #include <memory>
238 #include <set>
239 #include <unordered_map>
240 #include <utility>
241 #include <vector>
242 
243 // RDF uses uint32_t to refer to registers. This is to ensure that the type
244 // size remains specific. In other places, registers are often stored using
245 // unsigned.
246 static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
247 
248 namespace llvm {
249 
250 class MachineBasicBlock;
251 class MachineDominanceFrontier;
252 class MachineDominatorTree;
253 class MachineFunction;
254 class MachineInstr;
255 class MachineOperand;
256 class raw_ostream;
257 class TargetInstrInfo;
258 class TargetRegisterInfo;
259 
260 namespace rdf {
261 
262 using NodeId = uint32_t;
263 
264 struct DataFlowGraph;
265 
266 struct NodeAttrs {
267   // clang-format off
268   enum : uint16_t {
269     None          = 0x0000,   // Nothing
270 
271     // Types: 2 bits
272     TypeMask      = 0x0003,
273     Code          = 0x0001,   // 01, Container
274     Ref           = 0x0002,   // 10, Reference
275 
276     // Kind: 3 bits
277     KindMask      = 0x0007 << 2,
278     Def           = 0x0001 << 2,  // 001
279     Use           = 0x0002 << 2,  // 010
280     Phi           = 0x0003 << 2,  // 011
281     Stmt          = 0x0004 << 2,  // 100
282     Block         = 0x0005 << 2,  // 101
283     Func          = 0x0006 << 2,  // 110
284 
285     // Flags: 7 bits for now
286     FlagMask      = 0x007F << 5,
287     Shadow        = 0x0001 << 5,  // 0000001, Has extra reaching defs.
288     Clobbering    = 0x0002 << 5,  // 0000010, Produces unspecified values.
289     PhiRef        = 0x0004 << 5,  // 0000100, Member of PhiNode.
290     Preserving    = 0x0008 << 5,  // 0001000, Def can keep original bits.
291     Fixed         = 0x0010 << 5,  // 0010000, Fixed register.
292     Undef         = 0x0020 << 5,  // 0100000, Has no pre-existing value.
293     Dead          = 0x0040 << 5,  // 1000000, Does not define a value.
294   };
295   // clang-format on
296 
typeNodeAttrs297   static uint16_t type(uint16_t T) { //
298     return T & TypeMask;
299   }
kindNodeAttrs300   static uint16_t kind(uint16_t T) { //
301     return T & KindMask;
302   }
flagsNodeAttrs303   static uint16_t flags(uint16_t T) { //
304     return T & FlagMask;
305   }
set_typeNodeAttrs306   static uint16_t set_type(uint16_t A, uint16_t T) {
307     return (A & ~TypeMask) | T;
308   }
309 
set_kindNodeAttrs310   static uint16_t set_kind(uint16_t A, uint16_t K) {
311     return (A & ~KindMask) | K;
312   }
313 
set_flagsNodeAttrs314   static uint16_t set_flags(uint16_t A, uint16_t F) {
315     return (A & ~FlagMask) | F;
316   }
317 
318   // Test if A contains B.
containsNodeAttrs319   static bool contains(uint16_t A, uint16_t B) {
320     if (type(A) != Code)
321       return false;
322     uint16_t KB = kind(B);
323     switch (kind(A)) {
324     case Func:
325       return KB == Block;
326     case Block:
327       return KB == Phi || KB == Stmt;
328     case Phi:
329     case Stmt:
330       return type(B) == Ref;
331     }
332     return false;
333   }
334 };
335 
336 struct BuildOptions {
337   enum : unsigned {
338     None = 0x00,
339     KeepDeadPhis = 0x01, // Do not remove dead phis during build.
340     OmitReserved = 0x02, // Do not track reserved registers.
341   };
342 };
343 
344 template <typename T> struct NodeAddr {
345   NodeAddr() = default;
NodeAddrNodeAddr346   NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
347 
348   // Type cast (casting constructor). The reason for having this class
349   // instead of std::pair.
