1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the target machine instruction set to the code generator.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14 #define LLVM_CODEGEN_TARGETINSTRINFO_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/Uniformity.h"
20 #include "llvm/CodeGen/MIRFormatter.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineOutliner.h"
27 #include "llvm/CodeGen/RegisterClassInfo.h"
28 #include "llvm/CodeGen/VirtRegMap.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/Support/BranchProbability.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <utility>
36 #include <vector>
37 
38 namespace llvm {
39 
40 class DFAPacketizer;
41 class InstrItineraryData;
42 class LiveIntervals;
43 class LiveVariables;
44 class MachineLoop;
45 class MachineMemOperand;
46 class MachineRegisterInfo;
47 class MCAsmInfo;
48 class MCInst;
49 struct MCSchedModel;
50 class Module;
51 class ScheduleDAG;
52 class ScheduleDAGMI;
53 class ScheduleHazardRecognizer;
54 class SDNode;
55 class SelectionDAG;
56 class SMSchedule;
57 class SwingSchedulerDAG;
58 class RegScavenger;
59 class TargetRegisterClass;
60 class TargetRegisterInfo;
61 class TargetSchedModel;
62 class TargetSubtargetInfo;
63 enum class MachineCombinerPattern;
64 
65 template <class T> class SmallVectorImpl;
66 
67 using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
68 
69 struct DestSourcePair {
70   const MachineOperand *Destination;
71   const MachineOperand *Source;
72 
73   DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
74       : Destination(&Dest), Source(&Src) {}
75 };
76 
77 /// Used to describe a register and immediate addition.
78 struct RegImmPair {
79   Register Reg;
80   int64_t Imm;
81 
82   RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
83 };
84 
85 /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
86 /// It holds the register values, the scale value and the displacement.
87 struct ExtAddrMode {
88   Register BaseReg;
89   Register ScaledReg;
90   int64_t Scale;
91   int64_t Displacement;
92 };
93 
94 //---------------------------------------------------------------------------
95 ///
96 /// TargetInstrInfo - Interface to description of machine instruction set
97 ///
98 class TargetInstrInfo : public MCInstrInfo {
99 public:
100   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
101                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
102       : CallFrameSetupOpcode(CFSetupOpcode),
103         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
104         ReturnOpcode(ReturnOpcode) {}
105   TargetInstrInfo(const TargetInstrInfo &) = delete;
106   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
107   virtual ~TargetInstrInfo();
108 
109   static bool isGenericOpcode(unsigned Opc) {
110     return Opc <= TargetOpcode::GENERIC_OP_END;
111   }
112 
113   static bool isGenericAtomicRMWOpcode(unsigned Opc) {
114     return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
115            Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
116   }
117 
118   /// Given a machine instruction descriptor, returns the register
119   /// class constraint for OpNum, or NULL.
120   virtual
121   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
122                                          const TargetRegisterInfo *TRI,
123                                          const MachineFunction &MF) const;
124 
125   /// Return true if the instruction is trivially rematerializable, meaning it
126   /// has no side effects and requires no operands that aren't always available.
127   /// This means the only allowed uses are constants and unallocatable physical
128   /// registers so that the instructions result is independent of the place
129   /// in the function.
130   bool isTriviallyReMaterializable(const MachineInstr &MI) const {
131     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
132            (MI.getDesc().isRematerializable() &&
133             (isReallyTriviallyReMaterializable(MI) ||
134              isReallyTriviallyReMaterializableGeneric(MI)));
135   }
136 
137   /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
138   /// of instruction rematerialization or sinking.
139   virtual bool isIgnorableUse(const MachineOperand &MO) const {
140     return false;
141   }
142 
143 protected:
144   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
145   /// set, this hook lets the target specify whether the instruction is actually
146   /// trivially rematerializable, taking into consideration its operands. This
147   /// predicate must return false if the instruction has any side effects other
148   /// than producing a value, or if it requres any address registers that are
149   /// not always available.
150   /// Requirements must be check as stated in isTriviallyReMaterializable() .
151   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const {
152     return false;
153   }
154 
155   /// This method commutes the operands of the given machine instruction MI.
156   /// The operands to be commuted are specified by their indices OpIdx1 and
157   /// OpIdx2.
158   ///
159   /// If a target has any instructions that are commutable but require
160   /// converting to different instructions or making non-trivial changes
161   /// to commute them, this method can be overloaded to do that.
162   /// The default implementation simply swaps the commutable operands.
163   ///
164   /// If NewMI is false, MI is modified in place and returned; otherwise, a
165   /// new machine instruction is created and returned.
166   ///
167   /// Do not call this method for a non-commutable instruction.
168   /// Even though the instruction is commutable, the method may still
169   /// fail to commute the operands, null pointer is returned in such cases.
170   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
171                                                unsigned OpIdx1,
172                                                unsigned OpIdx2) const;
173 
174   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
175   /// operand indices to (ResultIdx1, ResultIdx2).
176   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
177   /// predefined to some indices or be undefined (designated by the special
178   /// value 'CommuteAnyOperandIndex').
179   /// The predefined result indices cannot be re-defined.
180   /// The function returns true iff after the result pair redefinition
181   /// the fixed result pair is equal to or equivalent to the source pair of
182   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
183   /// the pairs (x,y) and (y,x) are equivalent.
184   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
185                                    unsigned CommutableOpIdx1,
186                                    unsigned CommutableOpIdx2);
187 
188 private:
189   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
190   /// set and the target hook isReallyTriviallyReMaterializable returns false,
191   /// this function does target-independent tests to determine if the
192   /// instruction is really trivially rematerializable.
193   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI) const;
194 
195 public:
196   /// These methods return the opcode of the frame setup/destroy instructions
197   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
198   /// order to abstract away the difference between operating with a frame
199   /// pointer and operating without, through the use of these two instructions.
200   ///
201   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
202   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
203 
204   /// Returns true if the argument is a frame pseudo instruction.
205   bool isFrameInstr(const MachineInstr &I) const {
206     return I.getOpcode() == getCallFrameSetupOpcode() ||
207            I.getOpcode() == getCallFrameDestroyOpcode();
208   }
209 
210   /// Returns true if the argument is a frame setup pseudo instruction.
211   bool isFrameSetup(const MachineInstr &I) const {
212     return I.getOpcode() == getCallFrameSetupOpcode();
213   }
214 
215   /// Returns size of the frame associated with the given frame instruction.
216   /// For frame setup instruction this is frame that is set up space set up
217   /// after the instruction. For frame destroy instruction this is the frame
218   /// freed by the caller.
219   /// Note, in some cases a call frame (or a part of it) may be prepared prior
220   /// to the frame setup instruction. It occurs in the calls that involve
221   /// inalloca arguments. This function reports only the size of the frame part
222   /// that is set up between the frame setup and destroy pseudo instructions.
223   int64_t getFrameSize(const MachineInstr &I) const {
224     assert(isFrameInstr(I) && "Not a frame instruction");
225     assert(I.getOperand(0).getImm() >= 0);
226     return I.getOperand(0).getImm();
227   }
228 
229   /// Returns the total frame size, which is made up of the space set up inside
230   /// the pair of frame start-stop instructions and the space that is set up
231   /// prior to the pair.
232   int64_t getFrameTotalSize(const MachineInstr &I) const {
233     if (isFrameSetup(I)) {
234       assert(I.getOperand(1).getImm() >= 0 &&
235              "Frame size must not be negative");
236       return getFrameSize(I) + I.getOperand(1).getImm();
237     }
238     return getFrameSize(I);
239   }
240 
241   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
242   unsigned getReturnOpcode() const { return ReturnOpcode; }
243 
244   /// Returns the actual stack pointer adjustment made by an instruction
245   /// as part of a call sequence. By default, only call frame setup/destroy
246   /// instructions adjust the stack, but targets may want to override this
247   /// to enable more fine-grained adjustment, or adjust by a different value.
248   virtual int getSPAdjust(const MachineInstr &MI) const;
249 
250   /// Return true if the instruction is a "coalescable" extension instruction.
251   /// That is, it's like a copy where it's legal for the source to overlap the
252   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
253   /// expected the pre-extension value is available as a subreg of the result
254   /// register. This also returns the sub-register index in SubIdx.
255   virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
256                                      Register &DstReg, unsigned &SubIdx) const {
257     return false;
258   }
259 
260   /// If the specified machine instruction is a direct
261   /// load from a stack slot, return the virtual or physical register number of
262   /// the destination along with the FrameIndex of the loaded stack slot.  If
263   /// not, return 0.  This predicate must return 0 if the instruction has
264   /// any side effects other than loading from the stack slot.
265   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
266                                        int &FrameIndex) const {
267     return 0;
268   }
269 
270   /// Optional extension of isLoadFromStackSlot that returns the number of
271   /// bytes loaded from the stack. This must be implemented if a backend
272   /// supports partial stack slot spills/loads to further disambiguate
273   /// what the load does.
274   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
275                                        int &FrameIndex,
276                                        unsigned &MemBytes) const {
277     MemBytes = 0;
278     return isLoadFromStackSlot(MI, FrameIndex);
279   }
280 
281   /// Check for post-frame ptr elimination stack locations as well.
282   /// This uses a heuristic so it isn't reliable for correctness.
283   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
284                                              int &FrameIndex) const {
285     return 0;
286   }
287 
288   /// If the specified machine instruction has a load from a stack slot,
289   /// return true along with the FrameIndices of the loaded stack slot and the
290   /// machine mem operands containing the reference.
291   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
292   /// any instructions that loads from the stack.  This is just a hint, as some
293   /// cases may be missed.
