1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the target machine instruction set to the code generator.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14 #define LLVM_CODEGEN_TARGETINSTRINFO_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/CodeGen/MIRFormatter.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineCombinerPattern.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOutliner.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/MC/MCInstrInfo.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <utility>
37 #include <vector>
38 
39 namespace llvm {
40 
41 class DFAPacketizer;
42 class InstrItineraryData;
43 class LiveIntervals;
44 class LiveVariables;
45 class MachineLoop;
46 class MachineMemOperand;
47 class MachineRegisterInfo;
48 class MCAsmInfo;
49 class MCInst;
50 struct MCSchedModel;
51 class Module;
52 class ScheduleDAG;
53 class ScheduleDAGMI;
54 class ScheduleHazardRecognizer;
55 class SDNode;
56 class SelectionDAG;
57 class RegScavenger;
58 class TargetRegisterClass;
59 class TargetRegisterInfo;
60 class TargetSchedModel;
61 class TargetSubtargetInfo;
62 
63 template <class T> class SmallVectorImpl;
64 
65 using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
66 
67 struct DestSourcePair {
68   const MachineOperand *Destination;
69   const MachineOperand *Source;
70 
71   DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
72       : Destination(&Dest), Source(&Src) {}
73 };
74 
75 /// Used to describe a register and immediate addition.
76 struct RegImmPair {
77   Register Reg;
78   int64_t Imm;
79 
80   RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
81 };
82 
83 /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
84 /// It holds the register values, the scale value and the displacement.
85 struct ExtAddrMode {
86   Register BaseReg;
87   Register ScaledReg;
88   int64_t Scale;
89   int64_t Displacement;
90 };
91 
92 //---------------------------------------------------------------------------
93 ///
94 /// TargetInstrInfo - Interface to description of machine instruction set
95 ///
96 class TargetInstrInfo : public MCInstrInfo {
97 public:
98   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
99                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
100       : CallFrameSetupOpcode(CFSetupOpcode),
101         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
102         ReturnOpcode(ReturnOpcode) {}
103   TargetInstrInfo(const TargetInstrInfo &) = delete;
104   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
105   virtual ~TargetInstrInfo();
106 
107   static bool isGenericOpcode(unsigned Opc) {
108     return Opc <= TargetOpcode::GENERIC_OP_END;
109   }
110 
111   /// Given a machine instruction descriptor, returns the register
112   /// class constraint for OpNum, or NULL.
113   virtual
114   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
115                                          const TargetRegisterInfo *TRI,
116                                          const MachineFunction &MF) const;
117 
118   /// Return true if the instruction is trivially rematerializable, meaning it
119   /// has no side effects and requires no operands that aren't always available.
120   /// This means the only allowed uses are constants and unallocatable physical
121   /// registers so that the instructions result is independent of the place
122   /// in the function.
123   bool isTriviallyReMaterializable(const MachineInstr &MI) const {
124     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
125            (MI.getDesc().isRematerializable() &&
126             (isReallyTriviallyReMaterializable(MI) ||
127              isReallyTriviallyReMaterializableGeneric(MI)));
128   }
129 
130   /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
131   /// of instruction rematerialization or sinking.
132   virtual bool isIgnorableUse(const MachineOperand &MO) const {
133     return false;
134   }
135 
136 protected:
137   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
138   /// set, this hook lets the target specify whether the instruction is actually
139   /// trivially rematerializable, taking into consideration its operands. This
140   /// predicate must return false if the instruction has any side effects other
141   /// than producing a value, or if it requres any address registers that are
142   /// not always available.
143   /// Requirements must be check as stated in isTriviallyReMaterializable() .
144   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const {
145     return false;
146   }
147 
148   /// This method commutes the operands of the given machine instruction MI.
149   /// The operands to be commuted are specified by their indices OpIdx1 and
150   /// OpIdx2.
151   ///
152   /// If a target has any instructions that are commutable but require
153   /// converting to different instructions or making non-trivial changes
154   /// to commute them, this method can be overloaded to do that.
155   /// The default implementation simply swaps the commutable operands.
156   ///
157   /// If NewMI is false, MI is modified in place and returned; otherwise, a
158   /// new machine instruction is created and returned.
159   ///
160   /// Do not call this method for a non-commutable instruction.
161   /// Even though the instruction is commutable, the method may still
162   /// fail to commute the operands, null pointer is returned in such cases.
163   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
164                                                unsigned OpIdx1,
165                                                unsigned OpIdx2) const;
166 
167   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
168   /// operand indices to (ResultIdx1, ResultIdx2).
169   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
170   /// predefined to some indices or be undefined (designated by the special
171   /// value 'CommuteAnyOperandIndex').