350   template <typename S>
NodeAddrNodeAddr351   NodeAddr(const NodeAddr<S> &NA) : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
352 
353   bool operator==(const NodeAddr<T> &NA) const {
354     assert((Addr == NA.Addr) == (Id == NA.Id));
355     return Addr == NA.Addr;
356   }
357   bool operator!=(const NodeAddr<T> &NA) const { //
358     return !operator==(NA);
359   }
360 
361   T Addr = nullptr;
362   NodeId Id = 0;
363 };
364 
365 struct NodeBase;
366 
367 struct RefNode;
368 struct DefNode;
369 struct UseNode;
370 struct PhiUseNode;
371 
372 struct CodeNode;
373 struct InstrNode;
374 struct PhiNode;
375 struct StmtNode;
376 struct BlockNode;
377 struct FuncNode;
378 
379 // Use these short names with rdf:: qualification to avoid conflicts with
380 // preexisting names. Do not use 'using namespace rdf'.
381 using Node = NodeAddr<NodeBase *>;
382 
383 using Ref = NodeAddr<RefNode *>;
384 using Def = NodeAddr<DefNode *>;
385 using Use = NodeAddr<UseNode *>; // This may conflict with llvm::Use.
386 using PhiUse = NodeAddr<PhiUseNode *>;
387 
388 using Code = NodeAddr<CodeNode *>;
389 using Instr = NodeAddr<InstrNode *>;
390 using Phi = NodeAddr<PhiNode *>;
391 using Stmt = NodeAddr<StmtNode *>;
392 using Block = NodeAddr<BlockNode *>;
393 using Func = NodeAddr<FuncNode *>;
394 
395 // Fast memory allocation and translation between node id and node address.
396 // This is really the same idea as the one underlying the "bump pointer
397 // allocator", the difference being in the translation. A node id is
398 // composed of two components: the index of the block in which it was
399 // allocated, and the index within the block. With the default settings,
400 // where the number of nodes per block is 4096, the node id (minus 1) is:
401 //
402 // bit position:                11             0
403 // +----------------------------+--------------+
404 // | Index of the block         |Index in block|
405 // +----------------------------+--------------+
406 //
407 // The actual node id is the above plus 1, to avoid creating a node id of 0.
408 //
409 // This method significantly improved the build time, compared to using maps
410 // (std::unordered_map or DenseMap) to translate between pointers and ids.
411 struct NodeAllocator {
412   // Amount of storage for a single node.
413   enum { NodeMemSize = 32 };
414 
415   NodeAllocator(uint32_t NPB = 4096)
NodesPerBlockNodeAllocator416       : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
417         IndexMask((1 << BitsPerIndex) - 1) {
418     assert(isPowerOf2_32(NPB));
419   }
420 
ptrNodeAllocator421   NodeBase *ptr(NodeId N) const {
422     uint32_t N1 = N - 1;
423     uint32_t BlockN = N1 >> BitsPerIndex;
424     uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
425     return reinterpret_cast<NodeBase *>(Blocks[BlockN] + Offset);
426   }
427 
428   NodeId id(const NodeBase *P) const;
429   Node New();
430   void clear();
431 
432 private:
433   void startNewBlock();
434   bool needNewBlock();
435 
makeIdNodeAllocator436   uint32_t makeId(uint32_t Block, uint32_t Index) const {
437     // Add 1 to the id, to avoid the id of 0, which is treated as "null".
438     return ((Block << BitsPerIndex) | Index) + 1;
439   }
440 
441   const uint32_t NodesPerBlock;
442   const uint32_t BitsPerIndex;
443   const uint32_t IndexMask;
444   char *ActiveEnd = nullptr;
445   std::vector<char *> Blocks;
446   using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>;
447   AllocatorTy MemPool;
448 };
449 
450 using RegisterSet = std::set<RegisterRef>;
451 
452 struct TargetOperandInfo {
TargetOperandInfoTargetOperandInfo453   TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
454   virtual ~TargetOperandInfo() = default;
455 
456   virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
457   virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
458   virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
459 
460   const TargetInstrInfo &TII;
461 };
462 
463 // Packed register reference. Only used for storage.
