1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/ilist.h"
26 #include "llvm/ADT/iterator.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/CodeGen/DAGCombine.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/Support/Allocator.h"
37 #include "llvm/Support/ArrayRecycler.h"
38 #include "llvm/Support/CodeGen.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MachineValueType.h"
41 #include "llvm/Support/RecyclingAllocator.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <functional>
45 #include <map>
46 #include <string>
47 #include <tuple>
48 #include <utility>
49 #include <vector>
50 
51 namespace llvm {
52 
53 class DIExpression;
54 class DILabel;
55 class DIVariable;
56 class Function;
57 class Pass;
58 class Type;
59 template <class GraphType> struct GraphTraits;
60 template <typename T, unsigned int N> class SmallSetVector;
61 template <typename T, typename Enable> struct FoldingSetTrait;
62 class AAResults;
63 class BlockAddress;
64 class BlockFrequencyInfo;
65 class Constant;
66 class ConstantFP;
67 class ConstantInt;
68 class DataLayout;
69 struct fltSemantics;
70 class FunctionLoweringInfo;
71 class FunctionVarLocs;
72 class GlobalValue;
73 struct KnownBits;
74 class LegacyDivergenceAnalysis;
75 class LLVMContext;
76 class MachineBasicBlock;
77 class MachineConstantPoolValue;
78 class MCSymbol;
79 class OptimizationRemarkEmitter;
80 class ProfileSummaryInfo;
81 class SDDbgValue;
82 class SDDbgOperand;
83 class SDDbgLabel;
84 class SelectionDAG;
85 class SelectionDAGTargetInfo;
86 class TargetLibraryInfo;
87 class TargetLowering;
88 class TargetMachine;
89 class TargetSubtargetInfo;
90 class Value;
91 
92 class SDVTListNode : public FoldingSetNode {
93   friend struct FoldingSetTrait<SDVTListNode>;
94 
95   /// A reference to an Interned FoldingSetNodeID for this node.
96   /// The Allocator in SelectionDAG holds the data.
97   /// SDVTList contains all types which are frequently accessed in SelectionDAG.
98   /// The size of this list is not expected to be big so it won't introduce
99   /// a memory penalty.
100   FoldingSetNodeIDRef FastID;
101   const EVT *VTs;
102   unsigned int NumVTs;
103   /// The hash value for SDVTList is fixed, so cache it to avoid
104   /// hash calculation.
105   unsigned HashValue;
106 
107 public:
108   SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
109       FastID(ID), VTs(VT), NumVTs(Num) {
110     HashValue = ID.ComputeHash();
111   }
112 
113   SDVTList getSDVTList() {
114     SDVTList result = {VTs, NumVTs};
115     return result;
116   }
117 };
118 
119 /// Specialize FoldingSetTrait for SDVTListNode
120 /// to avoid computing temp FoldingSetNodeID and hash value.
121 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
122   static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
123     ID = X.FastID;
124   }
125 
126   static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
127                      unsigned IDHash, FoldingSetNodeID &TempID) {
128     if (X.HashValue != IDHash)
129       return false;
130     return ID == X.FastID;
131   }
132 
133   static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
134     return X.HashValue;
135   }
136 };
137 
138 template <> struct ilist_alloc_traits<SDNode> {
139   static void deleteNode(SDNode *) {
140     llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
141   }
142 };
143 
144 /// Keeps track of dbg_value information through SDISel.  We do
145 /// not build SDNodes for these so as not to perturb the generated code;
146 /// instead the info is kept off to the side in this structure. Each SDNode may
147 /// have one or more associated dbg_value entries. This information is kept in
148 /// DbgValMap.
149 /// Byval parameters are handled separately because they don't use alloca's,
150 /// which busts the normal mechanism.  There is good reason for handling all
151 /// parameters separately:  they may not have code generated for them, they
152 /// should always go at the beginning of the function regardless of other code
153 /// motion, and debug info for them is potentially useful even if the parameter
154 /// is unused.  Right now only byval parameters are handled separately.
155 class SDDbgInfo {
156   BumpPtrAllocator Alloc;
157   SmallVector<SDDbgValue*, 32> DbgValues;
158   SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
159   SmallVector<SDDbgLabel*, 4> DbgLabels;
160   using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
161   DbgValMapType DbgValMap;
162 
163 public:
164   SDDbgInfo() = default;
165   SDDbgInfo(const SDDbgInfo &) = delete;
166   SDDbgInfo &operator=(const SDDbgInfo &) = delete;
167 
168   void add(SDDbgValue *V, bool isParameter);
169 
170   void add(SDDbgLabel *L) { DbgLabels.push_back(L); }
171 
172   /// Invalidate all DbgValues attached to the node and remove
173   /// it from the Node-to-DbgValues map.
174   void erase(const SDNode *Node);
175 
176   void clear() {
177     DbgValMap.clear();
178     DbgValues.clear();
179     ByvalParmDbgValues.clear();
180     DbgLabels.clear();
181     Alloc.Reset();
182   }
183 
184   BumpPtrAllocator &getAlloc() { return Alloc; }
185 
186   bool empty() const {
187     return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
188   }
189 
190   ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
191     auto I = DbgValMap.find(Node);
192     if (I != DbgValMap.end())
193       return I->second;
194     return ArrayRef<SDDbgValue*>();
195   }
196 
197   using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
198   using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
199 
200   DbgIterator DbgBegin() { return DbgValues.begin(); }
201   DbgIterator DbgEnd()   { return DbgValues.end(); }
202   DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
203   DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
204   DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
205   DbgLabelIterator DbgLabelEnd()   { return DbgLabels.end(); }
206 };
207 
208 void checkForCycles(const SelectionDAG *DAG, bool force = false);
209 
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
215 ///
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
219 /// linear form.
220 ///
221 class SelectionDAG {
222   const TargetMachine &TM;
223   const SelectionDAGTargetInfo *TSI = nullptr;
224   const TargetLowering *TLI = nullptr;
225   const TargetLibraryInfo *LibInfo = nullptr;
226   const FunctionVarLocs *FnVarLocs = nullptr;
227   MachineFunction *MF;
228   Pass *SDAGISelPass = nullptr;
229   LLVMContext *Context;
230   CodeGenOpt::Level OptLevel;
231 
232   LegacyDivergenceAnalysis * DA = nullptr;
233   FunctionLoweringInfo * FLI = nullptr;
234 
235   /// The function-level optimization remark emitter.  Used to emit remarks
236   /// whenever manipulating the DAG.
237   OptimizationRemarkEmitter *ORE;
238 
239   ProfileSummaryInfo *PSI = nullptr;
240   BlockFrequencyInfo *BFI = nullptr;
241 
242   /// List of non-single value types.
243   FoldingSet<SDVTListNode> VTListMap;
244 
245   /// Pool allocation for misc. objects that are created once per SelectionDAG.
246   BumpPtrAllocator Allocator;
247 
248   /// The starting token.
249   SDNode EntryNode;
250 
251   /// The root of the entire DAG.
252   SDValue Root;
253 
254   /// A linked list of nodes in the current DAG.
255   ilist<SDNode> AllNodes;
256 
257   /// The AllocatorType for allocating SDNodes. We use
258   /// pool allocation with recycling.
259   using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
260                                                sizeof(LargestSDNode),
261                                                alignof(MostAlignedSDNode)>;
262 
263   /// Pool allocation for nodes.
264   NodeAllocatorType NodeAllocator;
265 
266   /// This structure is used to memoize nodes, automatically performing
267   /// CSE with existing nodes when a duplicate is requested.
268   FoldingSet<SDNode> CSEMap;
269 
270   /// Pool allocation for machine-opcode SDNode operands.
271   BumpPtrAllocator OperandAllocator;
272   ArrayRecycler<SDUse> OperandRecycler;
273 
274   /// Tracks dbg_value and dbg_label information through SDISel.
275   SDDbgInfo *DbgInfo;
276 
277   using CallSiteInfo = MachineFunction::CallSiteInfo;
278   using CallSiteInfoImpl = MachineFunction::CallSiteInfoImpl;
279 
280   struct NodeExtraInfo {
281     CallSiteInfo CSInfo;
282     MDNode *HeapAllocSite = nullptr;
283     MDNode *PCSections = nullptr;
284     bool NoMerge = false;
285   };
286   /// Out-of-line extra information for SDNodes.
287   DenseMap<const SDNode *, NodeExtraInfo> SDEI;
288 
289   /// PersistentId counter to be used when inserting the next
290   /// SDNode to this SelectionDAG. We do not place that under
291   /// `#if LLVM_ENABLE_ABI_BREAKING_CHECKS` intentionally because
292   /// it adds unneeded complexity without noticeable
293   /// benefits (see discussion with @thakis in D120714).
294   uint16_t NextPersistentId = 0;
295 
296 public:
297   /// Clients of various APIs that cause global effects on
298   /// the DAG can optionally implement this interface.  This allows the clients
299   /// to handle the various sorts of updates that happen.
300   ///
301   /// A DAGUpdateListener automatically registers itself with DAG when it is
302   /// constructed, and removes itself when destroyed in RAII fashion.
303   struct DAGUpdateListener {
304     DAGUpdateListener *const Next;
305     SelectionDAG &DAG;
306 
307     explicit DAGUpdateListener(SelectionDAG &D)
308       : Next(D.UpdateListeners), DAG(D) {
309       DAG.UpdateListeners = this;
310     }
311 
312     virtual ~DAGUpdateListener() {
313       assert(DAG.UpdateListeners == this &&
314              "DAGUpdateListeners must be destroyed in LIFO order");
315       DAG.UpdateListeners = Next;
316     }
317 
318     /// The node N that was deleted and, if E is not null, an
319     /// equivalent node E that replaced it.
320     virtual void NodeDeleted(SDNode *N, SDNode *E);
321 
322     /// The node N that was updated.
323     virtual void NodeUpdated(SDNode *N);
324 
325     /// The node N that was inserted.
326     virtual void NodeInserted(SDNode *N);
327   };
328 
329   struct DAGNodeDeletedListener : public DAGUpdateListener {
330     std::function<void(SDNode *, SDNode *)> Callback;
331 
332     DAGNodeDeletedListener(SelectionDAG &DAG,
333                            std::function<void(SDNode *, SDNode *)> Callback)
334         : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
335 
336     void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
337 
338    private:
339     virtual void anchor();
340   };
341 
342   struct DAGNodeInsertedListener : public DAGUpdateListener {
343     std::function<void(SDNode *)> Callback;
344 
345     DAGNodeInsertedListener(SelectionDAG &DAG,
346                             std::function<void(SDNode *)> Callback)
347         : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
348 
349     void NodeInserted(SDNode *N) override { Callback(N); }
350 
351   private:
352     virtual void anchor();
353   };
354 
355   /// Help to insert SDNodeFlags automatically in transforming. Use
356   /// RAII to save and resume flags in current scope.