294   virtual bool hasLoadFromStackSlot(
295       const MachineInstr &MI,
296       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
297 
298   /// If the specified machine instruction is a direct
299   /// store to a stack slot, return the virtual or physical register number of
300   /// the source reg along with the FrameIndex of the loaded stack slot.  If
301   /// not, return 0.  This predicate must return 0 if the instruction has
302   /// any side effects other than storing to the stack slot.
303   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
304                                       int &FrameIndex) const {
305     return 0;
306   }
307 
308   /// Optional extension of isStoreToStackSlot that returns the number of
309   /// bytes stored to the stack. This must be implemented if a backend
310   /// supports partial stack slot spills/loads to further disambiguate
311   /// what the store does.
312   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
313                                       int &FrameIndex,
314                                       unsigned &MemBytes) const {
315     MemBytes = 0;
316     return isStoreToStackSlot(MI, FrameIndex);
317   }
318 
319   /// Check for post-frame ptr elimination stack locations as well.
320   /// This uses a heuristic, so it isn't reliable for correctness.
321   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
322                                             int &FrameIndex) const {
323     return 0;
324   }
325 
326   /// If the specified machine instruction has a store to a stack slot,
327   /// return true along with the FrameIndices of the loaded stack slot and the
328   /// machine mem operands containing the reference.
329   /// If not, return false.  Unlike isStoreToStackSlot,
330   /// this returns true for any instructions that stores to the
331   /// stack.  This is just a hint, as some cases may be missed.
332   virtual bool hasStoreToStackSlot(
333       const MachineInstr &MI,
334       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
335 
336   /// Return true if the specified machine instruction
337   /// is a copy of one stack slot to another and has no other effect.
338   /// Provide the identity of the two frame indices.
339   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
340                                int &SrcFrameIndex) const {
341     return false;
342   }
343 
344   /// Compute the size in bytes and offset within a stack slot of a spilled
345   /// register or subregister.
346   ///
347   /// \param [out] Size in bytes of the spilled value.
348   /// \param [out] Offset in bytes within the stack slot.
349   /// \returns true if both Size and Offset are successfully computed.
350   ///
351   /// Not all subregisters have computable spill slots. For example,
352   /// subregisters registers may not be byte-sized, and a pair of discontiguous
353   /// subregisters has no single offset.
354   ///
355   /// Targets with nontrivial bigendian implementations may need to override
356   /// this, particularly to support spilled vector registers.
357   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
358                                  unsigned &Size, unsigned &Offset,
359                                  const MachineFunction &MF) const;
360 
361   /// Return true if the given instruction is terminator that is unspillable,
362   /// according to isUnspillableTerminatorImpl.
363   bool isUnspillableTerminator(const MachineInstr *MI) const {
364     return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
365   }
366 
367   /// Returns the size in bytes of the specified MachineInstr, or ~0U
368   /// when this function is not implemented by a target.
369   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
370     return ~0U;
371   }
372 
373   /// Return true if the instruction is as cheap as a move instruction.
374   ///
375   /// Targets for different archs need to override this, and different
376   /// micro-architectures can also be finely tuned inside.
377   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
378     return MI.isAsCheapAsAMove();
379   }
380 
381   /// Return true if the instruction should be sunk by MachineSink.
382   ///
383   /// MachineSink determines on its own whether the instruction is safe to sink;
384   /// this gives the target a hook to override the default behavior with regards
385   /// to which instructions should be sunk.
386   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
387 
388   /// Return false if the instruction should not be hoisted by MachineLICM.
389   ///
390   /// MachineLICM determines on its own whether the instruction is safe to
391   /// hoist; this gives the target a hook to extend this assessment and prevent
392   /// an instruction being hoisted from a given loop for target specific
393   /// reasons.
394   virtual bool shouldHoist(const MachineInstr &MI,
395                            const MachineLoop *FromLoop) const {
396     return true;
397   }
398 
399   /// Re-issue the specified 'original' instruction at the
400   /// specific location targeting a new destination register.
401   /// The register in Orig->getOperand(0).getReg() will be substituted by
402   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
403   /// SubIdx.
404   virtual void reMaterialize(MachineBasicBlock &MBB,
405                              MachineBasicBlock::iterator MI, Register DestReg,
406                              unsigned SubIdx, const MachineInstr &Orig,
407                              const TargetRegisterInfo &TRI) const;
408 
409   /// Clones instruction or the whole instruction bundle \p Orig and
410   /// insert into \p MBB before \p InsertBefore. The target may update operands
411   /// that are required to be unique.
412   ///
413   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
414   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
415                                   MachineBasicBlock::iterator InsertBefore,
416                                   const MachineInstr &Orig) const;
417 
418   /// This method must be implemented by targets that
419   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
420   /// may be able to convert a two-address instruction into one or more true
421   /// three-address instructions on demand.  This allows the X86 target (for
422   /// example) to convert ADD and SHL instructions into LEA instructions if they
423   /// would require register copies due to two-addressness.
424   ///
425   /// This method returns a null pointer if the transformation cannot be
426   /// performed, otherwise it returns the last new instruction.
427   ///
428   /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
429   /// replacing \p MI with new instructions, even though this function does not
430   /// remove MI.
431   virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
432                                               LiveVariables *LV,
433                                               LiveIntervals *LIS) const {
434     return nullptr;
435   }
436 
437   // This constant can be used as an input value of operand index passed to
438   // the method findCommutedOpIndices() to tell the method that the
439   // corresponding operand index is not pre-defined and that the method
440   // can pick any commutable operand.
441   static const unsigned CommuteAnyOperandIndex = ~0U;
442 
443   /// This method commutes the operands of the given machine instruction MI.
444   ///
445   /// The operands to be commuted are specified by their indices OpIdx1 and
446   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
447   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
448   /// any arbitrarily chosen commutable operand. If both arguments are set to
449   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
450   /// operands; then commutes them if such operands could be found.
451   ///
452   /// If NewMI is false, MI is modified in place and returned; otherwise, a
453   /// new machine instruction is created and returned.
454   ///
455   /// Do not call this method for a non-commutable instruction or
456   /// for non-commuable operands.
457   /// Even though the instruction is commutable, the method may still
458   /// fail to commute the operands, null pointer is returned in such cases.
459   MachineInstr *
460   commuteInstruction(MachineInstr &MI, bool NewMI = false,
461                      unsigned OpIdx1 = CommuteAnyOperandIndex,
462                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
463 
464   /// Returns true iff the routine could find two commutable operands in the
465   /// given machine instruction.
466   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
467   /// If any of the INPUT values is set to the special value
468   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
469   /// operand, then returns its index in the corresponding argument.
470   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
471   /// looks for 2 commutable operands.
472   /// If INPUT values refer to some operands of MI, then the method simply
473   /// returns true if the corresponding operands are commutable and returns
474   /// false otherwise.
475   ///
476   /// For example, calling this method this way:
477   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
478   ///     findCommutedOpIndices(MI, Op1, Op2);
479   /// can be interpreted as a query asking to find an operand that would be
480   /// commutable with the operand#1.
481   virtual bool findCommutedOpIndices(const MachineInstr &MI,
482                                      unsigned &SrcOpIdx1,
483                                      unsigned &SrcOpIdx2) const;
484 
485   /// Returns true if the target has a preference on the operands order of
486   /// the given machine instruction. And specify if \p Commute is required to
487   /// get the desired operands order.
488   virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
489     return false;
490   }
491 
492   /// A pair composed of a register and a sub-register index.
493   /// Used to give some type checking when modeling Reg:SubReg.
494   struct RegSubRegPair {
495     Register Reg;
496     unsigned SubReg;
497 
498     RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
499         : Reg(Reg), SubReg(SubReg) {}
500 
501     bool operator==(const RegSubRegPair& P) const {
502       return Reg == P.Reg && SubReg == P.SubReg;
503     }
504     bool operator!=(const RegSubRegPair& P) const {
505       return !(*this == P);
506     }
507   };
508 
509   /// A pair composed of a pair of a register and a sub-register index,
510   /// and another sub-register index.
511   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
512   struct RegSubRegPairAndIdx : RegSubRegPair {
513     unsigned SubIdx;
514 
515     RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
516                         unsigned SubIdx = 0)
517         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
518   };
519 
520   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
521   /// and \p DefIdx.
522   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
523   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
524   /// flag are not added to this list.
525   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
526   /// two elements:
527   /// - %1:sub1, sub0
528   /// - %2<:0>, sub1
529   ///
530   /// \returns true if it is possible to build such an input sequence
531   /// with the pair \p MI, \p DefIdx. False otherwise.
532   ///
533   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
534   ///
535   /// \note The generic implementation does not provide any support for
536   /// MI.isRegSequenceLike(). In other words, one has to override
537   /// getRegSequenceLikeInputs for target specific instructions.
538   bool
539   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
540                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
541 
542   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
543   /// and \p DefIdx.
544   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
545   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
546   /// - %1:sub1, sub0
547   ///
548   /// \returns true if it is possible to build such an input sequence
549   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
550   /// False otherwise.
551   ///
552   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
553   ///
554   /// \note The generic implementation does not provide any support for
555   /// MI.isExtractSubregLike(). In other words, one has to override
556   /// getExtractSubregLikeInputs for target specific instructions.
557   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
558                               RegSubRegPairAndIdx &InputReg) const;
559 
560   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
561   /// and \p DefIdx.
562   /// \p [out] BaseReg and \p [out] InsertedReg contain
563   /// the equivalent inputs of INSERT_SUBREG.
564   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
565   /// - BaseReg: %0:sub0
566   /// - InsertedReg: %1:sub1, sub3
567   ///
568   /// \returns true if it is possible to build such an input sequence
569   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
570   /// False otherwise.
571   ///
572   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
573   ///
574   /// \note The generic implementation does not provide any support for
575   /// MI.isInsertSubregLike(). In other words, one has to override
576   /// getInsertSubregLikeInputs for target specific instructions.