464 struct PackedRegisterRef {
465   RegisterId Reg;
466   uint32_t MaskId;
467 };
468 
469 struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
470   LaneMaskIndex() = default;
471 
getLaneMaskForIndexLaneMaskIndex472   LaneBitmask getLaneMaskForIndex(uint32_t K) const {
473     return K == 0 ? LaneBitmask::getAll() : get(K);
474   }
475 
getIndexForLaneMaskLaneMaskIndex476   uint32_t getIndexForLaneMask(LaneBitmask LM) {
477     assert(LM.any());
478     return LM.all() ? 0 : insert(LM);
479   }
480 
getIndexForLaneMaskLaneMaskIndex481   uint32_t getIndexForLaneMask(LaneBitmask LM) const {
482     assert(LM.any());
483     return LM.all() ? 0 : find(LM);
484   }
485 };
486 
487 struct NodeBase {
488 public:
489   // Make sure this is a POD.
490   NodeBase() = default;
491 
getTypeNodeBase492   uint16_t getType() const { return NodeAttrs::type(Attrs); }
getKindNodeBase493   uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
getFlagsNodeBase494   uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
getNextNodeBase495   NodeId getNext() const { return Next; }
496 
getAttrsNodeBase497   uint16_t getAttrs() const { return Attrs; }
setAttrsNodeBase498   void setAttrs(uint16_t A) { Attrs = A; }
setFlagsNodeBase499   void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
500 
501   // Insert node NA after "this" in the circular chain.
502   void append(Node NA);
503 
504   // Initialize all members to 0.
initNodeBase505   void init() { memset(this, 0, sizeof *this); }
506 
setNextNodeBase507   void setNext(NodeId N) { Next = N; }
508 
509 protected:
510   uint16_t Attrs;
511   uint16_t Reserved;
512   NodeId Next; // Id of the next node in the circular chain.
513   // Definitions of nested types. Using anonymous nested structs would make
514   // this class definition clearer, but unnamed structs are not a part of
515   // the standard.
516   struct Def_struct {
517     NodeId DD, DU; // Ids of the first reached def and use.
518   };
519   struct PhiU_struct {
520     NodeId PredB; // Id of the predecessor block for a phi use.
521   };
522   struct Code_struct {
523     void *CP;             // Pointer to the actual code.
524     NodeId FirstM, LastM; // Id of the first member and last.
525   };
526   struct Ref_struct {
527     NodeId RD, Sib; // Ids of the reaching def and the sibling.
528     union {
529       Def_struct Def;
530       PhiU_struct PhiU;
531     };
532     union {
533       MachineOperand *Op;   // Non-phi refs point to a machine operand.
534       PackedRegisterRef PR; // Phi refs store register info directly.
535     };
536   };
537 
538   // The actual payload.
539   union {
540     Ref_struct RefData;
541     Code_struct CodeData;
542   };
543 };
544 // The allocator allocates chunks of 32 bytes for each node. The fact that
545 // each node takes 32 bytes in memory is used for fast translation between
546 // the node id and the node address.
547 static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
548               "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
549 
550 using NodeList = SmallVector<Node, 4>;
551 using NodeSet = std::set<NodeId>;
552 
553 struct RefNode : public NodeBase {
554   RefNode() = default;
555 
556   RegisterRef getRegRef(const DataFlowGraph &G) const;
557 
getOpRefNode558   MachineOperand &getOp() {
559     assert(!(getFlags() & NodeAttrs::PhiRef));
560     return *RefData.Op;
561   }
562 
563   void setRegRef(RegisterRef RR, DataFlowGraph &G);
564   void setRegRef(MachineOperand *Op, DataFlowGraph &G);
565 
getReachingDefRefNode566   NodeId getReachingDef() const { return RefData.RD; }
setReachingDefRefNode567   void setReachingDef(NodeId RD) { RefData.RD = RD; }