357   class FlagInserter {
358     SelectionDAG &DAG;
359     SDNodeFlags Flags;
360     FlagInserter *LastInserter;
361 
362   public:
363     FlagInserter(SelectionDAG &SDAG, SDNodeFlags Flags)
364         : DAG(SDAG), Flags(Flags),
365           LastInserter(SDAG.getFlagInserter()) {
366       SDAG.setFlagInserter(this);
367     }
368     FlagInserter(SelectionDAG &SDAG, SDNode *N)
369         : FlagInserter(SDAG, N->getFlags()) {}
370 
371     FlagInserter(const FlagInserter &) = delete;
372     FlagInserter &operator=(const FlagInserter &) = delete;
373     ~FlagInserter() { DAG.setFlagInserter(LastInserter); }
374 
375     SDNodeFlags getFlags() const { return Flags; }
376   };
377 
378   /// When true, additional steps are taken to
379   /// ensure that getConstant() and similar functions return DAG nodes that
380   /// have legal types. This is important after type legalization since
381   /// any illegally typed nodes generated after this point will not experience
382   /// type legalization.
383   bool NewNodesMustHaveLegalTypes = false;
384 
385 private:
386   /// DAGUpdateListener is a friend so it can manipulate the listener stack.
387   friend struct DAGUpdateListener;
388 
389   /// Linked list of registered DAGUpdateListener instances.
390   /// This stack is maintained by DAGUpdateListener RAII.
391   DAGUpdateListener *UpdateListeners = nullptr;
392 
393   /// Implementation of setSubgraphColor.
394   /// Return whether we had to truncate the search.
395   bool setSubgraphColorHelper(SDNode *N, const char *Color,
396                               DenseSet<SDNode *> &visited,
397                               int level, bool &printed);
398 
399   template <typename SDNodeT, typename... ArgTypes>
400   SDNodeT *newSDNode(ArgTypes &&... Args) {
401     return new (NodeAllocator.template Allocate<SDNodeT>())
402         SDNodeT(std::forward<ArgTypes>(Args)...);
403   }
404 
405   /// Build a synthetic SDNodeT with the given args and extract its subclass
406   /// data as an integer (e.g. for use in a folding set).
407   ///
408   /// The args to this function are the same as the args to SDNodeT's
409   /// constructor, except the second arg (assumed to be a const DebugLoc&) is
410   /// omitted.
411   template <typename SDNodeT, typename... ArgTypes>
412   static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
413                                                ArgTypes &&... Args) {
414     // The compiler can reduce this expression to a constant iff we pass an
415     // empty DebugLoc.  Thankfully, the debug location doesn't have any bearing
416     // on the subclass data.
417     return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
418         .getRawSubclassData();
419   }
420 
421   template <typename SDNodeTy>
422   static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
423                                                 SDVTList VTs, EVT MemoryVT,
424                                                 MachineMemOperand *MMO) {
425     return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
426          .getRawSubclassData();
427   }
428 
429   void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
430 
431   void removeOperands(SDNode *Node) {
432     if (!Node->OperandList)
433       return;
434     OperandRecycler.deallocate(
435         ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
436         Node->OperandList);
437     Node->NumOperands = 0;
438     Node->OperandList = nullptr;
439   }
440   void CreateTopologicalOrder(std::vector<SDNode*>& Order);
441 
442 public:
443   // Maximum depth for recursive analysis such as computeKnownBits, etc.
444   static constexpr unsigned MaxRecursionDepth = 6;
445 
446   explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
447   SelectionDAG(const SelectionDAG &) = delete;
448   SelectionDAG &operator=(const SelectionDAG &) = delete;
449   ~SelectionDAG();
450 
451   /// Prepare this SelectionDAG to process code in the given MachineFunction.
452   void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
453             Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
454             LegacyDivergenceAnalysis *Divergence, ProfileSummaryInfo *PSIin,
455             BlockFrequencyInfo *BFIin, FunctionVarLocs const *FnVarLocs);
456 
457   void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
458     FLI = FuncInfo;
459   }
460 
461   /// Clear state and free memory necessary to make this
462   /// SelectionDAG ready to process a new block.
463   void clear();
464 
465   MachineFunction &getMachineFunction() const { return *MF; }
466   const Pass *getPass() const { return SDAGISelPass; }
467 
468   const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
469   const TargetMachine &getTarget() const { return TM; }
470   const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
471   template <typename STC> const STC &getSubtarget() const {
472     return MF->getSubtarget<STC>();
473   }
474   const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
475   const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
476   const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
477   const LegacyDivergenceAnalysis *getDivergenceAnalysis() const { return DA; }
478   /// Returns the result of the AssignmentTrackingAnalysis pass if it's
479   /// available, otherwise return nullptr.
480   const FunctionVarLocs *getFunctionVarLocs() const { return FnVarLocs; }
481   LLVMContext *getContext() const { return Context; }
482   OptimizationRemarkEmitter &getORE() const { return *ORE; }
483   ProfileSummaryInfo *getPSI() const { return PSI; }
484   BlockFrequencyInfo *getBFI() const { return BFI; }
485 
486   FlagInserter *getFlagInserter() { return Inserter; }
487   void setFlagInserter(FlagInserter *FI) { Inserter = FI; }
488 
489   /// Just dump dot graph to a user-provided path and title.
490   /// This doesn't open the dot viewer program and
491   /// helps visualization when outside debugging session.
492   /// FileName expects absolute path. If provided
493   /// without any path separators then the file
494   /// will be created in the current directory.
495   /// Error will be emitted if the path is insane.
496 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
497   LLVM_DUMP_METHOD void dumpDotGraph(const Twine &FileName, const Twine &Title);
498 #endif
499 
500   /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
501   void viewGraph(const std::string &Title);
502   void viewGraph();
503 
504 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
505   std::map<const SDNode *, std::string> NodeGraphAttrs;
506 #endif
507 
508   /// Clear all previously defined node graph attributes.
509   /// Intended to be used from a debugging tool (eg. gdb).
510   void clearGraphAttrs();
511 
512   /// Set graph attributes for a node. (eg. "color=red".)
513   void setGraphAttrs(const SDNode *N, const char *Attrs);
514 
515   /// Get graph attributes for a node. (eg. "color=red".)
516   /// Used from getNodeAttributes.
517   std::string getGraphAttrs(const SDNode *N) const;
518 
519   /// Convenience for setting node color attribute.
520   void setGraphColor(const SDNode *N, const char *Color);
521 
522   /// Convenience for setting subgraph color attribute.
523   void setSubgraphColor(SDNode *N, const char *Color);
524 
525   using allnodes_const_iterator = ilist<SDNode>::const_iterator;
526 
527   allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
528   allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
529 
530   using allnodes_iterator = ilist<SDNode>::iterator;
531 
532   allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
533   allnodes_iterator allnodes_end() { return AllNodes.end(); }
534 
535   ilist<SDNode>::size_type allnodes_size() const {
536     return AllNodes.size();
537   }
538 
539   iterator_range<allnodes_iterator> allnodes() {
540     return make_range(allnodes_begin(), allnodes_end());
541   }
542   iterator_range<allnodes_const_iterator> allnodes() const {
543     return make_range(allnodes_begin(), allnodes_end());
544   }
545 
546   /// Return the root tag of the SelectionDAG.
547   const SDValue &getRoot() const { return Root; }
548 
549   /// Return the token chain corresponding to the entry of the function.
550   SDValue getEntryNode() const {
551     return SDValue(const_cast<SDNode *>(&EntryNode), 0);
552   }
553 
554   /// Set the current root tag of the SelectionDAG.
555   ///
556   const SDValue &setRoot(SDValue N) {
557     assert((!N.getNode() || N.getValueType() == MVT::Other) &&
558            "DAG root value is not a chain!");
559     if (N.getNode())
560       checkForCycles(N.getNode(), this);
561     Root = N;
562     if (N.getNode())
563       checkForCycles(this);
564     return Root;
565   }
566 
567 #ifndef NDEBUG
568   void VerifyDAGDivergence();
569 #endif
570 
571   /// This iterates over the nodes in the SelectionDAG, folding
572   /// certain types of nodes together, or eliminating superfluous nodes.  The
573   /// Level argument controls whether Combine is allowed to produce nodes and
574   /// types that are illegal on the target.
575   void Combine(CombineLevel Level, AAResults *AA,
576                CodeGenOpt::Level OptLevel);
577 
578   /// This transforms the SelectionDAG into a SelectionDAG that
579   /// only uses types natively supported by the target.
580   /// Returns "true" if it made any changes.
581   ///
582   /// Note that this is an involved process that may invalidate pointers into
583   /// the graph.
584   bool LegalizeTypes();
585 
586   /// This transforms the SelectionDAG into a SelectionDAG that is
587   /// compatible with the target instruction selector, as indicated by the
588   /// TargetLowering object.
589   ///
590   /// Note that this is an involved process that may invalidate pointers into
591   /// the graph.
592   void Legalize();
593 
594   /// Transforms a SelectionDAG node and any operands to it into a node
595   /// that is compatible with the target instruction selector, as indicated by
596   /// the TargetLowering object.
597   ///
598   /// \returns true if \c N is a valid, legal node after calling this.
599   ///
600   /// This essentially runs a single recursive walk of the \c Legalize process
601   /// over the given node (and its operands). This can be used to incrementally
602   /// legalize the DAG. All of the nodes which are directly replaced,
603   /// potentially including N, are added to the output parameter \c
604   /// UpdatedNodes so that the delta to the DAG can be understood by the
605   /// caller.
606   ///
607   /// When this returns false, N has been legalized in a way that make the
608   /// pointer passed in no longer valid. It may have even been deleted from the
609   /// DAG, and so it shouldn't be used further. When this returns true, the
610   /// N passed in is a legal node, and can be immediately processed as such.
611   /// This may still have done some work on the DAG, and will still populate
612   /// UpdatedNodes with any new nodes replacing those originally in the DAG.
613   bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
614 
615   /// This transforms the SelectionDAG into a SelectionDAG
616   /// that only uses vector math operations supported by the target.  This is
617   /// necessary as a separate step from Legalize because unrolling a vector
618   /// operation can introduce illegal types, which requires running
619   /// LegalizeTypes again.
620   ///
621   /// This returns true if it made any changes; in that case, LegalizeTypes
622   /// is called again before Legalize.
623   ///
624   /// Note that this is an involved process that may invalidate pointers into
625   /// the graph.
626   bool LegalizeVectors();
627 
628   /// This method deletes all unreachable nodes in the SelectionDAG.
629   void RemoveDeadNodes();
630 
631   /// Remove the specified node from the system.  This node must
632   /// have no referrers.
633   void DeleteNode(SDNode *N);
634 
635   /// Return an SDVTList that represents the list of values specified.
636   SDVTList getVTList(EVT VT);
637   SDVTList getVTList(EVT VT1, EVT VT2);
638   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
639   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
640   SDVTList getVTList(ArrayRef<EVT> VTs);
641 
642   //===--------------------------------------------------------------------===//
643   // Node creation methods.
644 
645   /// Create a ConstantSDNode wrapping a constant value.
646   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
647   ///
648   /// If only legal types can be produced, this does the necessary
649   /// transformations (e.g., if the vector element type is illegal).