577   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
578                              RegSubRegPair &BaseReg,
579                              RegSubRegPairAndIdx &InsertedReg) const;
580 
581   /// Return true if two machine instructions would produce identical values.
582   /// By default, this is only true when the two instructions
583   /// are deemed identical except for defs. If this function is called when the
584   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
585   /// aggressive checks.
586   virtual bool produceSameValue(const MachineInstr &MI0,
587                                 const MachineInstr &MI1,
588                                 const MachineRegisterInfo *MRI = nullptr) const;
589 
590   /// \returns true if a branch from an instruction with opcode \p BranchOpc
591   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
592   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
593                                      int64_t BrOffset) const {
594     llvm_unreachable("target did not implement");
595   }
596 
597   /// \returns The block that branch instruction \p MI jumps to.
598   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
599     llvm_unreachable("target did not implement");
600   }
601 
602   /// Insert an unconditional indirect branch at the end of \p MBB to \p
603   /// NewDestBB. Optionally, insert the clobbered register restoring in \p
604   /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
605   /// the offset of the position to insert the new branch.
606   virtual void insertIndirectBranch(MachineBasicBlock &MBB,
607                                     MachineBasicBlock &NewDestBB,
608                                     MachineBasicBlock &RestoreBB,
609                                     const DebugLoc &DL, int64_t BrOffset = 0,
610                                     RegScavenger *RS = nullptr) const {
611     llvm_unreachable("target did not implement");
612   }
613 
614   /// Analyze the branching code at the end of MBB, returning
615   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
616   /// implemented for a target).  Upon success, this returns false and returns
617   /// with the following information in various cases:
618   ///
619   /// 1. If this block ends with no branches (it just falls through to its succ)
620   ///    just return false, leaving TBB/FBB null.
621   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
622   ///    the destination block.
623   /// 3. If this block ends with a conditional branch and it falls through to a
624   ///    successor block, it sets TBB to be the branch destination block and a
625   ///    list of operands that evaluate the condition. These operands can be
626   ///    passed to other TargetInstrInfo methods to create new branches.
627   /// 4. If this block ends with a conditional branch followed by an
628   ///    unconditional branch, it returns the 'true' destination in TBB, the
629   ///    'false' destination in FBB, and a list of operands that evaluate the
630   ///    condition.  These operands can be passed to other TargetInstrInfo
631   ///    methods to create new branches.
632   ///
633   /// Note that removeBranch and insertBranch must be implemented to support
634   /// cases where this method returns success.
635   ///
636   /// If AllowModify is true, then this routine is allowed to modify the basic
637   /// block (e.g. delete instructions after the unconditional branch).
638   ///
639   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
640   /// before calling this function.
641   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
642                              MachineBasicBlock *&FBB,
643                              SmallVectorImpl<MachineOperand> &Cond,
644                              bool AllowModify = false) const {
645     return true;
646   }
647 
648   /// Represents a predicate at the MachineFunction level.  The control flow a
649   /// MachineBranchPredicate represents is:
650   ///
651   ///  Reg = LHS `Predicate` RHS         == ConditionDef
652   ///  if Reg then goto TrueDest else goto FalseDest
653   ///
654   struct MachineBranchPredicate {
655     enum ComparePredicate {
656       PRED_EQ,     // True if two values are equal
657       PRED_NE,     // True if two values are not equal
658       PRED_INVALID // Sentinel value
659     };
660 
661     ComparePredicate Predicate = PRED_INVALID;
662     MachineOperand LHS = MachineOperand::CreateImm(0);
663     MachineOperand RHS = MachineOperand::CreateImm(0);
664     MachineBasicBlock *TrueDest = nullptr;
665     MachineBasicBlock *FalseDest = nullptr;
666     MachineInstr *ConditionDef = nullptr;
667 
668     /// SingleUseCondition is true if ConditionDef is dead except for the
669     /// branch(es) at the end of the basic block.
670     ///
671     bool SingleUseCondition = false;
672 
673     explicit MachineBranchPredicate() = default;
674   };
675 
676   /// Analyze the branching code at the end of MBB and parse it into the
677   /// MachineBranchPredicate structure if possible.  Returns false on success
678   /// and true on failure.
679   ///
680   /// If AllowModify is true, then this routine is allowed to modify the basic
681   /// block (e.g. delete instructions after the unconditional branch).
682   ///
683   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
684                                       MachineBranchPredicate &MBP,
685                                       bool AllowModify = false) const {
686     return true;
687   }
688 
689   /// Remove the branching code at the end of the specific MBB.
690   /// This is only invoked in cases where analyzeBranch returns success. It
691   /// returns the number of instructions that were removed.
692   /// If \p BytesRemoved is non-null, report the change in code size from the
693   /// removed instructions.
694   virtual unsigned removeBranch(MachineBasicBlock &MBB,
695                                 int *BytesRemoved = nullptr) const {
696     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
697   }
698 
699   /// Insert branch code into the end of the specified MachineBasicBlock. The
700   /// operands to this method are the same as those returned by analyzeBranch.
701   /// This is only invoked in cases where analyzeBranch returns success. It
702   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
703   /// report the change in code size from the added instructions.
704   ///
705   /// It is also invoked by tail merging to add unconditional branches in
706   /// cases where analyzeBranch doesn't apply because there was no original
707   /// branch to analyze.  At least this much must be implemented, else tail
708   /// merging needs to be disabled.
709   ///
710   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
711   /// before calling this function.
712   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
713                                 MachineBasicBlock *FBB,
714                                 ArrayRef<MachineOperand> Cond,
715                                 const DebugLoc &DL,
716                                 int *BytesAdded = nullptr) const {
717     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
718   }
719 
720   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
721                                      MachineBasicBlock *DestBB,
722                                      const DebugLoc &DL,
723                                      int *BytesAdded = nullptr) const {
724     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
725                         BytesAdded);
726   }
727 
728   /// Object returned by analyzeLoopForPipelining. Allows software pipelining
729   /// implementations to query attributes of the loop being pipelined and to
730   /// apply target-specific updates to the loop once pipelining is complete.
731   class PipelinerLoopInfo {
732   public:
733     virtual ~PipelinerLoopInfo();
734     /// Return true if the given instruction should not be pipelined and should
735     /// be ignored. An example could be a loop comparison, or induction variable
736     /// update with no users being pipelined.
737     virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
738 
739     /// Return true if the proposed schedule should used.  Otherwise return
740     /// false to not pipeline the loop. This function should be used to ensure
741     /// that pipelined loops meet target-specific quality heuristics.
742     virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) {
743       return true;
744     }
745 
746     /// Create a condition to determine if the trip count of the loop is greater
747     /// than TC, where TC is always one more than for the previous prologue or
748     /// 0 if this is being called for the outermost prologue.
749     ///
750     /// If the trip count is statically known to be greater than TC, return
751     /// true. If the trip count is statically known to be not greater than TC,
752     /// return false. Otherwise return nullopt and fill out Cond with the test
753     /// condition.
754     ///
755     /// Note: This hook is guaranteed to be called from the innermost to the
756     /// outermost prologue of the loop being software pipelined.
757     virtual std::optional<bool>
758     createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
759                                     SmallVectorImpl<MachineOperand> &Cond) = 0;
760 
761     /// Modify the loop such that the trip count is
762     /// OriginalTC + TripCountAdjust.
763     virtual void adjustTripCount(int TripCountAdjust) = 0;
764 
765     /// Called when the loop's preheader has been modified to NewPreheader.
766     virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
767 
768     /// Called when the loop is being removed. Any instructions in the preheader
769     /// should be removed.
770     ///
771     /// Once this function is called, no other functions on this object are
772     /// valid; the loop has been removed.
773     virtual void disposed() = 0;
774   };
775 
776   /// Analyze loop L, which must be a single-basic-block loop, and if the
777   /// conditions can be understood enough produce a PipelinerLoopInfo object.
778   virtual std::unique_ptr<PipelinerLoopInfo>
779   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
780     return nullptr;
781   }
782 
783   /// Analyze the loop code, return true if it cannot be understood. Upon
784   /// success, this function returns false and returns information about the
785   /// induction variable and compare instruction used at the end.
786   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
787                            MachineInstr *&CmpInst) const {
788     return true;
789   }
790 
791   /// Generate code to reduce the loop iteration by one and check if the loop
792   /// is finished.  Return the value/register of the new loop count.  We need
793   /// this function when peeling off one or more iterations of a loop. This
794   /// function assumes the nth iteration is peeled first.
795   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
796                                    MachineBasicBlock &PreHeader,
797                                    MachineInstr *IndVar, MachineInstr &Cmp,
798                                    SmallVectorImpl<MachineOperand> &Cond,
799                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
800                                    unsigned Iter, unsigned MaxIter) const {
801     llvm_unreachable("Target didn't implement ReduceLoopCount");
802   }
803 
804   /// Delete the instruction OldInst and everything after it, replacing it with
805   /// an unconditional branch to NewDest. This is used by the tail merging pass.
806   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
807                                        MachineBasicBlock *NewDest) const;
808 
809   /// Return true if it's legal to split the given basic
810   /// block at the specified instruction (i.e. instruction would be the start
811   /// of a new basic block).
812   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
813                                    MachineBasicBlock::iterator MBBI) const {
814     return true;
815   }
816 
817   /// Return true if it's profitable to predicate
818   /// instructions with accumulated instruction latency of "NumCycles"
819   /// of the specified basic block, where the probability of the instructions
820   /// being executed is given by Probability, and Confidence is a measure
821   /// of our confidence that it will be properly predicted.