568 
getSiblingRefNode569   NodeId getSibling() const { return RefData.Sib; }
setSiblingRefNode570   void setSibling(NodeId Sib) { RefData.Sib = Sib; }
571 
isUseRefNode572   bool isUse() const {
573     assert(getType() == NodeAttrs::Ref);
574     return getKind() == NodeAttrs::Use;
575   }
576 
isDefRefNode577   bool isDef() const {
578     assert(getType() == NodeAttrs::Ref);
579     return getKind() == NodeAttrs::Def;
580   }
581 
582   template <typename Predicate>
583   Ref getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
584                  const DataFlowGraph &G);
585   Node getOwner(const DataFlowGraph &G);
586 };
587 
588 struct DefNode : public RefNode {
getReachedDefDefNode589   NodeId getReachedDef() const { return RefData.Def.DD; }
setReachedDefDefNode590   void setReachedDef(NodeId D) { RefData.Def.DD = D; }
getReachedUseDefNode591   NodeId getReachedUse() const { return RefData.Def.DU; }
setReachedUseDefNode592   void setReachedUse(NodeId U) { RefData.Def.DU = U; }
593 
594   void linkToDef(NodeId Self, Def DA);
595 };
596 
597 struct UseNode : public RefNode {
598   void linkToDef(NodeId Self, Def DA);
599 };
600 
601 struct PhiUseNode : public UseNode {
getPredecessorPhiUseNode602   NodeId getPredecessor() const {
603     assert(getFlags() & NodeAttrs::PhiRef);
604     return RefData.PhiU.PredB;
605   }
setPredecessorPhiUseNode606   void setPredecessor(NodeId B) {
607     assert(getFlags() & NodeAttrs::PhiRef);
608     RefData.PhiU.PredB = B;
609   }
610 };
611 
612 struct CodeNode : public NodeBase {
getCodeCodeNode613   template <typename T> T getCode() const { //
614     return static_cast<T>(CodeData.CP);
615   }
setCodeCodeNode616   void setCode(void *C) { CodeData.CP = C; }
617 
618   Node getFirstMember(const DataFlowGraph &G) const;
619   Node getLastMember(const DataFlowGraph &G) const;
620   void addMember(Node NA, const DataFlowGraph &G);
621   void addMemberAfter(Node MA, Node NA, const DataFlowGraph &G);
622   void removeMember(Node NA, const DataFlowGraph &G);
623 
624   NodeList members(const DataFlowGraph &G) const;
625   template <typename Predicate>
626   NodeList members_if(Predicate P, const DataFlowGraph &G) const;
627 };
628 
629 struct InstrNode : public CodeNode {
630   Node getOwner(const DataFlowGraph &G);
631 };
632 
633 struct PhiNode : public InstrNode {
getCodePhiNode634   MachineInstr *getCode() const { return nullptr; }
635 };
636 
637 struct StmtNode : public InstrNode {
getCodeStmtNode638   MachineInstr *getCode() const { //
639     return CodeNode::getCode<MachineInstr *>();
640   }
641 };
642 
643 struct BlockNode : public CodeNode {
getCodeBlockNode644   MachineBasicBlock *getCode() const {
645     return CodeNode::getCode<MachineBasicBlock *>();
646   }
647 
648   void addPhi(Phi PA, const DataFlowGraph &G);
649 };
650 
651 struct FuncNode : public CodeNode {
getCodeFuncNode652   MachineFunction *getCode() const {
653     return CodeNode::getCode<MachineFunction *>();
654   }
655 
656   Block findBlock(const MachineBasicBlock *BB, const DataFlowGraph &G) const;
657   Block getEntryBlock(const DataFlowGraph &G);
658 };
659 
660 struct DataFlowGraph {
661   DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
662                 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
663                 const MachineDominanceFrontier &mdf);
664   DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
665                 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
666                 const MachineDominanceFrontier &mdf,
667                 const TargetOperandInfo &toi);
668 
669   struct Config {
670     Config() = default;