650   /// @{
651   SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
652                       bool isTarget = false, bool isOpaque = false);
653   SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
654                       bool isTarget = false, bool isOpaque = false);
655 
656   SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
657                              bool IsOpaque = false) {
658     return getConstant(APInt::getAllOnes(VT.getScalarSizeInBits()), DL, VT,
659                        IsTarget, IsOpaque);
660   }
661 
662   SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
663                       bool isTarget = false, bool isOpaque = false);
664   SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
665                             bool isTarget = false);
666   SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL,
667                                  bool LegalTypes = true);
668   SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
669                                bool isTarget = false);
670 
671   SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
672                             bool isOpaque = false) {
673     return getConstant(Val, DL, VT, true, isOpaque);
674   }
675   SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
676                             bool isOpaque = false) {
677     return getConstant(Val, DL, VT, true, isOpaque);
678   }
679   SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
680                             bool isOpaque = false) {
681     return getConstant(Val, DL, VT, true, isOpaque);
682   }
683 
684   /// Create a true or false constant of type \p VT using the target's
685   /// BooleanContent for type \p OpVT.
686   SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
687   /// @}
688 
689   /// Create a ConstantFPSDNode wrapping a constant value.
690   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
691   ///
692   /// If only legal types can be produced, this does the necessary
693   /// transformations (e.g., if the vector element type is illegal).
694   /// The forms that take a double should only be used for simple constants
695   /// that can be exactly represented in VT.  No checks are made.
696   /// @{
697   SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
698                         bool isTarget = false);
699   SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
700                         bool isTarget = false);
701   SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
702                         bool isTarget = false);
703   SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
704     return getConstantFP(Val, DL, VT, true);
705   }
706   SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
707     return getConstantFP(Val, DL, VT, true);
708   }
709   SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
710     return getConstantFP(Val, DL, VT, true);
711   }
712   /// @}
713 
714   SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
715                            int64_t offset = 0, bool isTargetGA = false,
716                            unsigned TargetFlags = 0);
717   SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
718                                  int64_t offset = 0, unsigned TargetFlags = 0) {
719     return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
720   }
721   SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
722   SDValue getTargetFrameIndex(int FI, EVT VT) {
723     return getFrameIndex(FI, VT, true);
724   }
725   SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
726                        unsigned TargetFlags = 0);
727   SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) {
728     return getJumpTable(JTI, VT, true, TargetFlags);
729   }
730   SDValue getConstantPool(const Constant *C, EVT VT,
731                           MaybeAlign Align = std::nullopt, int Offs = 0,
732                           bool isT = false, unsigned TargetFlags = 0);
733   SDValue getTargetConstantPool(const Constant *C, EVT VT,
734                                 MaybeAlign Align = std::nullopt, int Offset = 0,
735                                 unsigned TargetFlags = 0) {
736     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
737   }
738   SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
739                           MaybeAlign Align = std::nullopt, int Offs = 0,
740                           bool isT = false, unsigned TargetFlags = 0);
741   SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT,
742                                 MaybeAlign Align = std::nullopt, int Offset = 0,
743                                 unsigned TargetFlags = 0) {
744     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
745   }
746   SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
747                          unsigned TargetFlags = 0);
748   // When generating a branch to a BB, we don't in general know enough
749   // to provide debug info for the BB at that time, so keep this one around.
750   SDValue getBasicBlock(MachineBasicBlock *MBB);
751   SDValue getExternalSymbol(const char *Sym, EVT VT);
752   SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
753                                   unsigned TargetFlags = 0);
754   SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
755 
756   SDValue getValueType(EVT);
757   SDValue getRegister(unsigned Reg, EVT VT);
758   SDValue getRegisterMask(const uint32_t *RegMask);
759   SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
760   SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
761                        MCSymbol *Label);
762   SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0,
763                           bool isTarget = false, unsigned TargetFlags = 0);
764   SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
765                                 int64_t Offset = 0, unsigned TargetFlags = 0) {
766     return getBlockAddress(BA, VT, Offset, true, TargetFlags);
767   }
768 
769   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
770                        SDValue N) {
771     return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
772                    getRegister(Reg, N.getValueType()), N);
773   }
774 
775   // This version of the getCopyToReg method takes an extra operand, which
776   // indicates that there is potentially an incoming glue value (if Glue is not
777   // null) and that there should be a glue result.
778   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
779                        SDValue Glue) {
780     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
781     SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
782     return getNode(ISD::CopyToReg, dl, VTs,
783                    ArrayRef(Ops, Glue.getNode() ? 4 : 3));
784   }
785 
786   // Similar to last getCopyToReg() except parameter Reg is a SDValue
787   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
788                        SDValue Glue) {
789     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
790     SDValue Ops[] = { Chain, Reg, N, Glue };
791     return getNode(ISD::CopyToReg, dl, VTs,
792                    ArrayRef(Ops, Glue.getNode() ? 4 : 3));
793   }
794 
795   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
796     SDVTList VTs = getVTList(VT, MVT::Other);
797     SDValue Ops[] = { Chain, getRegister(Reg, VT) };
798     return getNode(ISD::CopyFromReg, dl, VTs, Ops);
799   }
800 
801   // This version of the getCopyFromReg method takes an extra operand, which
802   // indicates that there is potentially an incoming glue value (if Glue is not
803   // null) and that there should be a glue result.
804   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
805                          SDValue Glue) {
806     SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
807     SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
808     return getNode(ISD::CopyFromReg, dl, VTs,
809                    ArrayRef(Ops, Glue.getNode() ? 3 : 2));
810   }
811 
812   SDValue getCondCode(ISD::CondCode Cond);
813 
814   /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
815   /// which must be a vector type, must match the number of mask elements
816   /// NumElts. An integer mask element equal to -1 is treated as undefined.
817   SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
818                            ArrayRef<int> Mask);
819 
820   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
821   /// which must be a vector type, must match the number of operands in Ops.
822   /// The operands must have the same type as (or, for integers, a type wider
823   /// than) VT's element type.
824   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
825     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
826     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
827   }
828 
829   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
830   /// which must be a vector type, must match the number of operands in Ops.
831   /// The operands must have the same type as (or, for integers, a type wider
832   /// than) VT's element type.
833   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
834     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
835     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
836   }
837 
838   /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
839   /// elements. VT must be a vector type. Op's type must be the same as (or,
840   /// for integers, a type wider than) VT's element type.
841   SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
842     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
843     if (Op.getOpcode() == ISD::UNDEF) {
844       assert((VT.getVectorElementType() == Op.getValueType() ||
845               (VT.isInteger() &&
846                VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
847              "A splatted value must have a width equal or (for integers) "
848              "greater than the vector element type!");
849       return getNode(ISD::UNDEF, SDLoc(), VT);
850     }
851 
852     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
853     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
854   }
855 
856   // Return a splat ISD::SPLAT_VECTOR node, consisting of Op splatted to all
857   // elements.
858   SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op) {
859     if (Op.getOpcode() == ISD::UNDEF) {
860       assert((VT.getVectorElementType() == Op.getValueType() ||
861               (VT.isInteger() &&
862                VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
863              "A splatted value must have a width equal or (for integers) "
864              "greater than the vector element type!");
865       return getNode(ISD::UNDEF, SDLoc(), VT);
866     }
867     return getNode(ISD::SPLAT_VECTOR, DL, VT, Op);
868   }
869 
870   /// Returns a node representing a splat of one value into all lanes
871   /// of the provided vector type.  This is a utility which returns
872   /// either a BUILD_VECTOR or SPLAT_VECTOR depending on the
873   /// scalability of the desired vector type.
874   SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op) {
875     assert(VT.isVector() && "Can't splat to non-vector type");
876     return VT.isScalableVector() ?
877       getSplatVector(VT, DL, Op) : getSplatBuildVector(VT, DL, Op);
878   }
879 
880   /// Returns a vector of type ResVT whose elements contain the linear sequence
881   ///   <0, Step, Step * 2, Step * 3, ...>
882   SDValue getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal);
883 
884   /// Returns a vector of type ResVT whose elements contain the linear sequence
885   ///   <0, 1, 2, 3, ...>
886   SDValue getStepVector(const SDLoc &DL, EVT ResVT);
887 
888   /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
889   /// the shuffle node in input but with swapped operands.
890   ///
891   /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
892   SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
893 
894   /// Convert Op, which must be of float type, to the
895   /// float type VT, by either extending or rounding (by truncation).
896   SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
897 
898   /// Convert Op, which must be a STRICT operation of float type, to the
899   /// float type VT, by either extending or rounding (by truncation).
900   std::pair<SDValue, SDValue>
901   getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT);
902 
903   /// Convert *_EXTEND_VECTOR_INREG to *_EXTEND opcode.
904   static unsigned getOpcode_EXTEND(unsigned Opcode) {
905     switch (Opcode) {
906     case ISD::ANY_EXTEND:
907     case ISD::ANY_EXTEND_VECTOR_INREG:
908       return ISD::ANY_EXTEND;
909     case ISD::ZERO_EXTEND:
910     case ISD::ZERO_EXTEND_VECTOR_INREG:
911       return ISD::ZERO_EXTEND;
912     case ISD::SIGN_EXTEND:
913     case ISD::SIGN_EXTEND_VECTOR_INREG:
914       return ISD::SIGN_EXTEND;
915     }
916     llvm_unreachable("Unknown opcode");
917   }
918 
919   /// Convert *_EXTEND to *_EXTEND_VECTOR_INREG opcode.
920   static unsigned getOpcode_EXTEND_VECTOR_INREG(unsigned Opcode) {
921     switch (Opcode) {
922     case ISD::ANY_EXTEND:
923     case ISD::ANY_EXTEND_VECTOR_INREG:
924       return ISD::ANY_EXTEND_VECTOR_INREG;
925     case ISD::ZERO_EXTEND:
926     case ISD::ZERO_EXTEND_VECTOR_INREG:
927       return ISD::ZERO_EXTEND_VECTOR_INREG;
928     case ISD::SIGN_EXTEND:
929     case ISD::SIGN_EXTEND_VECTOR_INREG:
930       return ISD::SIGN_EXTEND_VECTOR_INREG;
931     }
932     llvm_unreachable("Unknown opcode");
933   }
934 
935   /// Convert Op, which must be of integer type, to the
936   /// integer type VT, by either any-extending or truncating it.
937   SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
938 
939   /// Convert Op, which must be of integer type, to the
940   /// integer type VT, by either sign-extending or truncating it.
941   SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
942 
943   /// Convert Op, which must be of integer type, to the
944   /// integer type VT, by either zero-extending or truncating it.
945   SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
946 
947   /// Return the expression required to zero extend the Op
948   /// value assuming it was the smaller SrcTy value.
949   SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
950 
951   /// Convert Op, which must be of integer type, to the integer type VT, by
952   /// either truncating it or performing either zero or sign extension as
953   /// appropriate extension for the pointer's semantics.
954   SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
955 
956   /// Return the expression required to extend the Op as a pointer value
957   /// assuming it was the smaller SrcTy value. This may be either a zero extend
958   /// or a sign extend.
959   SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
960 
961   /// Convert Op, which must be of integer type, to the integer type VT,
962   /// by using an extension appropriate for the target's
963   /// BooleanContent for type OpVT or truncating it.
964   SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
965 
966   /// Create negative operation as (SUB 0, Val).