822   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
823                                    unsigned ExtraPredCycles,
824                                    BranchProbability Probability) const {
825     return false;
826   }
827 
828   /// Second variant of isProfitableToIfCvt. This one
829   /// checks for the case where two basic blocks from true and false path
830   /// of a if-then-else (diamond) are predicated on mutually exclusive
831   /// predicates, where the probability of the true path being taken is given
832   /// by Probability, and Confidence is a measure of our confidence that it
833   /// will be properly predicted.
834   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
835                                    unsigned ExtraTCycles,
836                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
837                                    unsigned ExtraFCycles,
838                                    BranchProbability Probability) const {
839     return false;
840   }
841 
842   /// Return true if it's profitable for if-converter to duplicate instructions
843   /// of specified accumulated instruction latencies in the specified MBB to
844   /// enable if-conversion.
845   /// The probability of the instructions being executed is given by
846   /// Probability, and Confidence is a measure of our confidence that it
847   /// will be properly predicted.
848   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
849                                          unsigned NumCycles,
850                                          BranchProbability Probability) const {
851     return false;
852   }
853 
854   /// Return the increase in code size needed to predicate a contiguous run of
855   /// NumInsts instructions.
856   virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
857                                                     unsigned NumInsts) const {
858     return 0;
859   }
860 
861   /// Return an estimate for the code size reduction (in bytes) which will be
862   /// caused by removing the given branch instruction during if-conversion.
863   virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
864     return getInstSizeInBytes(MI);
865   }
866 
867   /// Return true if it's profitable to unpredicate
868   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
869   /// exclusive predicates.
870   /// e.g.
871   ///   subeq  r0, r1, #1
872   ///   addne  r0, r1, #1
873   /// =>
874   ///   sub    r0, r1, #1
875   ///   addne  r0, r1, #1
876   ///
877   /// This may be profitable is conditional instructions are always executed.
878   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
879                                          MachineBasicBlock &FMBB) const {
880     return false;
881   }
882 
883   /// Return true if it is possible to insert a select
884   /// instruction that chooses between TrueReg and FalseReg based on the
885   /// condition code in Cond.
886   ///
887   /// When successful, also return the latency in cycles from TrueReg,
888   /// FalseReg, and Cond to the destination register. In most cases, a select
889   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
890   ///
891   /// Some x86 implementations have 2-cycle cmov instructions.
892   ///
893   /// @param MBB         Block where select instruction would be inserted.
894   /// @param Cond        Condition returned by analyzeBranch.
895   /// @param DstReg      Virtual dest register that the result should write to.
896   /// @param TrueReg     Virtual register to select when Cond is true.
897   /// @param FalseReg    Virtual register to select when Cond is false.
898   /// @param CondCycles  Latency from Cond+Branch to select output.
899   /// @param TrueCycles  Latency from TrueReg to select output.
900   /// @param FalseCycles Latency from FalseReg to select output.
901   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
902                                ArrayRef<MachineOperand> Cond, Register DstReg,
903                                Register TrueReg, Register FalseReg,
904                                int &CondCycles, int &TrueCycles,
905                                int &FalseCycles) const {
906     return false;
907   }
908 
909   /// Insert a select instruction into MBB before I that will copy TrueReg to
910   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
911   ///
912   /// This function can only be called after canInsertSelect() returned true.
913   /// The condition in Cond comes from analyzeBranch, and it can be assumed
914   /// that the same flags or registers required by Cond are available at the
915   /// insertion point.
916   ///
917   /// @param MBB      Block where select instruction should be inserted.
918   /// @param I        Insertion point.
919   /// @param DL       Source location for debugging.
920   /// @param DstReg   Virtual register to be defined by select instruction.
921   /// @param Cond     Condition as computed by analyzeBranch.
922   /// @param TrueReg  Virtual register to copy when Cond is true.
923   /// @param FalseReg Virtual register to copy when Cons is false.
924   virtual void insertSelect(MachineBasicBlock &MBB,
925                             MachineBasicBlock::iterator I, const DebugLoc &DL,
926                             Register DstReg, ArrayRef<MachineOperand> Cond,
927                             Register TrueReg, Register FalseReg) const {
928     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
929   }
930 
931   /// Analyze the given select instruction, returning true if
932   /// it cannot be understood. It is assumed that MI->isSelect() is true.
933   ///
934   /// When successful, return the controlling condition and the operands that
935   /// determine the true and false result values.
936   ///
937   ///   Result = SELECT Cond, TrueOp, FalseOp
938   ///
939   /// Some targets can optimize select instructions, for example by predicating
940   /// the instruction defining one of the operands. Such targets should set
941   /// Optimizable.
942   ///
943   /// @param         MI Select instruction to analyze.
944   /// @param Cond    Condition controlling the select.
945   /// @param TrueOp  Operand number of the value selected when Cond is true.
946   /// @param FalseOp Operand number of the value selected when Cond is false.
947   /// @param Optimizable Returned as true if MI is optimizable.
948   /// @returns False on success.
949   virtual bool analyzeSelect(const MachineInstr &MI,
950                              SmallVectorImpl<MachineOperand> &Cond,
951                              unsigned &TrueOp, unsigned &FalseOp,
952                              bool &Optimizable) const {
953     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
954     return true;
955   }
956 
957   /// Given a select instruction that was understood by
958   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
959   /// merging it with one of its operands. Returns NULL on failure.
960   ///
961   /// When successful, returns the new select instruction. The client is
962   /// responsible for deleting MI.
963   ///
964   /// If both sides of the select can be optimized, PreferFalse is used to pick
965   /// a side.
966   ///
967   /// @param MI          Optimizable select instruction.
968   /// @param NewMIs     Set that record all MIs in the basic block up to \p
969   /// MI. Has to be updated with any newly created MI or deleted ones.
970   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
971   /// @returns Optimized instruction or NULL.
972   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
973                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
974                                        bool PreferFalse = false) const {
975     // This function must be implemented if Optimizable is ever set.
976     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
977   }
978 
979   /// Emit instructions to copy a pair of physical registers.
980   ///
981   /// This function should support copies within any legal register class as
982   /// well as any cross-class copies created during instruction selection.
983   ///
984   /// The source and destination registers may overlap, which may require a
985   /// careful implementation when multiple copy instructions are required for
986   /// large registers. See for example the ARM target.
987   virtual void copyPhysReg(MachineBasicBlock &MBB,
988                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
989                            MCRegister DestReg, MCRegister SrcReg,
990                            bool KillSrc) const {
991     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
992   }
993 
994   /// Allow targets to tell MachineVerifier whether a specific register
995   /// MachineOperand can be used as part of PC-relative addressing.
996   /// PC-relative addressing modes in many CISC architectures contain
997   /// (non-PC) registers as offsets or scaling values, which inherently
998   /// tags the corresponding MachineOperand with OPERAND_PCREL.
999   ///
1000   /// @param MO The MachineOperand in question. MO.isReg() should always
1001   /// be true.
1002   /// @return Whether this operand is allowed to be used PC-relatively.
1003   virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1004     return false;
1005   }
1006 
1007 protected:
1008   /// Target-dependent implementation for IsCopyInstr.
1009   /// If the specific machine instruction is a instruction that moves/copies
1010   /// value from one register to another register return destination and source
1011   /// registers as machine operands.
1012   virtual std::optional<DestSourcePair>
1013   isCopyInstrImpl(const MachineInstr &MI) const {
1014     return std::nullopt;
1015   }
1016 
1017   /// Return true if the given terminator MI is not expected to spill. This
1018   /// sets the live interval as not spillable and adjusts phi node lowering to
1019   /// not introduce copies after the terminator. Use with care, these are
1020   /// currently used for hardware loop intrinsics in very controlled situations,
1021   /// created prior to registry allocation in loops that only have single phi
1022   /// users for the terminators value. They may run out of registers if not used
1023   /// carefully.
1024   virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1025     return false;
1026   }
1027 
1028 public:
1029   /// If the specific machine instruction is a instruction that moves/copies
1030   /// value from one register to another register return destination and source
1031   /// registers as machine operands.
1032   /// For COPY-instruction the method naturally returns destination and source
1033   /// registers as machine operands, for all other instructions the method calls
1034   /// target-dependent implementation.
1035   std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1036     if (MI.isCopy()) {
1037       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1038     }
1039     return isCopyInstrImpl(MI);
1040   }
1041 
1042   /// If the specific machine instruction is an instruction that adds an
1043   /// immediate value and a physical register, and stores the result in
1044   /// the given physical register \c Reg, return a pair of the source
1045   /// register and the offset which has been added.
1046   virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1047                                                    Register Reg) const {
1048     return std::nullopt;
1049   }
1050 
1051   /// Returns true if MI is an instruction that defines Reg to have a constant
1052   /// value and the value is recorded in ImmVal. The ImmVal is a result that
1053   /// should be interpreted as modulo size of Reg.
1054   virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1055                                        const Register Reg,
1056                                        int64_t &ImmVal) const {
1057     return false;
1058   }
1059 
1060   /// Store the specified register of the given register class to the specified
1061   /// stack frame index. The store instruction is to be added to the given
1062   /// machine basic block before the specified machine instruction. If isKill
1063   /// is true, the register operand is the last use and must be marked kill. If
1064   /// \p SrcReg is being directly spilled as part of assigning a virtual
1065   /// register, \p VReg is the register being assigned. This additional register
1066   /// argument is needed for certain targets when invoked from RegAllocFast to
1067   /// map the spilled physical register to its virtual register. A null register
1068   /// can be passed elsewhere.