ConfigDataFlowGraph::Config671     Config(unsigned Opts) : Options(Opts) {}
ConfigDataFlowGraph::Config672     Config(ArrayRef<const TargetRegisterClass *> RCs) : Classes(RCs) {}
ConfigDataFlowGraph::Config673     Config(ArrayRef<MCPhysReg> Track) : TrackRegs(Track.begin(), Track.end()) {}
ConfigDataFlowGraph::Config674     Config(ArrayRef<RegisterId> Track)
675         : TrackRegs(Track.begin(), Track.end()) {}
676 
677     unsigned Options = BuildOptions::None;
678     SmallVector<const TargetRegisterClass *> Classes;
679     std::set<RegisterId> TrackRegs;
680   };
681 
682   NodeBase *ptr(NodeId N) const;
ptrDataFlowGraph683   template <typename T> T ptr(NodeId N) const { //
684     return static_cast<T>(ptr(N));
685   }
686 
687   NodeId id(const NodeBase *P) const;
688 
addrDataFlowGraph689   template <typename T> NodeAddr<T> addr(NodeId N) const {
690     return {ptr<T>(N), N};
691   }
692 
getFuncDataFlowGraph693   Func getFunc() const { return TheFunc; }
getMFDataFlowGraph694   MachineFunction &getMF() const { return MF; }
getTIIDataFlowGraph695   const TargetInstrInfo &getTII() const { return TII; }
getTRIDataFlowGraph696   const TargetRegisterInfo &getTRI() const { return TRI; }
getPRIDataFlowGraph697   const PhysicalRegisterInfo &getPRI() const { return PRI; }
getDTDataFlowGraph698   const MachineDominatorTree &getDT() const { return MDT; }
getDFDataFlowGraph699   const MachineDominanceFrontier &getDF() const { return MDF; }
getLiveInsDataFlowGraph700   const RegisterAggr &getLiveIns() const { return LiveIns; }
701 
702   struct DefStack {
703     DefStack() = default;
704 
emptyDataFlowGraph::DefStack705     bool empty() const { return Stack.empty() || top() == bottom(); }
706 
707   private:
708     using value_type = Def;
709     struct Iterator {
710       using value_type = DefStack::value_type;
711 
upDataFlowGraph::DefStack::Iterator712       Iterator &up() {
713         Pos = DS.nextUp(Pos);
714         return *this;
715       }
downDataFlowGraph::DefStack::Iterator716       Iterator &down() {
717         Pos = DS.nextDown(Pos);
718         return *this;
719       }
720 
721       value_type operator*() const {
722         assert(Pos >= 1);
723         return DS.Stack[Pos - 1];
724       }
725       const value_type *operator->() const {
726         assert(Pos >= 1);
727         return &DS.Stack[Pos - 1];
728       }
729       bool operator==(const Iterator &It) const { return Pos == It.Pos; }
730       bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
731 
732     private:
733       friend struct DefStack;
734 
735       Iterator(const DefStack &S, bool Top);
736 
737       // Pos-1 is the index in the StorageType object that corresponds to
738       // the top of the DefStack.
739       const DefStack &DS;
740       unsigned Pos;
741     };
742 
743   public:
744     using iterator = Iterator;
745 
topDataFlowGraph::DefStack746     iterator top() const { return Iterator(*this, true); }
bottomDataFlowGraph::DefStack747     iterator bottom() const { return Iterator(*this, false); }
748     unsigned size() const;
749 
pushDataFlowGraph::DefStack750     void push(Def DA) { Stack.push_back(DA); }
751     void pop();
752     void start_block(NodeId N);
753     void clear_block(NodeId N);
754 
755   private:
756     friend struct Iterator;
757 
758     using StorageType = std::vector<value_type>;
759 
760     bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
761       return (P.Addr == nullptr) && (N == 0 || P.Id == N);
762     }
763 
764     unsigned nextUp(unsigned P) const;
765     unsigned nextDown(unsigned P) const;
766 
767     StorageType Stack;
768   };
769 
770   // Make this std::unordered_map for speed of accessing elements.