967   SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT);
968 
969   /// Create a bitwise NOT operation as (XOR Val, -1).
970   SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
971 
972   /// Create a logical NOT operation as (XOR Val, BooleanOne).
973   SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
974 
975   /// Create a vector-predicated logical NOT operation as (VP_XOR Val,
976   /// BooleanOne, Mask, EVL).
977   SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask,
978                           SDValue EVL, EVT VT);
979 
980   /// Convert a vector-predicated Op, which must be an integer vector, to the
981   /// vector-type VT, by performing either vector-predicated zext or truncating
982   /// it. The Op will be returned as-is if Op and VT are vectors containing
983   /// integer with same width.
984   SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask,
985                            SDValue EVL);
986 
987   /// Convert a vector-predicated Op, which must be of integer type, to the
988   /// vector-type integer type VT, by either truncating it or performing either
989   /// vector-predicated zero or sign extension as appropriate extension for the
990   /// pointer's semantics. This function just redirects to getVPZExtOrTrunc
991   /// right now.
992   SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask,
993                              SDValue EVL);
994 
995   /// Returns sum of the base pointer and offset.
996   /// Unlike getObjectPtrOffset this does not set NoUnsignedWrap by default.
997   SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL,
998                                const SDNodeFlags Flags = SDNodeFlags());
999   SDValue getMemBasePlusOffset(SDValue Base, SDValue Offset, const SDLoc &DL,
1000                                const SDNodeFlags Flags = SDNodeFlags());
1001 
1002   /// Create an add instruction with appropriate flags when used for
1003   /// addressing some offset of an object. i.e. if a load is split into multiple
1004   /// components, create an add nuw from the base pointer to the offset.
1005   SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset) {
1006     SDNodeFlags Flags;
1007     Flags.setNoUnsignedWrap(true);
1008     return getMemBasePlusOffset(Ptr, Offset, SL, Flags);
1009   }
1010 
1011   SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, SDValue Offset) {
1012     // The object itself can't wrap around the address space, so it shouldn't be
1013     // possible for the adds of the offsets to the split parts to overflow.
1014     SDNodeFlags Flags;
1015     Flags.setNoUnsignedWrap(true);
1016     return getMemBasePlusOffset(Ptr, Offset, SL, Flags);
1017   }
1018 
1019   /// Return a new CALLSEQ_START node, that starts new call frame, in which
1020   /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
1021   /// OutSize specifies part of the frame set up prior to the sequence.
1022   SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
1023                            const SDLoc &DL) {
1024     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
1025     SDValue Ops[] = { Chain,
1026                       getIntPtrConstant(InSize, DL, true),
1027                       getIntPtrConstant(OutSize, DL, true) };
1028     return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
1029   }
1030 
1031   /// Return a new CALLSEQ_END node, which always must have a
1032   /// glue result (to ensure it's not CSE'd).
1033   /// CALLSEQ_END does not have a useful SDLoc.
1034   SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
1035                          SDValue InGlue, const SDLoc &DL) {
1036     SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
1037     SmallVector<SDValue, 4> Ops;
1038     Ops.push_back(Chain);
1039     Ops.push_back(Op1);
1040     Ops.push_back(Op2);
1041     if (InGlue.getNode())
1042       Ops.push_back(InGlue);
1043     return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
1044   }
1045 
1046   SDValue getCALLSEQ_END(SDValue Chain, uint64_t Size1, uint64_t Size2,
1047                          SDValue Glue, const SDLoc &DL) {
1048     return getCALLSEQ_END(
1049         Chain, getIntPtrConstant(Size1, DL, /*isTarget=*/true),
1050         getIntPtrConstant(Size2, DL, /*isTarget=*/true), Glue, DL);
1051   }
1052 
1053   /// Return true if the result of this operation is always undefined.
1054   bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
1055 
1056   /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
1057   SDValue getUNDEF(EVT VT) {
1058     return getNode(ISD::UNDEF, SDLoc(), VT);
1059   }
1060 
1061   /// Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
1062   SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm) {
1063     assert(MulImm.getMinSignedBits() <= VT.getSizeInBits() &&
1064            "Immediate does not fit VT");
1065     return getNode(ISD::VSCALE, DL, VT,
1066                    getConstant(MulImm.sextOrTrunc(VT.getSizeInBits()), DL, VT));
1067   }
1068 
1069   /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
1070   SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
1071     return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
1072   }
1073 
1074   /// Gets or creates the specified node.
1075   ///
1076   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1077                   ArrayRef<SDUse> Ops);
1078   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1079                   ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
1080   SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
1081                   ArrayRef<SDValue> Ops);
1082   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1083                   ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
1084 
1085   // Use flags from current flag inserter.
1086   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1087                   ArrayRef<SDValue> Ops);
1088   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1089                   ArrayRef<SDValue> Ops);
1090   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand);
1091   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1092                   SDValue N2);
1093   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1094                   SDValue N2, SDValue N3);
1095 
1096   // Specialize based on number of operands.
1097   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
1098   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
1099                   const SDNodeFlags Flags);
1100   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1101                   SDValue N2, const SDNodeFlags Flags);
1102   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1103                   SDValue N2, SDValue N3, const SDNodeFlags Flags);
1104   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1105                   SDValue N2, SDValue N3, SDValue N4);
1106   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1107                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
1108 
1109   // Specialize again based on number of operands for nodes with a VTList
1110   // rather than a single VT.
1111   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
1112   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
1113   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
1114                   SDValue N2);
1115   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
1116                   SDValue N2, SDValue N3);
1117   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
1118                   SDValue N2, SDValue N3, SDValue N4);
1119   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
1120                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
1121 
1122   /// Compute a TokenFactor to force all the incoming stack arguments to be
1123   /// loaded from the stack. This is used in tail call lowering to protect
1124   /// stack arguments from being clobbered.
1125   SDValue getStackArgumentTokenFactor(SDValue Chain);
1126 
1127   SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
1128                     SDValue Size, Align Alignment, bool isVol,
1129                     bool AlwaysInline, bool isTailCall,
1130                     MachinePointerInfo DstPtrInfo,
1131                     MachinePointerInfo SrcPtrInfo,
1132                     const AAMDNodes &AAInfo = AAMDNodes(),
1133                     AAResults *AA = nullptr);
1134 
1135   SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
1136                      SDValue Size, Align Alignment, bool isVol, bool isTailCall,
1137                      MachinePointerInfo DstPtrInfo,
1138                      MachinePointerInfo SrcPtrInfo,
1139                      const AAMDNodes &AAInfo = AAMDNodes(),
1140                      AAResults *AA = nullptr);
1141 
1142   SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
1143                     SDValue Size, Align Alignment, bool isVol,
1144                     bool AlwaysInline, bool isTailCall,
1145                     MachinePointerInfo DstPtrInfo,
1146                     const AAMDNodes &AAInfo = AAMDNodes());
1147 
1148   SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
1149                           SDValue Src, SDValue Size, Type *SizeTy,
1150                           unsigned ElemSz, bool isTailCall,
1151                           MachinePointerInfo DstPtrInfo,
1152                           MachinePointerInfo SrcPtrInfo);
1153 
1154   SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
1155                            SDValue Src, SDValue Size, Type *SizeTy,
1156                            unsigned ElemSz, bool isTailCall,
1157                            MachinePointerInfo DstPtrInfo,
1158                            MachinePointerInfo SrcPtrInfo);
1159 
1160   SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
1161                           SDValue Value, SDValue Size, Type *SizeTy,
1162                           unsigned ElemSz, bool isTailCall,
1163                           MachinePointerInfo DstPtrInfo);
1164 
1165   /// Helper function to make it easier to build SetCC's if you just have an
1166   /// ISD::CondCode instead of an SDValue.
1167   SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
1168                    ISD::CondCode Cond, SDValue Chain = SDValue(),
1169                    bool IsSignaling = false) {
1170     assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
1171            "Vector/scalar operand type mismatch for setcc");
1172     assert(LHS.getValueType().isVector() == VT.isVector() &&
1173            "Vector/scalar result type mismatch for setcc");
1174     assert(Cond != ISD::SETCC_INVALID &&
1175            "Cannot create a setCC of an invalid node.");
1176     if (Chain)
1177       return getNode(IsSignaling ? ISD::STRICT_FSETCCS : ISD::STRICT_FSETCC, DL,
1178                      {VT, MVT::Other}, {Chain, LHS, RHS, getCondCode(Cond)});
1179     return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
1180   }
1181 
1182   /// Helper function to make it easier to build VP_SETCCs if you just have an
1183   /// ISD::CondCode instead of an SDValue.
1184   SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
1185                      ISD::CondCode Cond, SDValue Mask, SDValue EVL) {
1186     assert(LHS.getValueType().isVector() && RHS.getValueType().isVector() &&
1187            "Cannot compare scalars");
1188     assert(Cond != ISD::SETCC_INVALID &&
1189            "Cannot create a setCC of an invalid node.");
1190     return getNode(ISD::VP_SETCC, DL, VT, LHS, RHS, getCondCode(Cond), Mask,
1191                    EVL);
1192   }
1193 
1194   /// Helper function to make it easier to build Select's if you just have
1195   /// operands and don't want to check for vector.
1196   SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
1197                     SDValue RHS) {
1198     assert(LHS.getValueType() == VT && RHS.getValueType() == VT &&
1199            "Cannot use select on differing types");
1200     auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
1201     return getNode(Opcode, DL, VT, Cond, LHS, RHS);
1202   }
1203 
1204   /// Helper function to make it easier to build SelectCC's if you just have an
1205   /// ISD::CondCode instead of an SDValue.
1206   SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
1207                       SDValue False, ISD::CondCode Cond) {
1208     return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
1209                    False, getCondCode(Cond));
1210   }
1211 
1212   /// Try to simplify a select/vselect into 1 of its operands or a constant.
1213   SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
1214 
1215   /// Try to simplify a shift into 1 of its operands or a constant.
1216   SDValue simplifyShift(SDValue X, SDValue Y);
1217 
1218   /// Try to simplify a floating-point binary operation into 1 of its operands
1219   /// or a constant.
1220   SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
1221                           SDNodeFlags Flags);
1222 
1223   /// VAArg produces a result and token chain, and takes a pointer
1224   /// and a source value as input.
1225   SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1226                    SDValue SV, unsigned Align);
1227 
1228   /// Gets a node for an atomic cmpxchg op. There are two
1229   /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1230   /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1231   /// a success flag (initially i1), and a chain.
1232   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1233                            SDVTList VTs, SDValue Chain, SDValue Ptr,
1234                            SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1235 
1236   /// Gets a node for an atomic op, produces result (if relevant)
1237   /// and chain and takes 2 operands.
1238   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1239                     SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1240 
1241   /// Gets a node for an atomic op, produces result and chain and
1242   /// takes 1 operand.
1243   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1244                     SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1245 
1246   /// Gets a node for an atomic op, produces result and chain and takes N
1247   /// operands.
1248   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1249                     SDVTList VTList, ArrayRef<SDValue> Ops,
1250                     MachineMemOperand *MMO);
1251 
1252   /// Creates a MemIntrinsicNode that may produce a
1253   /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1254   /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1255   /// less than FIRST_TARGET_MEMORY_OPCODE.