1069   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1070                                    MachineBasicBlock::iterator MI,
1071                                    Register SrcReg, bool isKill, int FrameIndex,
1072                                    const TargetRegisterClass *RC,
1073                                    const TargetRegisterInfo *TRI,
1074                                    Register VReg) const {
1075     llvm_unreachable("Target didn't implement "
1076                      "TargetInstrInfo::storeRegToStackSlot!");
1077   }
1078 
1079   /// Load the specified register of the given register class from the specified
1080   /// stack frame index. The load instruction is to be added to the given
1081   /// machine basic block before the specified machine instruction. If \p
1082   /// DestReg is being directly reloaded as part of assigning a virtual
1083   /// register, \p VReg is the register being assigned. This additional register
1084   /// argument is needed for certain targets when invoked from RegAllocFast to
1085   /// map the loaded physical register to its virtual register. A null register
1086   /// can be passed elsewhere.
1087   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1088                                     MachineBasicBlock::iterator MI,
1089                                     Register DestReg, int FrameIndex,
1090                                     const TargetRegisterClass *RC,
1091                                     const TargetRegisterInfo *TRI,
1092                                     Register VReg) const {
1093     llvm_unreachable("Target didn't implement "
1094                      "TargetInstrInfo::loadRegFromStackSlot!");
1095   }
1096 
1097   /// This function is called for all pseudo instructions
1098   /// that remain after register allocation. Many pseudo instructions are
1099   /// created to help register allocation. This is the place to convert them
1100   /// into real instructions. The target can edit MI in place, or it can insert
1101   /// new instructions and erase MI. The function should return true if
1102   /// anything was changed.
1103   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1104 
1105   /// Check whether the target can fold a load that feeds a subreg operand
1106   /// (or a subreg operand that feeds a store).
1107   /// For example, X86 may want to return true if it can fold
1108   /// movl (%esp), %eax
1109   /// subb, %al, ...
1110   /// Into:
1111   /// subb (%esp), ...
1112   ///
1113   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1114   /// reject subregs - but since this behavior used to be enforced in the
1115   /// target-independent code, moving this responsibility to the targets
1116   /// has the potential of causing nasty silent breakage in out-of-tree targets.
1117   virtual bool isSubregFoldable() const { return false; }
1118 
1119   /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1120   /// operands which can't be folded into stack references. Operands outside
1121   /// of the range are most likely foldable but it is not guaranteed.
1122   /// These instructions are unique in that stack references for some operands
1123   /// have the same execution cost (e.g. none) as the unfolded register forms.
1124   /// The ranged return is guaranteed to include all operands which can't be
1125   /// folded at zero cost.
1126   virtual std::pair<unsigned, unsigned>
1127   getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1128 
1129   /// Attempt to fold a load or store of the specified stack
1130   /// slot into the specified machine instruction for the specified operand(s).
1131   /// If this is possible, a new instruction is returned with the specified
1132   /// operand folded, otherwise NULL is returned.
1133   /// The new instruction is inserted before MI, and the client is responsible
1134   /// for removing the old instruction.
1135   /// If VRM is passed, the assigned physregs can be inspected by target to
1136   /// decide on using an opcode (note that those assignments can still change).
1137   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1138                                   int FI,
1139                                   LiveIntervals *LIS = nullptr,
1140                                   VirtRegMap *VRM = nullptr) const;
1141 
1142   /// Same as the previous version except it allows folding of any load and
1143   /// store from / to any address, not just from a specific stack slot.
1144   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1145                                   MachineInstr &LoadMI,
1146                                   LiveIntervals *LIS = nullptr) const;
1147 
1148   /// Return true when there is potentially a faster code sequence
1149   /// for an instruction chain ending in \p Root. All potential patterns are
1150   /// returned in the \p Pattern vector. Pattern should be sorted in priority
1151   /// order since the pattern evaluator stops checking as soon as it finds a
1152   /// faster sequence.
1153   /// \param Root - Instruction that could be combined with one of its operands
1154   /// \param Patterns - Vector of possible combination patterns
1155   virtual bool
1156   getMachineCombinerPatterns(MachineInstr &Root,
1157                              SmallVectorImpl<MachineCombinerPattern> &Patterns,
1158                              bool DoRegPressureReduce) const;
1159 
1160   /// Return true if target supports reassociation of instructions in machine
1161   /// combiner pass to reduce register pressure for a given BB.
1162   virtual bool
1163   shouldReduceRegisterPressure(const MachineBasicBlock *MBB,
1164                                const RegisterClassInfo *RegClassInfo) const {
1165     return false;
1166   }
1167 
1168   /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1169   virtual void
1170   finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
1171                     SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1172 
1173   /// Return true when a code sequence can improve throughput. It
1174   /// should be called only for instructions in loops.
1175   /// \param Pattern - combiner pattern
1176   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
1177 
1178   /// Return true if the input \P Inst is part of a chain of dependent ops
1179   /// that are suitable for reassociation, otherwise return false.
1180   /// If the instruction's operands must be commuted to have a previous
1181   /// instruction of the same type define the first source operand, \P Commuted
1182   /// will be set to true.
1183   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1184 
1185   /// Return true when \P Inst is both associative and commutative. If \P Invert
1186   /// is true, then the inverse of \P Inst operation must be tested.
1187   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst,
1188                                            bool Invert = false) const {
1189     return false;
1190   }
1191 
1192   /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1193   /// for sub and vice versa).
1194   virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1195     return std::nullopt;
1196   }
1197 
1198   /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1199   bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1200 
1201   /// Return true when \P Inst has reassociable operands in the same \P MBB.
1202   virtual bool hasReassociableOperands(const MachineInstr &Inst,
1203                                        const MachineBasicBlock *MBB) const;
1204 
1205   /// Return true when \P Inst has reassociable sibling.
1206   virtual bool hasReassociableSibling(const MachineInstr &Inst,
1207                                       bool &Commuted) const;
1208 
1209   /// When getMachineCombinerPatterns() finds patterns, this function generates
1210   /// the instructions that could replace the original code sequence. The client
1211   /// has to decide whether the actual replacement is beneficial or not.
1212   /// \param Root - Instruction that could be combined with one of its operands
1213   /// \param Pattern - Combination pattern for Root
1214   /// \param InsInstrs - Vector of new instructions that implement P
1215   /// \param DelInstrs - Old instructions, including Root, that could be
1216   /// replaced by InsInstr
1217   /// \param InstIdxForVirtReg - map of virtual register to instruction in
1218   /// InsInstr that defines it
1219   virtual void genAlternativeCodeSequence(
1220       MachineInstr &Root, MachineCombinerPattern Pattern,
1221       SmallVectorImpl<MachineInstr *> &InsInstrs,
1222       SmallVectorImpl<MachineInstr *> &DelInstrs,
1223       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1224 
1225   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1226   /// reduce critical path length.
1227   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1228                       MachineCombinerPattern Pattern,
1229                       SmallVectorImpl<MachineInstr *> &InsInstrs,
1230                       SmallVectorImpl<MachineInstr *> &DelInstrs,
1231                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1232 
1233   /// Reassociation of some instructions requires inverse operations (e.g.
1234   /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1235   /// (new root opcode, new prev opcode) that must be used to reassociate \P
1236   /// Root and \P Prev accoring to \P Pattern.
1237   std::pair<unsigned, unsigned>
1238   getReassociationOpcodes(MachineCombinerPattern Pattern,
1239                           const MachineInstr &Root,
1240                           const MachineInstr &Prev) const;
1241 
1242   /// The limit on resource length extension we accept in MachineCombiner Pass.
1243   virtual int getExtendResourceLenLimit() const { return 0; }
1244 
1245   /// This is an architecture-specific helper function of reassociateOps.
1246   /// Set special operand attributes for new instructions after reassociation.
1247   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1248                                      MachineInstr &NewMI1,
1249                                      MachineInstr &NewMI2) const {}
1250 
1251   /// Return true when a target supports MachineCombiner.
1252   virtual bool useMachineCombiner() const { return false; }
1253 
1254   /// Return true if the given SDNode can be copied during scheduling
1255   /// even if it has glue.
1256   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1257 
1258 protected:
1259   /// Target-dependent implementation for foldMemoryOperand.
1260   /// Target-independent code in foldMemoryOperand will
1261   /// take care of adding a MachineMemOperand to the newly created instruction.
1262   /// The instruction and any auxiliary instructions necessary will be inserted
1263   /// at InsertPt.
1264   virtual MachineInstr *
1265   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1266                         ArrayRef<unsigned> Ops,
1267                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
1268                         LiveIntervals *LIS = nullptr,
1269                         VirtRegMap *VRM = nullptr) const {
1270     return nullptr;
1271   }
1272 
1273   /// Target-dependent implementation for foldMemoryOperand.
1274   /// Target-independent code in foldMemoryOperand will
1275   /// take care of adding a MachineMemOperand to the newly created instruction.
1276   /// The instruction and any auxiliary instructions necessary will be inserted
1277   /// at InsertPt.
1278   virtual MachineInstr *foldMemoryOperandImpl(
1279       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1280       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1281       LiveIntervals *LIS = nullptr) const {
1282     return nullptr;
1283   }
1284 
1285   /// Target-dependent implementation of getRegSequenceInputs.
1286   ///
1287   /// \returns true if it is possible to build the equivalent
1288   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1289   ///
1290   /// \pre MI.isRegSequenceLike().
1291   ///
1292   /// \see TargetInstrInfo::getRegSequenceInputs.
1293   virtual bool getRegSequenceLikeInputs(
1294       const MachineInstr &MI, unsigned DefIdx,
1295       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1296     return false;
1297   }
1298 
1299   /// Target-dependent implementation of getExtractSubregInputs.
1300   ///
1301   /// \returns true if it is possible to build the equivalent
1302   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1303   ///
1304   /// \pre MI.isExtractSubregLike().
1305   ///
1306   /// \see TargetInstrInfo::getExtractSubregInputs.
1307   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1308                                           unsigned DefIdx,
1309                                           RegSubRegPairAndIdx &InputReg) const {
1310     return false;
1311   }
1312 
1313   /// Target-dependent implementation of getInsertSubregInputs.
