1 //===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file Implements the ScheduleDAGInstrs class, which implements scheduling
10 /// for a MachineInstr-based dependency graph.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
15 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseMultiSet.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/identity.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSchedule.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include <cassert>
30 #include <cstdint>
31 #include <list>
32 #include <string>
33 #include <utility>
34 #include <vector>
35 
36 namespace llvm {
37 
38   class AAResults;
39   class LiveIntervals;
40   class MachineFrameInfo;
41   class MachineFunction;
42   class MachineInstr;
43   class MachineLoopInfo;
44   class MachineOperand;
45   struct MCSchedClassDesc;
46   class PressureDiffs;
47   class PseudoSourceValue;
48   class RegPressureTracker;
49   class UndefValue;
50   class Value;
51 
52   /// An individual mapping from virtual register number to SUnit.
53   struct VReg2SUnit {
54     unsigned VirtReg;
55     LaneBitmask LaneMask;
56     SUnit *SU;
57 
58     VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
59       : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
60 
61     unsigned getSparseSetIndex() const {
62       return Register::virtReg2Index(VirtReg);
63     }
64   };
65 
66   /// Mapping from virtual register to SUnit including an operand index.
67   struct VReg2SUnitOperIdx : public VReg2SUnit {
68     unsigned OperandIndex;
69 
70     VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
71                       unsigned OperandIndex, SUnit *SU)
72       : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
73   };
74 
75   /// Record a physical register access.
76   /// For non-data-dependent uses, OpIdx == -1.
77   struct PhysRegSUOper {
78     SUnit *SU;
79     int OpIdx;
80     unsigned Reg;
81 
82     PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
83 
84     unsigned getSparseSetIndex() const { return Reg; }
85   };
86 
87   /// Use a SparseMultiSet to track physical registers. Storage is only
88   /// allocated once for the pass. It can be cleared in constant time and reused
89   /// without any frees.
90   using Reg2SUnitsMap =
91       SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>;
92 
93   /// Use SparseSet as a SparseMap by relying on the fact that it never
94   /// compares ValueT's, only unsigned keys. This allows the set to be cleared
95   /// between scheduling regions in constant time as long as ValueT does not
96   /// require a destructor.
97   using VReg2SUnitMap = SparseSet<VReg2SUnit, VirtReg2IndexFunctor>;
98 
99   /// Track local uses of virtual registers. These uses are gathered by the DAG
100   /// builder and may be consulted by the scheduler to avoid iterating an entire
101   /// vreg use list.
102   using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>;
103 
104   using VReg2SUnitOperIdxMultiMap =
105       SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>;
106 
107   using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
108 
109   struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> {
110     UnderlyingObject(ValueType V, bool MayAlias)
111         : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {}
112 
113     ValueType getValue() const { return getPointer(); }
114     bool mayAlias() const { return getInt(); }
115   };
116 
117   using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>;
118 
119   /// A ScheduleDAG for scheduling lists of MachineInstr.
120   class ScheduleDAGInstrs : public ScheduleDAG {
121   protected:
122     const MachineLoopInfo *MLI = nullptr;
123     const MachineFrameInfo &MFI;
124 
125     /// TargetSchedModel provides an interface to the machine model.
126     TargetSchedModel SchedModel;
127 
128     /// True if the DAG builder should remove kill flags (in preparation for
129     /// rescheduling).
130     bool RemoveKillFlags;
131 
132     /// The standard DAG builder does not normally include terminators as DAG
133     /// nodes because it does not create the necessary dependencies to prevent
134     /// reordering. A specialized scheduler can override
135     /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
136     /// it has taken responsibility for scheduling the terminator correctly.
137     bool CanHandleTerminators = false;
138 
139     /// Whether lane masks should get tracked.
140     bool TrackLaneMasks = false;
141 
142     // State specific to the current scheduling region.
143     // ------------------------------------------------
144 
145     /// The block in which to insert instructions
146     MachineBasicBlock *BB = nullptr;
147 
148     /// The beginning of the range to be scheduled.
149     MachineBasicBlock::iterator RegionBegin;
150 
151     /// The end of the range to be scheduled.
152     MachineBasicBlock::iterator RegionEnd;
153 
154     /// Instructions in this region (distance(RegionBegin, RegionEnd)).
155     unsigned NumRegionInstrs = 0;
156 
157     /// After calling BuildSchedGraph, each machine instruction in the current
158     /// scheduling region is mapped to an SUnit.
159     DenseMap<MachineInstr*, SUnit*> MISUnitMap;
160 
161     // State internal to DAG building.