1256   SDValue getMemIntrinsicNode(
1257       unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
1258       EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
1259       MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad |
1260                                        MachineMemOperand::MOStore,
1261       uint64_t Size = 0, const AAMDNodes &AAInfo = AAMDNodes());
1262 
1263   inline SDValue getMemIntrinsicNode(
1264       unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
1265       EVT MemVT, MachinePointerInfo PtrInfo,
1266       MaybeAlign Alignment = std::nullopt,
1267       MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad |
1268                                        MachineMemOperand::MOStore,
1269       uint64_t Size = 0, const AAMDNodes &AAInfo = AAMDNodes()) {
1270     // Ensure that codegen never sees alignment 0
1271     return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, PtrInfo,
1272                                Alignment.value_or(getEVTAlign(MemVT)), Flags,
1273                                Size, AAInfo);
1274   }
1275 
1276   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1277                               ArrayRef<SDValue> Ops, EVT MemVT,
1278                               MachineMemOperand *MMO);
1279 
1280   /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1281   /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1282   /// offsets `Offset` and `Offset + Size`.
1283   SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
1284                           int FrameIndex, int64_t Size, int64_t Offset = -1);
1285 
1286   /// Creates a PseudoProbeSDNode with function GUID `Guid` and
1287   /// the index of the block `Index` it is probing, as well as the attributes
1288   /// `attr` of the probe.
1289   SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid,
1290                              uint64_t Index, uint32_t Attr);
1291 
1292   /// Create a MERGE_VALUES node from the given operands.
1293   SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1294 
1295   /// Loads are not normal binary operators: their result type is not
1296   /// determined by their operands, and they produce a value AND a token chain.
1297   ///
1298   /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1299   /// you want.  The MOStore flag must not be set.
1300   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1301                   MachinePointerInfo PtrInfo,
1302                   MaybeAlign Alignment = MaybeAlign(),
1303                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1304                   const AAMDNodes &AAInfo = AAMDNodes(),
1305                   const MDNode *Ranges = nullptr);
1306   /// FIXME: Remove once transition to Align is over.
1307   LLVM_DEPRECATED("Use the getLoad function that takes a MaybeAlign instead",
1308                   "")
1309   inline SDValue
1310   getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1311           MachinePointerInfo PtrInfo, unsigned Alignment,
1312           MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1313           const AAMDNodes &AAInfo = AAMDNodes(),
1314           const MDNode *Ranges = nullptr) {
1315     return getLoad(VT, dl, Chain, Ptr, PtrInfo, MaybeAlign(Alignment), MMOFlags,
1316                    AAInfo, Ranges);
1317   }
1318   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1319                   MachineMemOperand *MMO);
1320   SDValue
1321   getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1322              SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1323              MaybeAlign Alignment = MaybeAlign(),
1324              MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1325              const AAMDNodes &AAInfo = AAMDNodes());
1326   SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1327                      SDValue Chain, SDValue Ptr, EVT MemVT,
1328                      MachineMemOperand *MMO);
1329   SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1330                          SDValue Offset, ISD::MemIndexedMode AM);
1331   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1332                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1333                   MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
1334                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1335                   const AAMDNodes &AAInfo = AAMDNodes(),
1336                   const MDNode *Ranges = nullptr);
1337   inline SDValue getLoad(
1338       ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
1339       SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo,
1340       EVT MemVT, MaybeAlign Alignment = MaybeAlign(),
1341       MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1342       const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr) {
1343     // Ensures that codegen never sees a None Alignment.
1344     return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, PtrInfo, MemVT,
1345                    Alignment.value_or(getEVTAlign(MemVT)), MMOFlags, AAInfo,
1346                    Ranges);
1347   }
1348   /// FIXME: Remove once transition to Align is over.
1349   LLVM_DEPRECATED("Use the getLoad function that takes a MaybeAlign instead",
1350                   "")
1351   inline SDValue
1352   getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1353           const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1354           MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment,
1355           MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1356           const AAMDNodes &AAInfo = AAMDNodes(),
1357           const MDNode *Ranges = nullptr) {
1358     return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, PtrInfo, MemVT,
1359                    MaybeAlign(Alignment), MMOFlags, AAInfo, Ranges);
1360   }
1361   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1362                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1363                   EVT MemVT, MachineMemOperand *MMO);
1364 
1365   /// Helper function to build ISD::STORE nodes.
1366   ///
1367   /// This function will set the MOStore flag on MMOFlags, but you can set it if
1368   /// you want.  The MOLoad and MOInvariant flags must not be set.
1369 
1370   SDValue
1371   getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1372            MachinePointerInfo PtrInfo, Align Alignment,
1373            MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1374            const AAMDNodes &AAInfo = AAMDNodes());
1375   inline SDValue
1376   getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1377            MachinePointerInfo PtrInfo, MaybeAlign Alignment = MaybeAlign(),
1378            MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1379            const AAMDNodes &AAInfo = AAMDNodes()) {
1380     return getStore(Chain, dl, Val, Ptr, PtrInfo,
1381                     Alignment.value_or(getEVTAlign(Val.getValueType())),
1382                     MMOFlags, AAInfo);
1383   }
1384   /// FIXME: Remove once transition to Align is over.
1385   LLVM_DEPRECATED("Use the version that takes a MaybeAlign instead", "")
1386   inline SDValue
1387   getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1388            MachinePointerInfo PtrInfo, unsigned Alignment,
1389            MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1390            const AAMDNodes &AAInfo = AAMDNodes()) {
1391     return getStore(Chain, dl, Val, Ptr, PtrInfo, MaybeAlign(Alignment),
1392                     MMOFlags, AAInfo);
1393   }
1394   SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1395                    MachineMemOperand *MMO);
1396   SDValue
1397   getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1398                 MachinePointerInfo PtrInfo, EVT SVT, Align Alignment,
1399                 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1400                 const AAMDNodes &AAInfo = AAMDNodes());
1401   inline SDValue
1402   getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1403                 MachinePointerInfo PtrInfo, EVT SVT,
1404                 MaybeAlign Alignment = MaybeAlign(),
1405                 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1406                 const AAMDNodes &AAInfo = AAMDNodes()) {
1407     return getTruncStore(Chain, dl, Val, Ptr, PtrInfo, SVT,
1408                          Alignment.value_or(getEVTAlign(SVT)), MMOFlags,
1409                          AAInfo);
1410   }
1411   /// FIXME: Remove once transition to Align is over.
1412   LLVM_DEPRECATED("Use the version that takes a MaybeAlign instead", "")
1413   inline SDValue
1414   getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1415                 MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment,
1416                 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1417                 const AAMDNodes &AAInfo = AAMDNodes()) {
1418     return getTruncStore(Chain, dl, Val, Ptr, PtrInfo, SVT,
1419                          MaybeAlign(Alignment), MMOFlags, AAInfo);
1420   }
1421   SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1422                         SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1423   SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1424                           SDValue Offset, ISD::MemIndexedMode AM);
1425 
1426   SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1427                     const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1428                     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo,
1429                     EVT MemVT, Align Alignment,
1430                     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
1431                     const MDNode *Ranges = nullptr, bool IsExpanding = false);
1432   inline SDValue
1433   getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1434             const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1435             SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1436             MaybeAlign Alignment = MaybeAlign(),
1437             MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1438             const AAMDNodes &AAInfo = AAMDNodes(),
1439             const MDNode *Ranges = nullptr, bool IsExpanding = false) {
1440     // Ensures that codegen never sees a None Alignment.
1441     return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL,
1442                      PtrInfo, MemVT, Alignment.value_or(getEVTAlign(MemVT)),
1443                      MMOFlags, AAInfo, Ranges, IsExpanding);
1444   }
1445   SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1446                     const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1447                     SDValue Mask, SDValue EVL, EVT MemVT,
1448                     MachineMemOperand *MMO, bool IsExpanding = false);
1449   SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1450                     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo,
1451                     MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags,
1452                     const AAMDNodes &AAInfo, const MDNode *Ranges = nullptr,
1453                     bool IsExpanding = false);
1454   SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1455                     SDValue Mask, SDValue EVL, MachineMemOperand *MMO,
1456                     bool IsExpanding = false);
1457   SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1458                        SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL,
1459                        MachinePointerInfo PtrInfo, EVT MemVT,
1460                        MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags,
1461                        const AAMDNodes &AAInfo, bool IsExpanding = false);
1462   SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1463                        SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL,
1464                        EVT MemVT, MachineMemOperand *MMO,
1465                        bool IsExpanding = false);
1466   SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1467                            SDValue Offset, ISD::MemIndexedMode AM);
1468   SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1469                      SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT,
1470                      MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1471                      bool IsTruncating = false, bool IsCompressing = false);
1472   SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
1473                           SDValue Ptr, SDValue Mask, SDValue EVL,
1474                           MachinePointerInfo PtrInfo, EVT SVT, Align Alignment,
1475                           MachineMemOperand::Flags MMOFlags,
1476                           const AAMDNodes &AAInfo, bool IsCompressing = false);
1477   SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
1478                           SDValue Ptr, SDValue Mask, SDValue EVL, EVT SVT,
1479                           MachineMemOperand *MMO, bool IsCompressing = false);
1480   SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1481                             SDValue Offset, ISD::MemIndexedMode AM);
1482 
1483   SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
1484                            EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr,
1485                            SDValue Offset, SDValue Stride, SDValue Mask,
1486                            SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1487                            Align Alignment, MachineMemOperand::Flags MMOFlags,
1488                            const AAMDNodes &AAInfo,
1489                            const MDNode *Ranges = nullptr,
1490                            bool IsExpanding = false);
1491   inline SDValue getStridedLoadVP(
1492       ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
1493       SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
1494       SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1495       MaybeAlign Alignment = MaybeAlign(),
1496       MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1497       const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr,
1498       bool IsExpanding = false) {
1499     // Ensures that codegen never sees a None Alignment.