1314   ///
1315   /// \returns true if it is possible to build the equivalent
1316   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1317   ///
1318   /// \pre MI.isInsertSubregLike().
1319   ///
1320   /// \see TargetInstrInfo::getInsertSubregInputs.
1321   virtual bool
1322   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1323                             RegSubRegPair &BaseReg,
1324                             RegSubRegPairAndIdx &InsertedReg) const {
1325     return false;
1326   }
1327 
1328 public:
1329   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1330   /// a store or a load and a store into two or more instruction. If this is
1331   /// possible, returns true as well as the new instructions by reference.
1332   virtual bool
1333   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1334                       bool UnfoldLoad, bool UnfoldStore,
1335                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
1336     return false;
1337   }
1338 
1339   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1340                                    SmallVectorImpl<SDNode *> &NewNodes) const {
1341     return false;
1342   }
1343 
1344   /// Returns the opcode of the would be new
1345   /// instruction after load / store are unfolded from an instruction of the
1346   /// specified opcode. It returns zero if the specified unfolding is not
1347   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1348   /// index of the operand which will hold the register holding the loaded
1349   /// value.
1350   virtual unsigned
1351   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1352                              unsigned *LoadRegIndex = nullptr) const {
1353     return 0;
1354   }
1355 
1356   /// This is used by the pre-regalloc scheduler to determine if two loads are
1357   /// loading from the same base address. It should only return true if the base
1358   /// pointers are the same and the only differences between the two addresses
1359   /// are the offset. It also returns the offsets by reference.
1360   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1361                                        int64_t &Offset1,
1362                                        int64_t &Offset2) const {
1363     return false;
1364   }
1365 
1366   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1367   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1368   /// On some targets if two loads are loading from
1369   /// addresses in the same cache line, it's better if they are scheduled
1370   /// together. This function takes two integers that represent the load offsets
1371   /// from the common base address. It returns true if it decides it's desirable
1372   /// to schedule the two loads together. "NumLoads" is the number of loads that
1373   /// have already been scheduled after Load1.
1374   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1375                                        int64_t Offset1, int64_t Offset2,
1376                                        unsigned NumLoads) const {
1377     return false;
1378   }
1379 
1380   /// Get the base operand and byte offset of an instruction that reads/writes
1381   /// memory. This is a convenience function for callers that are only prepared
1382   /// to handle a single base operand.
1383   bool getMemOperandWithOffset(const MachineInstr &MI,
1384                                const MachineOperand *&BaseOp, int64_t &Offset,
1385                                bool &OffsetIsScalable,
1386                                const TargetRegisterInfo *TRI) const;
1387 
1388   /// Get zero or more base operands and the byte offset of an instruction that
1389   /// reads/writes memory. Note that there may be zero base operands if the
1390   /// instruction accesses a constant address.
1391   /// It returns false if MI does not read/write memory.
1392   /// It returns false if base operands and offset could not be determined.
1393   /// It is not guaranteed to always recognize base operands and offsets in all
1394   /// cases.
1395   virtual bool getMemOperandsWithOffsetWidth(
1396       const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1397       int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
1398       const TargetRegisterInfo *TRI) const {
1399     return false;
1400   }
1401 
1402   /// Return true if the instruction contains a base register and offset. If
1403   /// true, the function also sets the operand position in the instruction
1404   /// for the base register and offset.
1405   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1406                                         unsigned &BasePos,
1407                                         unsigned &OffsetPos) const {
1408     return false;
1409   }
1410 
1411   /// Target dependent implementation to get the values constituting the address
1412   /// MachineInstr that is accessing memory. These values are returned as a
1413   /// struct ExtAddrMode which contains all relevant information to make up the
1414   /// address.
1415   virtual std::optional<ExtAddrMode>
1416   getAddrModeFromMemoryOp(const MachineInstr &MemI,
1417                           const TargetRegisterInfo *TRI) const {
1418     return std::nullopt;
1419   }
1420 
1421   /// Returns true if MI's Def is NullValueReg, and the MI
1422   /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1423   /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1424   /// function can return true even if becomes zero. Specifically cases such as
1425   /// NullValueReg = shl NullValueReg, 63.
1426   virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1427                                        const Register NullValueReg,
1428                                        const TargetRegisterInfo *TRI) const {
1429     return false;
1430   }
1431 
1432   /// If the instruction is an increment of a constant value, return the amount.
1433   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1434     return false;
1435   }
1436 
1437   /// Returns true if the two given memory operations should be scheduled
1438   /// adjacent. Note that you have to add:
1439   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1440   /// or
1441   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1442   /// to TargetPassConfig::createMachineScheduler() to have an effect.
1443   ///
1444   /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1445   /// \p NumLoads is the number of loads that will be in the cluster if this
1446   /// hook returns true.
1447   /// \p NumBytes is the number of bytes that will be loaded from all the
1448   /// clustered loads if this hook returns true.
1449   virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1450                                    ArrayRef<const MachineOperand *> BaseOps2,
1451                                    unsigned NumLoads, unsigned NumBytes) const {
1452     llvm_unreachable("target did not implement shouldClusterMemOps()");
1453   }
1454 
1455   /// Reverses the branch condition of the specified condition list,
1456   /// returning false on success and true if it cannot be reversed.
1457   virtual bool
1458   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1459     return true;
1460   }
1461 
1462   /// Insert a noop into the instruction stream at the specified point.
1463   virtual void insertNoop(MachineBasicBlock &MBB,
1464                           MachineBasicBlock::iterator MI) const;
1465 
1466   /// Insert noops into the instruction stream at the specified point.
1467   virtual void insertNoops(MachineBasicBlock &MBB,
1468                            MachineBasicBlock::iterator MI,
1469                            unsigned Quantity) const;
1470 
1471   /// Return the noop instruction to use for a noop.
1472   virtual MCInst getNop() const;
1473 
1474   /// Return true for post-incremented instructions.
1475   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1476 
1477   /// Returns true if the instruction is already predicated.
1478   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1479 
1480   /// Assumes the instruction is already predicated and returns true if the
1481   /// instruction can be predicated again.
1482   virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1483     assert(isPredicated(MI) && "Instruction is not predicated");
1484     return false;
1485   }
1486 
1487   // Returns a MIRPrinter comment for this machine operand.
1488   virtual std::string
1489   createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1490                           unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1491 
1492   /// Returns true if the instruction is a
1493   /// terminator instruction that has not been predicated.
1494   bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1495 
1496   /// Returns true if MI is an unconditional tail call.
1497   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1498     return false;
1499   }
1500 
1501   /// Returns true if the tail call can be made conditional on BranchCond.
1502   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1503                                           const MachineInstr &TailCall) const {
1504     return false;
1505   }
1506 
1507   /// Replace the conditional branch in MBB with a conditional tail call.
1508   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1509                                          SmallVectorImpl<MachineOperand> &Cond,
1510                                          const MachineInstr &TailCall) const {
1511     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1512   }
1513 
1514   /// Convert the instruction into a predicated instruction.
1515   /// It returns true if the operation was successful.
1516   virtual bool PredicateInstruction(MachineInstr &MI,
1517                                     ArrayRef<MachineOperand> Pred) const;
1518 
1519   /// Returns true if the first specified predicate
1520   /// subsumes the second, e.g. GE subsumes GT.
1521   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1522                                  ArrayRef<MachineOperand> Pred2) const {
1523     return false;
1524   }
1525 
1526   /// If the specified instruction defines any predicate
1527   /// or condition code register(s) used for predication, returns true as well
1528   /// as the definition predicate(s) by reference.
1529   /// SkipDead should be set to false at any point that dead
1530   /// predicate instructions should be considered as being defined.
1531   /// A dead predicate instruction is one that is guaranteed to be removed
1532   /// after a call to PredicateInstruction.
1533   virtual bool ClobbersPredicate(MachineInstr &MI,
1534                                  std::vector<MachineOperand> &Pred,
1535                                  bool SkipDead) const {
1536     return false;
1537   }
1538 
1539   /// Return true if the specified instruction can be predicated.
1540   /// By default, this returns true for every instruction with a
1541   /// PredicateOperand.
1542   virtual bool isPredicable(const MachineInstr &MI) const {
1543     return MI.getDesc().isPredicable();
1544   }
1545 
1546   /// Return true if it's safe to move a machine
1547   /// instruction that defines the specified register class.
1548   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1549     return true;
1550   }
1551 
1552   /// Test if the given instruction should be considered a scheduling boundary.
1553   /// This primarily includes labels and terminators.
1554   virtual bool isSchedulingBoundary(const MachineInstr &MI,
1555                                     const MachineBasicBlock *MBB,
1556                                     const MachineFunction &MF) const;
1557 
1558   /// Measure the specified inline asm to determine an approximation of its
1559   /// length.
1560   virtual unsigned getInlineAsmLength(
1561     const char *Str, const MCAsmInfo &MAI,
1562     const TargetSubtargetInfo *STI = nullptr) const;
1563 
1564   /// Allocate and return a hazard recognizer to use for this target when
1565   /// scheduling the machine instructions before register allocation.
1566   virtual ScheduleHazardRecognizer *
1567   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1568                                const ScheduleDAG *DAG) const;
1569 
1570   /// Allocate and return a hazard recognizer to use for this target when
1571   /// scheduling the machine instructions before register allocation.
1572   virtual ScheduleHazardRecognizer *
1573   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1574                                  const ScheduleDAGMI *DAG) const;
1575 
1576   /// Allocate and return a hazard recognizer to use for this target when
1577   /// scheduling the machine instructions after register allocation.
1578   virtual ScheduleHazardRecognizer *
1579   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1580                                      const ScheduleDAG *DAG) const;
1581 
1582   /// Allocate and return a hazard recognizer to use for by non-scheduling
1583   /// passes.