162     // -------------------------------
163 
164     /// Defs, Uses - Remember where defs and uses of each register are as we
165     /// iterate upward through the instructions. This is allocated here instead
166     /// of inside BuildSchedGraph to avoid the need for it to be initialized and
167     /// destructed for each block.
168     Reg2SUnitsMap Defs;
169     Reg2SUnitsMap Uses;
170 
171     /// Tracks the last instruction(s) in this region defining each virtual
172     /// register. There may be multiple current definitions for a register with
173     /// disjunct lanemasks.
174     VReg2SUnitMultiMap CurrentVRegDefs;
175     /// Tracks the last instructions in this region using each virtual register.
176     VReg2SUnitOperIdxMultiMap CurrentVRegUses;
177 
178     AAResults *AAForDep = nullptr;
179 
180     /// Remember a generic side-effecting instruction as we proceed.
181     /// No other SU ever gets scheduled around it (except in the special
182     /// case of a huge region that gets reduced).
183     SUnit *BarrierChain = nullptr;
184 
185   public:
186     /// A list of SUnits, used in Value2SUsMap, during DAG construction.
187     /// Note: to gain speed it might be worth investigating an optimized
188     /// implementation of this data structure, such as a singly linked list
189     /// with a memory pool (SmallVector was tried but slow and SparseSet is not
190     /// applicable).
191     using SUList = std::list<SUnit *>;
192 
193   protected:
194     /// A map from ValueType to SUList, used during DAG construction, as
195     /// a means of remembering which SUs depend on which memory locations.
196     class Value2SUsMap;
197 
198     /// Reduces maps in FIFO order, by N SUs. This is better than turning
199     /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
200     /// it avoids unnecessary edges between seen SUs above the new BarrierChain,
201     /// and those below it.
202     void reduceHugeMemNodeMaps(Value2SUsMap &stores,
203                                Value2SUsMap &loads, unsigned N);
204 
205     /// Adds a chain edge between SUa and SUb, but only if both
206     /// AAResults and Target fail to deny the dependency.
207     void addChainDependency(SUnit *SUa, SUnit *SUb,
208                             unsigned Latency = 0);
209 
210     /// Adds dependencies as needed from all SUs in list to SU.
211     void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) {
212       for (SUnit *Entry : SUs)
213         addChainDependency(SU, Entry, Latency);
214     }
215 
216     /// Adds dependencies as needed from all SUs in map, to SU.
217     void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap);
218 
219     /// Adds dependencies as needed to SU, from all SUs mapped to V.
220     void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap,
221                               ValueType V);
222 
223     /// Adds barrier chain edges from all SUs in map, and then clear the map.
224     /// This is equivalent to insertBarrierChain(), but optimized for the common
225     /// case where the new BarrierChain (a global memory object) has a higher
226     /// NodeNum than all SUs in map. It is assumed BarrierChain has been set
227     /// before calling this.
228     void addBarrierChain(Value2SUsMap &map);
229 
230     /// Inserts a barrier chain in a huge region, far below current SU.
231     /// Adds barrier chain edges from all SUs in map with higher NodeNums than
232     /// this new BarrierChain, and remove them from map. It is assumed
233     /// BarrierChain has been set before calling this.
234     void insertBarrierChain(Value2SUsMap &map);
235 
236     /// For an unanalyzable memory access, this Value is used in maps.
237     UndefValue *UnknownValue;
238 
239 
240     /// Topo - A topological ordering for SUnits which permits fast IsReachable
241     /// and similar queries.
242     ScheduleDAGTopologicalSort Topo;
243 
244     using DbgValueVector =
245         std::vector<std::pair<MachineInstr *, MachineInstr *>>;
246     /// Remember instruction that precedes DBG_VALUE.
247     /// These are generated by buildSchedGraph but persist so they can be
248     /// referenced when emitting the final schedule.
249     DbgValueVector DbgValues;
250     MachineInstr *FirstDbgValue = nullptr;
251 
252     /// Set of live physical registers for updating kill flags.
253     LivePhysRegs LiveRegs;
254 
255   public:
256     explicit ScheduleDAGInstrs(MachineFunction &mf,
257                                const MachineLoopInfo *mli,
258                                bool RemoveKillFlags = false);
259 
260     ~ScheduleDAGInstrs() override = default;
261 
262     /// Gets the machine model for instruction scheduling.
263     const TargetSchedModel *getSchedModel() const { return &SchedModel; }
264 
265     /// Resolves and cache a resolved scheduling class for an SUnit.
266     const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
267       if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
268         SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
269       return SU->SchedClass;
270     }
271 
272     /// IsReachable - Checks if SU is reachable from TargetSU.
273     bool IsReachable(SUnit *SU, SUnit *TargetSU) {
274       return Topo.IsReachable(SU, TargetSU);
275     }
276 
277     /// Returns an iterator to the top of the current scheduling region.