1500     return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride,
1501                             Mask, EVL, PtrInfo, MemVT,
1502                             Alignment.value_or(getEVTAlign(MemVT)), MMOFlags,
1503                             AAInfo, Ranges, IsExpanding);
1504   }
1505   SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
1506                            EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr,
1507                            SDValue Offset, SDValue Stride, SDValue Mask,
1508                            SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
1509                            bool IsExpanding = false);
1510   SDValue getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr,
1511                            SDValue Stride, SDValue Mask, SDValue EVL,
1512                            MachinePointerInfo PtrInfo, MaybeAlign Alignment,
1513                            MachineMemOperand::Flags MMOFlags,
1514                            const AAMDNodes &AAInfo,
1515                            const MDNode *Ranges = nullptr,
1516                            bool IsExpanding = false);
1517   SDValue getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr,
1518                            SDValue Stride, SDValue Mask, SDValue EVL,
1519                            MachineMemOperand *MMO, bool IsExpanding = false);
1520   SDValue
1521   getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT,
1522                       SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask,
1523                       SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1524                       MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags,
1525                       const AAMDNodes &AAInfo, bool IsExpanding = false);
1526   SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT,
1527                               SDValue Chain, SDValue Ptr, SDValue Stride,
1528                               SDValue Mask, SDValue EVL, EVT MemVT,
1529                               MachineMemOperand *MMO, bool IsExpanding = false);
1530   SDValue getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
1531                                   SDValue Base, SDValue Offset,
1532                                   ISD::MemIndexedMode AM);
1533   SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val,
1534                             SDValue Ptr, SDValue Offset, SDValue Stride,
1535                             SDValue Mask, SDValue EVL, EVT MemVT,
1536                             MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1537                             bool IsTruncating = false,
1538                             bool IsCompressing = false);
1539   SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val,
1540                                  SDValue Ptr, SDValue Stride, SDValue Mask,
1541                                  SDValue EVL, MachinePointerInfo PtrInfo,
1542                                  EVT SVT, Align Alignment,
1543                                  MachineMemOperand::Flags MMOFlags,
1544                                  const AAMDNodes &AAInfo,
1545                                  bool IsCompressing = false);
1546   SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val,
1547                                  SDValue Ptr, SDValue Stride, SDValue Mask,
1548                                  SDValue EVL, EVT SVT, MachineMemOperand *MMO,
1549                                  bool IsCompressing = false);
1550   SDValue getIndexedStridedStoreVP(SDValue OrigStore, const SDLoc &DL,
1551                                    SDValue Base, SDValue Offset,
1552                                    ISD::MemIndexedMode AM);
1553 
1554   SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
1555                       ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1556                       ISD::MemIndexType IndexType);
1557   SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
1558                        ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1559                        ISD::MemIndexType IndexType);
1560 
1561   SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base,
1562                         SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT,
1563                         MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1564                         ISD::LoadExtType, bool IsExpanding = false);
1565   SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1566                                SDValue Offset, ISD::MemIndexedMode AM);
1567   SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1568                          SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT,
1569                          MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1570                          bool IsTruncating = false, bool IsCompressing = false);
1571   SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
1572                                 SDValue Base, SDValue Offset,
1573                                 ISD::MemIndexedMode AM);
1574   SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
1575                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1576                           ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy);
1577   SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
1578                            ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1579                            ISD::MemIndexType IndexType,
1580                            bool IsTruncating = false);
1581 
1582   /// Construct a node to track a Value* through the backend.
1583   SDValue getSrcValue(const Value *v);
1584 
1585   /// Return an MDNodeSDNode which holds an MDNode.
1586   SDValue getMDNode(const MDNode *MD);
1587 
1588   /// Return a bitcast using the SDLoc of the value operand, and casting to the
1589   /// provided type. Use getNode to set a custom SDLoc.
1590   SDValue getBitcast(EVT VT, SDValue V);
1591 
1592   /// Return an AddrSpaceCastSDNode.
1593   SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1594                            unsigned DestAS);
1595 
1596   /// Return a freeze using the SDLoc of the value operand.
1597   SDValue getFreeze(SDValue V);
1598 
1599   /// Return an AssertAlignSDNode.
1600   SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A);
1601 
1602   /// Swap N1 and N2 if Opcode is a commutative binary opcode
1603   /// and the canonical form expects the opposite order.
1604   void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
1605                                     SDValue &N2) const;
1606 
1607   /// Return the specified value casted to
1608   /// the target's desired shift amount type.
1609   SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1610 
1611   /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1612   SDValue expandVAArg(SDNode *Node);
1613 
1614   /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1615   SDValue expandVACopy(SDNode *Node);
1616 
1617   /// Returs an GlobalAddress of the function from the current module with
1618   /// name matching the given ExternalSymbol. Additionally can provide the
1619   /// matched function.
1620   /// Panics the function doesn't exists.
1621   SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1622                                          Function **TargetFunction = nullptr);
1623 
1624   /// *Mutate* the specified node in-place to have the
1625   /// specified operands.  If the resultant node already exists in the DAG,
1626   /// this does not modify the specified node, instead it returns the node that
1627   /// already exists.  If the resultant node does not exist in the DAG, the
1628   /// input node is returned.  As a degenerate case, if you specify the same
1629   /// input operands as the node already has, the input node is returned.
1630   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1631   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1632   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1633                                SDValue Op3);
1634   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1635                                SDValue Op3, SDValue Op4);
1636   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1637                                SDValue Op3, SDValue Op4, SDValue Op5);
1638   SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1639 
1640   /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1641   /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1642   /// the final TokenFactor has less than 64k operands.
1643   SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1644 
1645   /// *Mutate* the specified machine node's memory references to the provided
1646   /// list.
1647   void setNodeMemRefs(MachineSDNode *N,
1648                       ArrayRef<MachineMemOperand *> NewMemRefs);
1649 
1650   // Calculate divergence of node \p N based on its operands.
1651   bool calculateDivergence(SDNode *N);
1652 
1653   // Propagates the change in divergence to users
1654   void updateDivergence(SDNode * N);
1655 
1656   /// These are used for target selectors to *mutate* the
1657   /// specified node to have the specified return type, Target opcode, and
1658   /// operands.  Note that target opcodes are stored as
1659   /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
1660   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1661   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1662   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1663                        SDValue Op1, SDValue Op2);
1664   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1665                        SDValue Op1, SDValue Op2, SDValue Op3);
1666   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1667                        ArrayRef<SDValue> Ops);
1668   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1669   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1670                        EVT VT2, ArrayRef<SDValue> Ops);
1671   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1672                        EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1673   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1674                        EVT VT2, SDValue Op1, SDValue Op2);
1675   SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1676                        ArrayRef<SDValue> Ops);
1677 
1678   /// This *mutates* the specified node to have the specified
1679   /// return type, opcode, and operands.
1680   SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1681                       ArrayRef<SDValue> Ops);
1682 
1683   /// Mutate the specified strict FP node to its non-strict equivalent,
1684   /// unlinking the node from its chain and dropping the metadata arguments.
1685   /// The node must be a strict FP node.
1686   SDNode *mutateStrictFPToFP(SDNode *Node);
1687 
1688   /// These are used for target selectors to create a new node
1689   /// with specified return type(s), MachineInstr opcode, and operands.
1690   ///
1691   /// Note that getMachineNode returns the resultant node.  If there is already
1692   /// a node of the specified opcode and operands, it returns that node instead
1693   /// of the current one.
1694   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1695   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1696                                 SDValue Op1);
1697   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1698                                 SDValue Op1, SDValue Op2);
1699   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1700                                 SDValue Op1, SDValue Op2, SDValue Op3);
1701   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1702                                 ArrayRef<SDValue> Ops);
1703   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1704                                 EVT VT2, SDValue Op1, SDValue Op2);
1705   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1706                                 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1707   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1708                                 EVT VT2, ArrayRef<SDValue> Ops);
1709   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1710                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1711   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1712                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1713                                 SDValue Op3);
1714   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1715                                 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1716   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1717                                 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1718   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1719                                 ArrayRef<SDValue> Ops);
1720 
1721   /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1722   SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1723                                  SDValue Operand);
1724 
1725   /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1726   SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1727                                 SDValue Operand, SDValue Subreg);
1728 
1729   /// Get the specified node if it's already available, or else return NULL.
1730   SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList,
1731                           ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
1732   SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList,
1733                           ArrayRef<SDValue> Ops);
1734 
1735   /// Check if a node exists without modifying its flags.
1736   bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops);
1737 
1738   /// Creates a SDDbgValue node.
1739   SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1740                           unsigned R, bool IsIndirect, const DebugLoc &DL,
1741                           unsigned O);
1742 
1743   /// Creates a constant SDDbgValue node.
1744   SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1745                                   const Value *C, const DebugLoc &DL,
1746                                   unsigned O);
1747 
1748   /// Creates a FrameIndex SDDbgValue node.
1749   SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1750                                     unsigned FI, bool IsIndirect,
1751                                     const DebugLoc &DL, unsigned O);
1752 
1753   /// Creates a FrameIndex SDDbgValue node.
1754   SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1755                                     unsigned FI,
1756                                     ArrayRef<SDNode *> Dependencies,
1757                                     bool IsIndirect, const DebugLoc &DL,
1758                                     unsigned O);
1759 
1760   /// Creates a VReg SDDbgValue node.
1761   SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1762                               unsigned VReg, bool IsIndirect,
1763                               const DebugLoc &DL, unsigned O);
1764 
1765   /// Creates a SDDbgValue node from a list of locations.
1766   SDDbgValue *getDbgValueList(DIVariable *Var, DIExpression *Expr,
1767                               ArrayRef<SDDbgOperand> Locs,
1768                               ArrayRef<SDNode *> Dependencies, bool IsIndirect,
1769                               const DebugLoc &DL, unsigned O, bool IsVariadic);
1770 
1771   /// Creates a SDDbgLabel node.
1772   SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1773 
1774   /// Transfer debug values from one node to another, while optionally
1775   /// generating fragment expressions for split-up values. If \p InvalidateDbg
1776   /// is set, debug values are invalidated after they are transferred.
1777   void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1778                          unsigned SizeInBits = 0, bool InvalidateDbg = true);
1779 
1780   /// Remove the specified node from the system. If any of its
1781   /// operands then becomes dead, remove them as well. Inform UpdateListener
1782   /// for each node deleted.
1783   void RemoveDeadNode(SDNode *N);
1784 
1785   /// This method deletes the unreachable nodes in the
1786   /// given list, and any nodes that become unreachable as a result.
1787   void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1788 
1789   /// Modify anything using 'From' to use 'To' instead.
1790   /// This can cause recursive merging of nodes in the DAG.  Use the first
1791   /// version if 'From' is known to have a single result, use the second
1792   /// if you have two nodes with identical results (or if 'To' has a superset
1793   /// of the results of 'From'), use the third otherwise.
1794   ///
1795   /// These methods all take an optional UpdateListener, which (if not null) is
1796   /// informed about nodes that are deleted and modified due to recursive
1797   /// changes in the dag.
1798   ///
1799   /// These functions only replace all existing uses. It's possible that as
1800   /// these replacements are being performed, CSE may cause the From node
1801   /// to be given new uses. These new uses of From are left in place, and
1802   /// not automatically transferred to To.
1803   ///
1804   void ReplaceAllUsesWith(SDValue From, SDValue To);
1805   void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1806   void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1807 
1808   /// Replace any uses of From with To, leaving
1809   /// uses of other values produced by From.getNode() alone.
1810   void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1811 
1812   /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1813   /// This correctly handles the case where
1814   /// there is an overlap between the From values and the To values.
1815   void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1816                                   unsigned Num);
1817 
1818   /// If an existing load has uses of its chain, create a token factor node with
1819   /// that chain and the new memory node's chain and update users of the old
1820   /// chain to the token factor. This ensures that the new memory node will have
1821   /// the same relative memory dependency position as the old load. Returns the
1822   /// new merged load chain.
1823   SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain);
1824 
1825   /// If an existing load has uses of its chain, create a token factor node with
1826   /// that chain and the new memory node's chain and update users of the old
1827   /// chain to the token factor. This ensures that the new memory node will have
1828   /// the same relative memory dependency position as the old load. Returns the
1829   /// new merged load chain.