1584   virtual ScheduleHazardRecognizer *
1585   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1586     return nullptr;
1587   }
1588 
1589   /// Provide a global flag for disabling the PreRA hazard recognizer that
1590   /// targets may choose to honor.
1591   bool usePreRAHazardRecognizer() const;
1592 
1593   /// For a comparison instruction, return the source registers
1594   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1595   /// compares against in CmpValue. Return true if the comparison instruction
1596   /// can be analyzed.
1597   virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1598                               Register &SrcReg2, int64_t &Mask,
1599                               int64_t &Value) const {
1600     return false;
1601   }
1602 
1603   /// See if the comparison instruction can be converted
1604   /// into something more efficient. E.g., on ARM most instructions can set the
1605   /// flags register, obviating the need for a separate CMP.
1606   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1607                                     Register SrcReg2, int64_t Mask,
1608                                     int64_t Value,
1609                                     const MachineRegisterInfo *MRI) const {
1610     return false;
1611   }
1612   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1613 
1614   /// Try to remove the load by folding it to a register operand at the use.
1615   /// We fold the load instructions if and only if the
1616   /// def and use are in the same BB. We only look at one load and see
1617   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1618   /// defined by the load we are trying to fold. DefMI returns the machine
1619   /// instruction that defines FoldAsLoadDefReg, and the function returns
1620   /// the machine instruction generated due to folding.
1621   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1622                                           const MachineRegisterInfo *MRI,
1623                                           Register &FoldAsLoadDefReg,
1624                                           MachineInstr *&DefMI) const {
1625     return nullptr;
1626   }
1627 
1628   /// 'Reg' is known to be defined by a move immediate instruction,
1629   /// try to fold the immediate into the use instruction.
1630   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1631   /// then the caller may assume that DefMI has been erased from its parent
1632   /// block. The caller may assume that it will not be erased by this
1633   /// function otherwise.
1634   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1635                              Register Reg, MachineRegisterInfo *MRI) const {
1636     return false;
1637   }
1638 
1639   /// Return the number of u-operations the given machine
1640   /// instruction will be decoded to on the target cpu. The itinerary's
1641   /// IssueWidth is the number of microops that can be dispatched each
1642   /// cycle. An instruction with zero microops takes no dispatch resources.
1643   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1644                                   const MachineInstr &MI) const;
1645 
1646   /// Return true for pseudo instructions that don't consume any
1647   /// machine resources in their current form. These are common cases that the
1648   /// scheduler should consider free, rather than conservatively handling them
1649   /// as instructions with no itinerary.
1650   bool isZeroCost(unsigned Opcode) const {
1651     return Opcode <= TargetOpcode::COPY;
1652   }
1653 
1654   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1655                                 SDNode *DefNode, unsigned DefIdx,
1656                                 SDNode *UseNode, unsigned UseIdx) const;
1657 
1658   /// Compute and return the use operand latency of a given pair of def and use.
1659   /// In most cases, the static scheduling itinerary was enough to determine the
1660   /// operand latency. But it may not be possible for instructions with variable
1661   /// number of defs / uses.
1662   ///
1663   /// This is a raw interface to the itinerary that may be directly overridden
1664   /// by a target. Use computeOperandLatency to get the best estimate of
1665   /// latency.
1666   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1667                                 const MachineInstr &DefMI, unsigned DefIdx,
1668                                 const MachineInstr &UseMI,
1669                                 unsigned UseIdx) const;
1670 
1671   /// Compute the instruction latency of a given instruction.
1672   /// If the instruction has higher cost when predicated, it's returned via
1673   /// PredCost.
1674   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1675                                    const MachineInstr &MI,
1676                                    unsigned *PredCost = nullptr) const;
1677 
1678   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1679 
1680   virtual int getInstrLatency(const InstrItineraryData *ItinData,
1681                               SDNode *Node) const;
1682 
1683   /// Return the default expected latency for a def based on its opcode.
1684   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1685                              const MachineInstr &DefMI) const;
1686 
1687   /// Return true if this opcode has high latency to its result.
1688   virtual bool isHighLatencyDef(int opc) const { return false; }
1689 
1690   /// Compute operand latency between a def of 'Reg'
1691   /// and a use in the current loop. Return true if the target considered
1692   /// it 'high'. This is used by optimization passes such as machine LICM to
1693   /// determine whether it makes sense to hoist an instruction out even in a
1694   /// high register pressure situation.
1695   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1696                                      const MachineRegisterInfo *MRI,
1697                                      const MachineInstr &DefMI, unsigned DefIdx,
1698                                      const MachineInstr &UseMI,
1699                                      unsigned UseIdx) const {
1700     return false;
1701   }
1702 
1703   /// Compute operand latency of a def of 'Reg'. Return true
1704   /// if the target considered it 'low'.
1705   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1706                                 const MachineInstr &DefMI,
1707                                 unsigned DefIdx) const;
1708 
1709   /// Perform target-specific instruction verification.
1710   virtual bool verifyInstruction(const MachineInstr &MI,
1711                                  StringRef &ErrInfo) const {
1712     return true;
1713   }
1714 
1715   /// Return the current execution domain and bit mask of
1716   /// possible domains for instruction.
1717   ///
1718   /// Some micro-architectures have multiple execution domains, and multiple
1719   /// opcodes that perform the same operation in different domains.  For
1720   /// example, the x86 architecture provides the por, orps, and orpd
1721   /// instructions that all do the same thing.  There is a latency penalty if a
1722   /// register is written in one domain and read in another.
1723   ///
1724   /// This function returns a pair (domain, mask) containing the execution
1725   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1726   /// function can be used to change the opcode to one of the domains in the
1727   /// bit mask.  Instructions whose execution domain can't be changed should
1728   /// return a 0 mask.
1729   ///
1730   /// The execution domain numbers don't have any special meaning except domain
1731   /// 0 is used for instructions that are not associated with any interesting
1732   /// execution domain.
1733   ///
1734   virtual std::pair<uint16_t, uint16_t>
1735   getExecutionDomain(const MachineInstr &MI) const {
1736     return std::make_pair(0, 0);
1737   }
1738 
1739   /// Change the opcode of MI to execute in Domain.
1740   ///
1741   /// The bit (1 << Domain) must be set in the mask returned from
1742   /// getExecutionDomain(MI).
1743   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1744 
1745   /// Returns the preferred minimum clearance
1746   /// before an instruction with an unwanted partial register update.
1747   ///
1748   /// Some instructions only write part of a register, and implicitly need to
1749   /// read the other parts of the register.  This may cause unwanted stalls
1750   /// preventing otherwise unrelated instructions from executing in parallel in
1751   /// an out-of-order CPU.
1752   ///
1753   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1754   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1755   /// the instruction needs to wait for the old value of the register to become
1756   /// available:
1757   ///
1758   ///   addps %xmm1, %xmm0
1759   ///   movaps %xmm0, (%rax)
1760   ///   cvtsi2ss %rbx, %xmm0
1761   ///
1762   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1763   /// instruction before it can issue, even though the high bits of %xmm0
1764   /// probably aren't needed.
1765   ///
1766   /// This hook returns the preferred clearance before MI, measured in
1767   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1768   /// instructions before MI.  It should only return a positive value for
1769   /// unwanted dependencies.  If the old bits of the defined register have
1770   /// useful values, or if MI is determined to otherwise read the dependency,
1771   /// the hook should return 0.
1772   ///
1773   /// The unwanted dependency may be handled by:
1774   ///
1775   /// 1. Allocating the same register for an MI def and use.  That makes the
1776   ///    unwanted dependency identical to a required dependency.
1777   ///
1778   /// 2. Allocating a register for the def that has no defs in the previous N
1779   ///    instructions.
1780   ///
1781   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1782   ///    allows the target to insert a dependency breaking instruction.
1783   ///
1784   virtual unsigned
1785   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1786                                const TargetRegisterInfo *TRI) const {
1787     // The default implementation returns 0 for no partial register dependency.
1788     return 0;
1789   }
1790 
1791   /// Return the minimum clearance before an instruction that reads an
1792   /// unused register.
1793   ///
1794   /// For example, AVX instructions may copy part of a register operand into
1795   /// the unused high bits of the destination register.
1796   ///
1797   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1798   ///
1799   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1800   /// false dependence on any previous write to %xmm0.
1801   ///
1802   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1803   /// does not take an operand index. Instead sets \p OpNum to the index of the
1804   /// unused register.
1805   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1806                                         const TargetRegisterInfo *TRI) const {
1807     // The default implementation returns 0 for no undef register dependency.
1808     return 0;
1809   }
1810 
1811   /// Insert a dependency-breaking instruction
1812   /// before MI to eliminate an unwanted dependency on OpNum.
1813   ///
1814   /// If it wasn't possible to avoid a def in the last N instructions before MI
1815   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1816   /// unwanted dependency.
1817   ///
1818   /// On x86, an xorps instruction can be used as a dependency breaker:
1819   ///
1820   ///   addps %xmm1, %xmm0
1821   ///   movaps %xmm0, (%rax)
1822   ///   xorps %xmm0, %xmm0
1823   ///   cvtsi2ss %rbx, %xmm0
1824   ///
1825   /// An <imp-kill> operand should be added to MI if an instruction was
1826   /// inserted.  This ties the instructions together in the post-ra scheduler.
1827   ///
1828   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1829                                          const TargetRegisterInfo *TRI) const {}
1830 
1831   /// Create machine specific model for scheduling.
1832   virtual DFAPacketizer *
1833   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1834     return nullptr;
1835   }
1836 
1837   /// Sometimes, it is possible for the target
1838   /// to tell, even without aliasing information, that two MIs access different
1839   /// memory addresses. This function returns true if two MIs access different
1840   /// memory addresses and false otherwise.