771   // Map: Register (physical or virtual) -> DefStack
772   using DefStackMap = std::unordered_map<RegisterId, DefStack>;
773 
774   void build(const Config &config);
buildDataFlowGraph775   void build() { build(Config()); }
776 
777   void pushAllDefs(Instr IA, DefStackMap &DM);
778   void markBlock(NodeId B, DefStackMap &DefM);
779   void releaseBlock(NodeId B, DefStackMap &DefM);
780 
packDataFlowGraph781   PackedRegisterRef pack(RegisterRef RR) {
782     return {RR.Reg, LMI.getIndexForLaneMask(RR.Mask)};
783   }
packDataFlowGraph784   PackedRegisterRef pack(RegisterRef RR) const {
785     return {RR.Reg, LMI.getIndexForLaneMask(RR.Mask)};
786   }
unpackDataFlowGraph787   RegisterRef unpack(PackedRegisterRef PR) const {
788     return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId));
789   }
790 
791   RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
792   RegisterRef makeRegRef(const MachineOperand &Op) const;
793 
794   Ref getNextRelated(Instr IA, Ref RA) const;
795   Ref getNextShadow(Instr IA, Ref RA, bool Create);
796 
797   NodeList getRelatedRefs(Instr IA, Ref RA) const;
798 
findBlockDataFlowGraph799   Block findBlock(MachineBasicBlock *BB) const { return BlockNodes.at(BB); }
800 
unlinkUseDataFlowGraph801   void unlinkUse(Use UA, bool RemoveFromOwner) {
802     unlinkUseDF(UA);
803     if (RemoveFromOwner)
804       removeFromOwner(UA);
805   }
806 
unlinkDefDataFlowGraph807   void unlinkDef(Def DA, bool RemoveFromOwner) {
808     unlinkDefDF(DA);
809     if (RemoveFromOwner)
810       removeFromOwner(DA);
811   }
812 
813   bool isTracked(RegisterRef RR) const;
814   bool hasUntrackedRef(Stmt S, bool IgnoreReserved = true) const;
815 
816   // Some useful filters.
IsRefDataFlowGraph817   template <uint16_t Kind> static bool IsRef(const Node BA) {
818     return BA.Addr->getType() == NodeAttrs::Ref && BA.Addr->getKind() == Kind;
819   }
820 
IsCodeDataFlowGraph821   template <uint16_t Kind> static bool IsCode(const Node BA) {
822     return BA.Addr->getType() == NodeAttrs::Code && BA.Addr->getKind() == Kind;
823   }
824 
IsDefDataFlowGraph825   static bool IsDef(const Node BA) {
826     return BA.Addr->getType() == NodeAttrs::Ref &&
827            BA.Addr->getKind() == NodeAttrs::Def;
828   }
829 
IsUseDataFlowGraph830   static bool IsUse(const Node BA) {
831     return BA.Addr->getType() == NodeAttrs::Ref &&
832            BA.Addr->getKind() == NodeAttrs::Use;
833   }
834 
IsPhiDataFlowGraph835   static bool IsPhi(const Node BA) {
836     return BA.Addr->getType() == NodeAttrs::Code &&
837            BA.Addr->getKind() == NodeAttrs::Phi;
838   }
839 
IsPreservingDefDataFlowGraph840   static bool IsPreservingDef(const Def DA) {
841     uint16_t Flags = DA.Addr->getFlags();
842     return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
843   }
844 
845 private:
846   void reset();
847 
848   RegisterAggr getLandingPadLiveIns() const;
849 
850   Node newNode(uint16_t Attrs);
851   Node cloneNode(const Node B);
852   Use newUse(Instr Owner, MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
853   PhiUse newPhiUse(Phi Owner, RegisterRef RR, Block PredB,
854                    uint16_t Flags = NodeAttrs::PhiRef);
855   Def newDef(Instr Owner, MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
856   Def newDef(Instr Owner, RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
857   Phi newPhi(Block Owner);
858   Stmt newStmt(Block Owner, MachineInstr *MI);
859   Block newBlock(Func Owner, MachineBasicBlock *BB);
860   Func newFunc(MachineFunction *MF);
861 
862   template <typename Predicate>
863   std::pair<Ref, Ref> locateNextRef(Instr IA, Ref RA, Predicate P) const;
864 
865   using BlockRefsMap = RegisterAggrMap<NodeId>;
866 
867   void buildStmt(Block BA, MachineInstr &In);
868   void recordDefsForDF(BlockRefsMap &PhiM, Block BA);
869   void buildPhis(BlockRefsMap &PhiM, Block BA);
870   void removeUnusedPhis();
871 
872   void pushClobbers(Instr IA, DefStackMap &DM);
873   void pushDefs(Instr IA, DefStackMap &DM);
874   template <typename T> void linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS);
875   template <typename Predicate>
876   void linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P);
877   void linkBlockRefs(DefStackMap &DefM, Block BA);
878 
879   void unlinkUseDF(Use UA);
880   void unlinkDefDF(Def DA);
881 
removeFromOwnerDataFlowGraph882   void removeFromOwner(Ref RA) {
883     Instr IA = RA.Addr->getOwner(*this);
884     IA.Addr->removeMember(RA, *this);
885   }
886 
887   // Default TOI object, if not given in the constructor.