1830   SDValue makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, SDValue NewMemOp);
1831 
1832   /// Topological-sort the AllNodes list and a
1833   /// assign a unique node id for each node in the DAG based on their
1834   /// topological order. Returns the number of nodes.
1835   unsigned AssignTopologicalOrder();
1836 
1837   /// Move node N in the AllNodes list to be immediately
1838   /// before the given iterator Position. This may be used to update the
1839   /// topological ordering when the list of nodes is modified.
1840   void RepositionNode(allnodes_iterator Position, SDNode *N) {
1841     AllNodes.insert(Position, AllNodes.remove(N));
1842   }
1843 
1844   /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1845   /// a vector type, the element semantics are returned.
1846   static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1847     switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1848     default: llvm_unreachable("Unknown FP format");
1849     case MVT::f16:     return APFloat::IEEEhalf();
1850     case MVT::bf16:    return APFloat::BFloat();
1851     case MVT::f32:     return APFloat::IEEEsingle();
1852     case MVT::f64:     return APFloat::IEEEdouble();
1853     case MVT::f80:     return APFloat::x87DoubleExtended();
1854     case MVT::f128:    return APFloat::IEEEquad();
1855     case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1856     }
1857   }
1858 
1859   /// Add a dbg_value SDNode. If SD is non-null that means the
1860   /// value is produced by SD.
1861   void AddDbgValue(SDDbgValue *DB, bool isParameter);
1862 
1863   /// Add a dbg_label SDNode.
1864   void AddDbgLabel(SDDbgLabel *DB);
1865 
1866   /// Get the debug values which reference the given SDNode.
1867   ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1868     return DbgInfo->getSDDbgValues(SD);
1869   }
1870 
1871 public:
1872   /// Return true if there are any SDDbgValue nodes associated
1873   /// with this SelectionDAG.
1874   bool hasDebugValues() const { return !DbgInfo->empty(); }
1875 
1876   SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1877   SDDbgInfo::DbgIterator DbgEnd() const  { return DbgInfo->DbgEnd(); }
1878 
1879   SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
1880     return DbgInfo->ByvalParmDbgBegin();
1881   }
1882   SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
1883     return DbgInfo->ByvalParmDbgEnd();
1884   }
1885 
1886   SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
1887     return DbgInfo->DbgLabelBegin();
1888   }
1889   SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
1890     return DbgInfo->DbgLabelEnd();
1891   }
1892 
1893   /// To be invoked on an SDNode that is slated to be erased. This
1894   /// function mirrors \c llvm::salvageDebugInfo.
1895   void salvageDebugInfo(SDNode &N);
1896 
1897   void dump() const;
1898 
1899   /// In most cases this function returns the ABI alignment for a given type,
1900   /// except for illegal vector types where the alignment exceeds that of the
1901   /// stack. In such cases we attempt to break the vector down to a legal type
1902   /// and return the ABI alignment for that instead.
1903   Align getReducedAlign(EVT VT, bool UseABI);
1904 
1905   /// Create a stack temporary based on the size in bytes and the alignment
1906   SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment);
1907 
1908   /// Create a stack temporary, suitable for holding the specified value type.
1909   /// If minAlign is specified, the slot size will have at least that alignment.
1910   SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1911 
1912   /// Create a stack temporary suitable for holding either of the specified
1913   /// value types.
1914   SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1915 
1916   SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1917                            const GlobalAddressSDNode *GA,
1918                            const SDNode *N2);
1919 
1920   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1921                                  ArrayRef<SDValue> Ops);
1922 
1923   /// Fold floating-point operations with 2 operands when both operands are
1924   /// constants and/or undefined.
1925   SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
1926                              SDValue N1, SDValue N2);
1927 
1928   /// Constant fold a setcc to true or false.
1929   SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1930                     const SDLoc &dl);
1931 
1932   /// Return true if the sign bit of Op is known to be zero.
1933   /// We use this predicate to simplify operations downstream.
1934   bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1935 
1936   /// Return true if 'Op & Mask' is known to be zero.  We
1937   /// use this predicate to simplify operations downstream.  Op and Mask are
1938   /// known to be the same type.
1939   bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1940                          unsigned Depth = 0) const;
1941 
1942   /// Return true if 'Op & Mask' is known to be zero in DemandedElts.  We
1943   /// use this predicate to simplify operations downstream.  Op and Mask are
1944   /// known to be the same type.
1945   bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1946                          const APInt &DemandedElts, unsigned Depth = 0) const;
1947 
1948   /// Return true if 'Op' is known to be zero in DemandedElts.  We
1949   /// use this predicate to simplify operations downstream.
1950   bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts,
1951                           unsigned Depth = 0) const;
1952 
1953   /// Return true if '(Op & Mask) == Mask'.
1954   /// Op and Mask are known to be the same type.
1955   bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
1956                             unsigned Depth = 0) const;
1957 
1958   /// For each demanded element of a vector, see if it is known to be zero.
1959   APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts,
1960                                        unsigned Depth = 0) const;
1961 
1962   /// Determine which bits of Op are known to be either zero or one and return
1963   /// them in Known. For vectors, the known bits are those that are shared by
1964   /// every vector element.
1965   /// Targets can implement the computeKnownBitsForTargetNode method in the
1966   /// TargetLowering class to allow target nodes to be understood.
1967   KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1968 
1969   /// Determine which bits of Op are known to be either zero or one and return
1970   /// them in Known. The DemandedElts argument allows us to only collect the
1971   /// known bits that are shared by the requested vector elements.
1972   /// Targets can implement the computeKnownBitsForTargetNode method in the
1973   /// TargetLowering class to allow target nodes to be understood.
1974   KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1975                              unsigned Depth = 0) const;
1976 
1977   /// Used to represent the possible overflow behavior of an operation.
1978   /// Never: the operation cannot overflow.
1979   /// Always: the operation will always overflow.
1980   /// Sometime: the operation may or may not overflow.
1981   enum OverflowKind {
1982     OFK_Never,
1983     OFK_Sometime,
1984     OFK_Always,
1985   };
1986 
1987   /// Determine if the result of the addition of 2 node can overflow.
1988   OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1989 
1990   /// Test if the given value is known to have exactly one bit set. This differs
1991   /// from computeKnownBits in that it doesn't necessarily determine which bit
1992   /// is set.
1993   bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1994 
1995   /// Return the number of times the sign bit of the register is replicated into
1996   /// the other bits. We know that at least 1 bit is always equal to the sign
1997   /// bit (itself), but other cases can give us information. For example,
1998   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1999   /// to each other, so we return 3. Targets can implement the
2000   /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
2001   /// target nodes to be understood.
2002   unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
2003 
2004   /// Return the number of times the sign bit of the register is replicated into
2005   /// the other bits. We know that at least 1 bit is always equal to the sign
2006   /// bit (itself), but other cases can give us information. For example,
2007   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
2008   /// to each other, so we return 3. The DemandedElts argument allows
2009   /// us to only collect the minimum sign bits of the requested vector elements.
2010   /// Targets can implement the ComputeNumSignBitsForTarget method in the
2011   /// TargetLowering class to allow target nodes to be understood.
2012   unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
2013                               unsigned Depth = 0) const;
2014 
2015   /// Get the upper bound on bit size for this Value \p Op as a signed integer.
2016   /// i.e.  x == sext(trunc(x to MaxSignedBits) to bitwidth(x)).
2017   /// Similar to the APInt::getSignificantBits function.
2018   /// Helper wrapper to ComputeNumSignBits.
2019   unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth = 0) const;
2020 
2021   /// Get the upper bound on bit size for this Value \p Op as a signed integer.
2022   /// i.e.  x == sext(trunc(x to MaxSignedBits) to bitwidth(x)).
2023   /// Similar to the APInt::getSignificantBits function.
2024   /// Helper wrapper to ComputeNumSignBits.
2025   unsigned ComputeMaxSignificantBits(SDValue Op, const APInt &DemandedElts,
2026                                      unsigned Depth = 0) const;
2027 
2028   /// Return true if this function can prove that \p Op is never poison
2029   /// and, if \p PoisonOnly is false, does not have undef bits.
2030   bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly = false,
2031                                         unsigned Depth = 0) const;
2032 
2033   /// Return true if this function can prove that \p Op is never poison
2034   /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
2035   /// argument limits the check to the requested vector elements.
2036   bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, const APInt &DemandedElts,
2037                                         bool PoisonOnly = false,
2038                                         unsigned Depth = 0) const;
2039 
2040   /// Return true if this function can prove that \p Op is never poison.
2041   bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth = 0) const {
2042     return isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly*/ true, Depth);
2043   }
2044 
2045   /// Return true if this function can prove that \p Op is never poison. The
2046   /// DemandedElts argument limits the check to the requested vector elements.
2047   bool isGuaranteedNotToBePoison(SDValue Op, const APInt &DemandedElts,
2048                                  unsigned Depth = 0) const {
2049     return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts,
2050                                             /*PoisonOnly*/ true, Depth);
2051   }
2052 
2053   /// Return true if Op can create undef or poison from non-undef & non-poison
2054   /// operands. The DemandedElts argument limits the check to the requested
2055   /// vector elements.
2056   ///
2057   /// \p ConsiderFlags controls whether poison producing flags on the
2058   /// instruction are considered.  This can be used to see if the instruction
2059   /// could still introduce undef or poison even without poison generating flags
2060   /// which might be on the instruction.  (i.e. could the result of
2061   /// Op->dropPoisonGeneratingFlags() still create poison or undef)
2062   bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts,
2063                               bool PoisonOnly = false,
2064                               bool ConsiderFlags = true,
2065                               unsigned Depth = 0) const;
2066 
2067   /// Return true if Op can create undef or poison from non-undef & non-poison
2068   /// operands.
2069   ///
2070   /// \p ConsiderFlags controls whether poison producing flags on the
2071   /// instruction are considered.  This can be used to see if the instruction
2072   /// could still introduce undef or poison even without poison generating flags
2073   /// which might be on the instruction.  (i.e. could the result of
2074   /// Op->dropPoisonGeneratingFlags() still create poison or undef)
2075   bool canCreateUndefOrPoison(SDValue Op, bool PoisonOnly = false,
2076                               bool ConsiderFlags = true,
2077                               unsigned Depth = 0) const;
2078 
2079   /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
2080   /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
2081   /// is guaranteed to have the same semantics as an ADD. This handles the
2082   /// equivalence:
2083   ///     X|Cst == X+Cst iff X&Cst = 0.
2084   bool isBaseWithConstantOffset(SDValue Op) const;
2085 
2086   /// Test whether the given SDValue (or all elements of it, if it is a
2087   /// vector) is known to never be NaN. If \p SNaN is true, returns if \p Op is
2088   /// known to never be a signaling NaN (it may still be a qNaN).
2089   bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
2090 
2091   /// \returns true if \p Op is known to never be a signaling NaN.
2092   bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
2093     return isKnownNeverNaN(Op, true, Depth);
2094   }
2095 
2096   /// Test whether the given floating point SDValue is known to never be
2097   /// positive or negative zero.
2098   bool isKnownNeverZeroFloat(SDValue Op) const;
2099 
2100   /// Test whether the given SDValue is known to contain non-zero value(s).