1841   ///
1842   /// Assumes any physical registers used to compute addresses have the same
1843   /// value for both instructions. (This is the most useful assumption for
1844   /// post-RA scheduling.)
1845   ///
1846   /// See also MachineInstr::mayAlias, which is implemented on top of this
1847   /// function.
1848   virtual bool
1849   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1850                                   const MachineInstr &MIb) const {
1851     assert(MIa.mayLoadOrStore() &&
1852            "MIa must load from or modify a memory location");
1853     assert(MIb.mayLoadOrStore() &&
1854            "MIb must load from or modify a memory location");
1855     return false;
1856   }
1857 
1858   /// Return the value to use for the MachineCSE's LookAheadLimit,
1859   /// which is a heuristic used for CSE'ing phys reg defs.
1860   virtual unsigned getMachineCSELookAheadLimit() const {
1861     // The default lookahead is small to prevent unprofitable quadratic
1862     // behavior.
1863     return 5;
1864   }
1865 
1866   /// Return the maximal number of alias checks on memory operands. For
1867   /// instructions with more than one memory operands, the alias check on a
1868   /// single MachineInstr pair has quadratic overhead and results in
1869   /// unacceptable performance in the worst case. The limit here is to clamp
1870   /// that maximal checks performed. Usually, that's the product of memory
1871   /// operand numbers from that pair of MachineInstr to be checked. For
1872   /// instance, with two MachineInstrs with 4 and 5 memory operands
1873   /// correspondingly, a total of 20 checks are required. With this limit set to
1874   /// 16, their alias check is skipped. We choose to limit the product instead
1875   /// of the individual instruction as targets may have special MachineInstrs
1876   /// with a considerably high number of memory operands, such as `ldm` in ARM.
1877   /// Setting this limit per MachineInstr would result in either too high
1878   /// overhead or too rigid restriction.
1879   virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1880 
1881   /// Return an array that contains the ids of the target indices (used for the
1882   /// TargetIndex machine operand) and their names.
1883   ///
1884   /// MIR Serialization is able to serialize only the target indices that are
1885   /// defined by this method.
1886   virtual ArrayRef<std::pair<int, const char *>>
1887   getSerializableTargetIndices() const {
1888     return std::nullopt;
1889   }
1890 
1891   /// Decompose the machine operand's target flags into two values - the direct
1892   /// target flag value and any of bit flags that are applied.
1893   virtual std::pair<unsigned, unsigned>
1894   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1895     return std::make_pair(0u, 0u);
1896   }
1897 
1898   /// Return an array that contains the direct target flag values and their
1899   /// names.
1900   ///
1901   /// MIR Serialization is able to serialize only the target flags that are
1902   /// defined by this method.
1903   virtual ArrayRef<std::pair<unsigned, const char *>>
1904   getSerializableDirectMachineOperandTargetFlags() const {
1905     return std::nullopt;
1906   }
1907 
1908   /// Return an array that contains the bitmask target flag values and their
1909   /// names.
1910   ///
1911   /// MIR Serialization is able to serialize only the target flags that are
1912   /// defined by this method.
1913   virtual ArrayRef<std::pair<unsigned, const char *>>
1914   getSerializableBitmaskMachineOperandTargetFlags() const {
1915     return std::nullopt;
1916   }
1917 
1918   /// Return an array that contains the MMO target flag values and their
1919   /// names.
1920   ///
1921   /// MIR Serialization is able to serialize only the MMO target flags that are
1922   /// defined by this method.
1923   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1924   getSerializableMachineMemOperandTargetFlags() const {
1925     return std::nullopt;
1926   }
1927 
1928   /// Determines whether \p Inst is a tail call instruction. Override this
1929   /// method on targets that do not properly set MCID::Return and MCID::Call on
1930   /// tail call instructions."
1931   virtual bool isTailCall(const MachineInstr &Inst) const {
1932     return Inst.isReturn() && Inst.isCall();
1933   }
1934 
1935   /// True if the instruction is bound to the top of its basic block and no
1936   /// other instructions shall be inserted before it. This can be implemented
1937   /// to prevent register allocator to insert spills before such instructions.
1938   virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1939     return false;
1940   }
1941 
1942   /// During PHI eleimination lets target to make necessary checks and
1943   /// insert the copy to the PHI destination register in a target specific
1944   /// manner.
1945   virtual MachineInstr *createPHIDestinationCopy(
1946       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
1947       const DebugLoc &DL, Register Src, Register Dst) const {
1948     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1949         .addReg(Src);
1950   }
1951 
1952   /// During PHI eleimination lets target to make necessary checks and
1953   /// insert the copy to the PHI destination register in a target specific
1954   /// manner.
1955   virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
1956                                             MachineBasicBlock::iterator InsPt,
1957                                             const DebugLoc &DL, Register Src,
1958                                             unsigned SrcSubReg,
1959                                             Register Dst) const {
1960     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1961         .addReg(Src, 0, SrcSubReg);
1962   }
1963 
1964   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1965   /// information for a set of outlining candidates.
1966   virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1967       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1968     llvm_unreachable(
1969         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1970   }
1971 
1972   /// Optional target hook to create the LLVM IR attributes for the outlined
1973   /// function. If overridden, the overriding function must call the default
1974   /// implementation.
1975   virtual void mergeOutliningCandidateAttributes(
1976       Function &F, std::vector<outliner::Candidate> &Candidates) const;
1977 
1978   /// Returns how or if \p MI should be outlined.
1979   virtual outliner::InstrType
1980   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1981     llvm_unreachable(
1982         "Target didn't implement TargetInstrInfo::getOutliningType!");
1983   }
1984 
1985   /// Optional target hook that returns true if \p MBB is safe to outline from,
1986   /// and returns any target-specific information in \p Flags.
1987   virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1988                                       unsigned &Flags) const;
1989 
1990   /// Insert a custom frame for outlined functions.
1991   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1992                                   const outliner::OutlinedFunction &OF) const {
1993     llvm_unreachable(
1994         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1995   }
1996 
1997   /// Insert a call to an outlined function into the program.
1998   /// Returns an iterator to the spot where we inserted the call. This must be
1999   /// implemented by the target.
2000   virtual MachineBasicBlock::iterator
2001   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
2002                      MachineBasicBlock::iterator &It, MachineFunction &MF,
2003                      outliner::Candidate &C) const {
2004     llvm_unreachable(
2005         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2006   }
2007 
2008   /// Return true if the function can safely be outlined from.
2009   /// A function \p MF is considered safe for outlining if an outlined function
2010   /// produced from instructions in F will produce a program which produces the
2011   /// same output for any set of given inputs.
2012   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
2013                                            bool OutlineFromLinkOnceODRs) const {
2014     llvm_unreachable("Target didn't implement "
2015                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2016   }
2017 
2018   /// Return true if the function should be outlined from by default.
2019   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
2020     return false;
2021   }
2022 
2023   /// Produce the expression describing the \p MI loading a value into
2024   /// the physical register \p Reg. This hook should only be used with
2025   /// \p MIs belonging to VReg-less functions.
2026   virtual std::optional<ParamLoadedValue>
2027   describeLoadedValue(const MachineInstr &MI, Register Reg) const;
2028 
2029   /// Given the generic extension instruction \p ExtMI, returns true if this
2030   /// extension is a likely candidate for being folded into an another
2031   /// instruction.
2032   virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
2033                                         MachineRegisterInfo &MRI) const {
2034     return false;
2035   }
2036 
2037   /// Return MIR formatter to format/parse MIR operands.  Target can override
2038   /// this virtual function and return target specific MIR formatter.
2039   virtual const MIRFormatter *getMIRFormatter() const {
2040     if (!Formatter.get())
2041       Formatter = std::make_unique<MIRFormatter>();
2042     return Formatter.get();
2043   }
2044 
2045   /// Returns the target-specific default value for tail duplication.
2046   /// This value will be used if the tail-dup-placement-threshold argument is
2047   /// not provided.
2048   virtual unsigned getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
2049     return OptLevel >= CodeGenOpt::Aggressive ? 4 : 2;
2050   }
2051 
2052   /// Returns the callee operand from the given \p MI.
2053   virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2054     return MI.getOperand(0);
2055   }
2056 
2057   /// Return the uniformity behavior of the given instruction.
2058   virtual InstructionUniformity
2059   getInstructionUniformity(const MachineInstr &MI) const {
2060     return InstructionUniformity::Default;
2061   }
2062 
2063   /// Returns true if the given \p MI defines a TargetIndex operand that can be
2064   /// tracked by their offset, can have values, and can have debug info
2065   /// associated with it. If so, sets \p Index and \p Offset of the target index
2066   /// operand.
2067   virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
2068                                         int64_t &Offset) const {
2069     return false;
2070   }
2071 
2072 private:
2073   mutable std::unique_ptr<MIRFormatter> Formatter;
2074   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2075   unsigned CatchRetOpcode;
2076   unsigned ReturnOpcode;
2077 };
2078 
2079 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2080 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
2081   using RegInfo = DenseMapInfo<unsigned>;
2082 
2083   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
2084     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2085                                           RegInfo::getEmptyKey());
2086   }
2087 
2088   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
2089     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2090                                           RegInfo::getTombstoneKey());
2091   }
2092 
2093   /// Reuse getHashValue implementation from
2094   /// std::pair<unsigned, unsigned>.
2095   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2096     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
2097     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2098   }
2099 
2100   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
2101                       const TargetInstrInfo::RegSubRegPair &RHS) {
2102     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
2103            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
2104   }
2105 };
2106 
2107 } // end namespace llvm
2108 
2109 #endif // LLVM_CODEGEN_TARGETINSTRINFO_H
2110