888   std::unique_ptr<TargetOperandInfo> DefaultTOI;
889 
890   MachineFunction &MF;
891   const TargetInstrInfo &TII;
892   const TargetRegisterInfo &TRI;
893   const PhysicalRegisterInfo PRI;
894   const MachineDominatorTree &MDT;
895   const MachineDominanceFrontier &MDF;
896   const TargetOperandInfo &TOI;
897 
898   RegisterAggr LiveIns;
899   Func TheFunc;
900   NodeAllocator Memory;
901   // Local map:  MachineBasicBlock -> NodeAddr<BlockNode*>
902   std::map<MachineBasicBlock *, Block> BlockNodes;
903   // Lane mask map.
904   LaneMaskIndex LMI;
905 
906   Config BuildCfg;
907   std::set<unsigned> TrackedUnits;
908   BitVector ReservedRegs;
909 }; // struct DataFlowGraph
910 
911 template <typename Predicate>
getNextRef(RegisterRef RR,Predicate P,bool NextOnly,const DataFlowGraph & G)912 Ref RefNode::getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
913                         const DataFlowGraph &G) {
914   // Get the "Next" reference in the circular list that references RR and
915   // satisfies predicate "Pred".
916   auto NA = G.addr<NodeBase *>(getNext());
917 
918   while (NA.Addr != this) {
919     if (NA.Addr->getType() == NodeAttrs::Ref) {
920       Ref RA = NA;
921       if (G.getPRI().equal_to(RA.Addr->getRegRef(G), RR) && P(NA))
922         return NA;
923       if (NextOnly)
924         break;
925       NA = G.addr<NodeBase *>(NA.Addr->getNext());
926     } else {
927       // We've hit the beginning of the chain.
928       assert(NA.Addr->getType() == NodeAttrs::Code);
929       // Make sure we stop here with NextOnly. Otherwise we can return the
930       // wrong ref. Consider the following while creating/linking shadow uses:
931       //   -> code -> sr1 -> sr2 -> [back to code]
932       // Say that shadow refs sr1, and sr2 have been linked, but we need to
933       // create and link another one. Starting from sr2, we'd hit the code
934       // node and return sr1 if the iteration didn't stop here.
935       if (NextOnly)
936         break;
937       Code CA = NA;
938       NA = CA.Addr->getFirstMember(G);
939     }
940   }
941   // Return the equivalent of "nullptr" if such a node was not found.
942   return Ref();
943 }
944 
945 template <typename Predicate>
members_if(Predicate P,const DataFlowGraph & G)946 NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
947   NodeList MM;
948   auto M = getFirstMember(G);
949   if (M.Id == 0)
950     return MM;
951 
952   while (M.Addr != this) {
953     if (P(M))
954       MM.push_back(M);
955     M = G.addr<NodeBase *>(M.Addr->getNext());
956   }
957   return MM;
958 }
959 
960 template <typename T> struct Print {
PrintPrint961   Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
962 
963   const T &Obj;
964   const DataFlowGraph &G;
965 };
966 
967 template <typename T> Print(const T &, const DataFlowGraph &) -> Print<T>;
968 
969 template <typename T> struct PrintNode : Print<NodeAddr<T>> {
PrintNodePrintNode970   PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
971       : Print<NodeAddr<T>>(x, g) {}
972 };
973 
974 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P);
975 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P);
976 raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P);
977 raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P);
978 raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P);
979 raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P);
980 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P);
981 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P);
982 raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P);
983 raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P);
984 raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P);
985 raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P);
986 raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P);
987 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P);
988 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P);
989 raw_ostream &operator<<(raw_ostream &OS,
990                         const Print<DataFlowGraph::DefStack> &P);
991 
992 } // end namespace rdf
993 } // end namespace llvm
994 
995 #endif // LLVM_CODEGEN_RDFGRAPH_H
996