2101   bool isKnownNeverZero(SDValue Op) const;
2102 
2103   /// Test whether two SDValues are known to compare equal. This
2104   /// is true if they are the same value, or if one is negative zero and the
2105   /// other positive zero.
2106   bool isEqualTo(SDValue A, SDValue B) const;
2107 
2108   /// Return true if A and B have no common bits set. As an example, this can
2109   /// allow an 'add' to be transformed into an 'or'.
2110   bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
2111 
2112   /// Test whether \p V has a splatted value for all the demanded elements.
2113   ///
2114   /// On success \p UndefElts will indicate the elements that have UNDEF
2115   /// values instead of the splat value, this is only guaranteed to be correct
2116   /// for \p DemandedElts.
2117   ///
2118   /// NOTE: The function will return true for a demanded splat of UNDEF values.
2119   bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts,
2120                     unsigned Depth = 0) const;
2121 
2122   /// Test whether \p V has a splatted value.
2123   bool isSplatValue(SDValue V, bool AllowUndefs = false) const;
2124 
2125   /// If V is a splatted value, return the source vector and its splat index.
2126   SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
2127 
2128   /// If V is a splat vector, return its scalar source operand by extracting
2129   /// that element from the source vector. If LegalTypes is true, this method
2130   /// may only return a legally-typed splat value. If it cannot legalize the
2131   /// splatted value it will return SDValue().
2132   SDValue getSplatValue(SDValue V, bool LegalTypes = false);
2133 
2134   /// If a SHL/SRA/SRL node \p V has a constant or splat constant shift amount
2135   /// that is less than the element bit-width of the shift node, return it.
2136   const APInt *getValidShiftAmountConstant(SDValue V,
2137                                            const APInt &DemandedElts) const;
2138 
2139   /// If a SHL/SRA/SRL node \p V has constant shift amounts that are all less
2140   /// than the element bit-width of the shift node, return the minimum value.
2141   const APInt *
2142   getValidMinimumShiftAmountConstant(SDValue V,
2143                                      const APInt &DemandedElts) const;
2144 
2145   /// If a SHL/SRA/SRL node \p V has constant shift amounts that are all less
2146   /// than the element bit-width of the shift node, return the maximum value.
2147   const APInt *
2148   getValidMaximumShiftAmountConstant(SDValue V,
2149                                      const APInt &DemandedElts) const;
2150 
2151   /// Match a binop + shuffle pyramid that represents a horizontal reduction
2152   /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
2153   /// Extract. The reduction must use one of the opcodes listed in /p
2154   /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
2155   /// Returns the vector that is being reduced on, or SDValue() if a reduction
2156   /// was not matched. If \p AllowPartials is set then in the case of a
2157   /// reduction pattern that only matches the first few stages, the extracted
2158   /// subvector of the start of the reduction is returned.
2159   SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
2160                               ArrayRef<ISD::NodeType> CandidateBinOps,
2161                               bool AllowPartials = false);
2162 
2163   /// Utility function used by legalize and lowering to
2164   /// "unroll" a vector operation by splitting out the scalars and operating
2165   /// on each element individually.  If the ResNE is 0, fully unroll the vector
2166   /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
2167   /// If the  ResNE is greater than the width of the vector op, unroll the
2168   /// vector op and fill the end of the resulting vector with UNDEFS.
2169   SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
2170 
2171   /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
2172   /// This is a separate function because those opcodes have two results.
2173   std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N,
2174                                                      unsigned ResNE = 0);
2175 
2176   /// Return true if loads are next to each other and can be
2177   /// merged. Check that both are nonvolatile and if LD is loading
2178   /// 'Bytes' bytes from a location that is 'Dist' units away from the
2179   /// location that the 'Base' load is loading from.
2180   bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
2181                                       unsigned Bytes, int Dist) const;
2182 
2183   /// Infer alignment of a load / store address. Return std::nullopt if it
2184   /// cannot be inferred.
2185   MaybeAlign InferPtrAlign(SDValue Ptr) const;
2186 
2187   /// Compute the VTs needed for the low/hi parts of a type
2188   /// which is split (or expanded) into two not necessarily identical pieces.
2189   std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
2190 
2191   /// Compute the VTs needed for the low/hi parts of a type, dependent on an
2192   /// enveloping VT that has been split into two identical pieces. Sets the
2193   /// HisIsEmpty flag when hi type has zero storage size.
2194   std::pair<EVT, EVT> GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
2195                                                bool *HiIsEmpty) const;
2196 
2197   /// Split the vector with EXTRACT_SUBVECTOR using the provides
2198   /// VTs and return the low/high part.
2199   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
2200                                           const EVT &LoVT, const EVT &HiVT);
2201 
2202   /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
2203   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
2204     EVT LoVT, HiVT;
2205     std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
2206     return SplitVector(N, DL, LoVT, HiVT);
2207   }
2208 
2209   /// Split the explicit vector length parameter of a VP operation.
2210   std::pair<SDValue, SDValue> SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL);
2211 
2212   /// Split the node's operand with EXTRACT_SUBVECTOR and
2213   /// return the low/high part.
2214   std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
2215   {
2216     return SplitVector(N->getOperand(OpNo), SDLoc(N));
2217   }
2218 
2219   /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
2220   SDValue WidenVector(const SDValue &N, const SDLoc &DL);
2221 
2222   /// Append the extracted elements from Start to Count out of the vector Op in
2223   /// Args. If Count is 0, all of the elements will be extracted. The extracted
2224   /// elements will have type EVT if it is provided, and otherwise their type
2225   /// will be Op's element type.
2226   void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
2227                              unsigned Start = 0, unsigned Count = 0,
2228                              EVT EltVT = EVT());
2229 
2230   /// Compute the default alignment value for the given type.
2231   Align getEVTAlign(EVT MemoryVT) const;
2232 
2233   /// Test whether the given value is a constant int or similar node.
2234   SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) const;
2235 
2236   /// Test whether the given value is a constant FP or similar node.
2237   SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) const ;
2238 
2239   /// \returns true if \p N is any kind of constant or build_vector of
2240   /// constants, int or float. If a vector, it may not necessarily be a splat.
2241   inline bool isConstantValueOfAnyType(SDValue N) const {
2242     return isConstantIntBuildVectorOrConstantInt(N) ||
2243            isConstantFPBuildVectorOrConstantFP(N);
2244   }
2245 
2246   /// Set CallSiteInfo to be associated with Node.
2247   void addCallSiteInfo(const SDNode *Node, CallSiteInfoImpl &&CallInfo) {
2248     SDEI[Node].CSInfo = std::move(CallInfo);
2249   }
2250   /// Return CallSiteInfo associated with Node, or a default if none exists.
2251   CallSiteInfo getCallSiteInfo(const SDNode *Node) {
2252     auto I = SDEI.find(Node);
2253     return I != SDEI.end() ? std::move(I->second).CSInfo : CallSiteInfo();
2254   }
2255   /// Set HeapAllocSite to be associated with Node.
2256   void addHeapAllocSite(const SDNode *Node, MDNode *MD) {
2257     SDEI[Node].HeapAllocSite = MD;
2258   }
2259   /// Return HeapAllocSite associated with Node, or nullptr if none exists.
2260   MDNode *getHeapAllocSite(const SDNode *Node) const {
2261     auto I = SDEI.find(Node);
2262     return I != SDEI.end() ? I->second.HeapAllocSite : nullptr;
2263   }
2264   /// Set PCSections to be associated with Node.
2265   void addPCSections(const SDNode *Node, MDNode *MD) {
2266     SDEI[Node].PCSections = MD;
2267   }
2268   /// Return PCSections associated with Node, or nullptr if none exists.
2269   MDNode *getPCSections(const SDNode *Node) const {
2270     auto It = SDEI.find(Node);
2271     return It != SDEI.end() ? It->second.PCSections : nullptr;
2272   }
2273   /// Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
2274   void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge) {
2275     if (NoMerge)
2276       SDEI[Node].NoMerge = NoMerge;
2277   }
2278   /// Return NoMerge info associated with Node.
2279   bool getNoMergeSiteInfo(const SDNode *Node) const {
2280     auto I = SDEI.find(Node);
2281     return I != SDEI.end() ? I->second.NoMerge : false;
2282   }
2283 
2284   /// Copy extra info associated with one node to another.
2285   void copyExtraInfo(SDNode *From, SDNode *To);
2286 
2287   /// Return the current function's default denormal handling kind for the given
2288   /// floating point type.
2289   DenormalMode getDenormalMode(EVT VT) const {
2290     return MF->getDenormalMode(EVTToAPFloatSemantics(VT));
2291   }
2292 
2293   bool shouldOptForSize() const;
2294 
2295   /// Get the (commutative) neutral element for the given opcode, if it exists.
2296   SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT,
2297                             SDNodeFlags Flags);
2298 
2299   /// Some opcodes may create immediate undefined behavior when used with some
2300   /// values (integer division-by-zero for example). Therefore, these operations
2301   /// are not generally safe to move around or change.
2302   bool isSafeToSpeculativelyExecute(unsigned Opcode) const {
2303     switch (Opcode) {
2304     case ISD::SDIV:
2305     case ISD::SREM:
2306     case ISD::SDIVREM:
2307     case ISD::UDIV:
2308     case ISD::UREM:
2309     case ISD::UDIVREM:
2310       return false;
2311     default:
2312       return true;
2313     }
2314   }
2315 
2316 private:
2317   void InsertNode(SDNode *N);
2318   bool RemoveNodeFromCSEMaps(SDNode *N);
2319   void AddModifiedNodeToCSEMaps(SDNode *N);
2320   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
2321   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
2322                                void *&InsertPos);
2323   SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
2324                                void *&InsertPos);
2325   SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
2326 
2327   void DeleteNodeNotInCSEMaps(SDNode *N);
2328   void DeallocateNode(SDNode *N);
2329 
2330   void allnodes_clear();
2331 
2332   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
2333   /// not, return the insertion token that will make insertion faster.  This
2334   /// overload is for nodes other than Constant or ConstantFP, use the other one
2335   /// for those.
2336   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
2337 
2338   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
2339   /// not, return the insertion token that will make insertion faster.  Performs
2340   /// additional processing for constant nodes.
2341   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
2342                               void *&InsertPos);
2343 
2344   /// Maps to auto-CSE operations.
2345   std::vector<CondCodeSDNode*> CondCodeNodes;
2346 
2347   std::vector<SDNode*> ValueTypeNodes;
2348   std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
2349   StringMap<SDNode*> ExternalSymbols;
2350 
2351   std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols;
2352   DenseMap<MCSymbol *, SDNode *> MCSymbols;
2353 
2354   FlagInserter *Inserter = nullptr;
2355 };
2356 
2357 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
2358   using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
2359 
2360   static nodes_iterator nodes_begin(SelectionDAG *G) {
2361     return nodes_iterator(G->allnodes_begin());
2362   }
2363 
2364   static nodes_iterator nodes_end(SelectionDAG *G) {
2365     return nodes_iterator(G->allnodes_end());
2366   }
2367 };
2368 
2369 } // end namespace llvm
2370 
2371 #endif // LLVM_CODEGEN_SELECTIONDAG_H
2372