278     MachineBasicBlock::iterator begin() const { return RegionBegin; }
279 
280     /// Returns an iterator to the bottom of the current scheduling region.
281     MachineBasicBlock::iterator end() const { return RegionEnd; }
282 
283     /// Creates a new SUnit and return a ptr to it.
284     SUnit *newSUnit(MachineInstr *MI);
285 
286     /// Returns an existing SUnit for this MI, or nullptr.
287     SUnit *getSUnit(MachineInstr *MI) const;
288 
289     /// If this method returns true, handling of the scheduling regions
290     /// themselves (in case of a scheduling boundary in MBB) will be done
291     /// beginning with the topmost region of MBB.
292     virtual bool doMBBSchedRegionsTopDown() const { return false; }
293 
294     /// Prepares to perform scheduling in the given block.
295     virtual void startBlock(MachineBasicBlock *BB);
296 
297     /// Cleans up after scheduling in the given block.
298     virtual void finishBlock();
299 
300     /// Initialize the DAG and common scheduler state for a new
301     /// scheduling region. This does not actually create the DAG, only clears
302     /// it. The scheduling driver may call BuildSchedGraph multiple times per
303     /// scheduling region.
304     virtual void enterRegion(MachineBasicBlock *bb,
305                              MachineBasicBlock::iterator begin,
306                              MachineBasicBlock::iterator end,
307                              unsigned regioninstrs);
308 
309     /// Called when the scheduler has finished scheduling the current region.
310     virtual void exitRegion();
311 
312     /// Builds SUnits for the current region.
313     /// If \p RPTracker is non-null, compute register pressure as a side effect.
314     /// The DAG builder is an efficient place to do it because it already visits
315     /// operands.
316     void buildSchedGraph(AAResults *AA,
317                          RegPressureTracker *RPTracker = nullptr,
318                          PressureDiffs *PDiffs = nullptr,
319                          LiveIntervals *LIS = nullptr,
320                          bool TrackLaneMasks = false);
321 
322     /// Adds dependencies from instructions in the current list of
323     /// instructions being scheduled to scheduling barrier. We want to make sure
324     /// instructions which define registers that are either used by the
325     /// terminator or are live-out are properly scheduled. This is especially
326     /// important when the definition latency of the return value(s) are too
327     /// high to be hidden by the branch or when the liveout registers used by
328     /// instructions in the fallthrough block.
329     void addSchedBarrierDeps();
330 
331     /// Orders nodes according to selected style.
332     ///
333     /// Typically, a scheduling algorithm will implement schedule() without
334     /// overriding enterRegion() or exitRegion().
335     virtual void schedule() = 0;
336 
337     /// Allow targets to perform final scheduling actions at the level of the
338     /// whole MachineFunction. By default does nothing.
339     virtual void finalizeSchedule() {}
340 
341     void dumpNode(const SUnit &SU) const override;
342     void dump() const override;
343 
344     /// Returns a label for a DAG node that points to an instruction.
345     std::string getGraphNodeLabel(const SUnit *SU) const override;
346 
347     /// Returns a label for the region of code covered by the DAG.
348     std::string getDAGName() const override;
349 
350     /// Fixes register kill flags that scheduling has made invalid.
351     void fixupKills(MachineBasicBlock &MBB);
352 
353     /// True if an edge can be added from PredSU to SuccSU without creating
354     /// a cycle.
355     bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
356 
357     /// Add a DAG edge to the given SU with the given predecessor
358     /// dependence data.
359     ///
360     /// \returns true if the edge may be added without creating a cycle OR if an
361     /// equivalent edge already existed (false indicates failure).
362     bool addEdge(SUnit *SuccSU, const SDep &PredDep);
363 
364   protected:
365     void initSUnits();
366     void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
367     void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
368     void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
369     void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
370 
371     /// Returns a mask for which lanes get read/written by the given (register)
372     /// machine operand.
373     LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
374 
375     /// Returns true if the def register in \p MO has no uses.
376     bool deadDefHasNoUse(const MachineOperand &MO);
377   };
378 
379   /// Creates a new SUnit and return a ptr to it.
380   inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
381 #ifndef NDEBUG
382     const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
383 #endif
384     SUnits.emplace_back(MI, (unsigned)SUnits.size());
385     assert((Addr == nullptr || Addr == &SUnits[0]) &&
386            "SUnits std::vector reallocated on the fly!");
387     return &SUnits.back();
388   }
389 
390   /// Returns an existing SUnit for this MI, or nullptr.
391   inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
392     return MISUnitMap.lookup(MI);
393   }
394 
395 } // end namespace llvm
396 
397 #endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
398