172   /// The predefined result indices cannot be re-defined.
173   /// The function returns true iff after the result pair redefinition
174   /// the fixed result pair is equal to or equivalent to the source pair of
175   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
176   /// the pairs (x,y) and (y,x) are equivalent.
177   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
178                                    unsigned CommutableOpIdx1,
179                                    unsigned CommutableOpIdx2);
180 
181 private:
182   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
183   /// set and the target hook isReallyTriviallyReMaterializable returns false,
184   /// this function does target-independent tests to determine if the
185   /// instruction is really trivially rematerializable.
186   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI) const;
187 
188 public:
189   /// These methods return the opcode of the frame setup/destroy instructions
190   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
191   /// order to abstract away the difference between operating with a frame
192   /// pointer and operating without, through the use of these two instructions.
193   ///
194   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
195   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
196 
197   /// Returns true if the argument is a frame pseudo instruction.
198   bool isFrameInstr(const MachineInstr &I) const {
199     return I.getOpcode() == getCallFrameSetupOpcode() ||
200            I.getOpcode() == getCallFrameDestroyOpcode();
201   }
202 
203   /// Returns true if the argument is a frame setup pseudo instruction.
204   bool isFrameSetup(const MachineInstr &I) const {
205     return I.getOpcode() == getCallFrameSetupOpcode();
206   }
207 
208   /// Returns size of the frame associated with the given frame instruction.
209   /// For frame setup instruction this is frame that is set up space set up
210   /// after the instruction. For frame destroy instruction this is the frame
211   /// freed by the caller.
212   /// Note, in some cases a call frame (or a part of it) may be prepared prior
213   /// to the frame setup instruction. It occurs in the calls that involve
214   /// inalloca arguments. This function reports only the size of the frame part
215   /// that is set up between the frame setup and destroy pseudo instructions.
216   int64_t getFrameSize(const MachineInstr &I) const {
217     assert(isFrameInstr(I) && "Not a frame instruction");
218     assert(I.getOperand(0).getImm() >= 0);
219     return I.getOperand(0).getImm();
220   }
221 
222   /// Returns the total frame size, which is made up of the space set up inside
223   /// the pair of frame start-stop instructions and the space that is set up
224   /// prior to the pair.
225   int64_t getFrameTotalSize(const MachineInstr &I) const {
226     if (isFrameSetup(I)) {
227       assert(I.getOperand(1).getImm() >= 0 &&
228              "Frame size must not be negative");
229       return getFrameSize(I) + I.getOperand(1).getImm();
230     }
231     return getFrameSize(I);
232   }
233 
234   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
235   unsigned getReturnOpcode() const { return ReturnOpcode; }
236 
237   /// Returns the actual stack pointer adjustment made by an instruction
238   /// as part of a call sequence. By default, only call frame setup/destroy
239   /// instructions adjust the stack, but targets may want to override this
240   /// to enable more fine-grained adjustment, or adjust by a different value.
241   virtual int getSPAdjust(const MachineInstr &MI) const;
242 
243   /// Return true if the instruction is a "coalescable" extension instruction.
244   /// That is, it's like a copy where it's legal for the source to overlap the
245   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
246   /// expected the pre-extension value is available as a subreg of the result
247   /// register. This also returns the sub-register index in SubIdx.
248   virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
249                                      Register &DstReg, unsigned &SubIdx) const {
250     return false;
251   }
252 
253   /// If the specified machine instruction is a direct
254   /// load from a stack slot, return the virtual or physical register number of
255   /// the destination along with the FrameIndex of the loaded stack slot.  If
256   /// not, return 0.  This predicate must return 0 if the instruction has
257   /// any side effects other than loading from the stack slot.
258   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
259                                        int &FrameIndex) const {
260     return 0;
261   }
262 
263   /// Optional extension of isLoadFromStackSlot that returns the number of
264   /// bytes loaded from the stack. This must be implemented if a backend
265   /// supports partial stack slot spills/loads to further disambiguate
266   /// what the load does.
267   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
268                                        int &FrameIndex,
269                                        unsigned &MemBytes) const {
270     MemBytes = 0;
271     return isLoadFromStackSlot(MI, FrameIndex);
272   }
273 
274   /// Check for post-frame ptr elimination stack locations as well.
275   /// This uses a heuristic so it isn't reliable for correctness.
276   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
277                                              int &FrameIndex) const {
278     return 0;
279   }
280 
281   /// If the specified machine instruction has a load from a stack slot,
282   /// return true along with the FrameIndices of the loaded stack slot and the
283   /// machine mem operands containing the reference.
284   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
285   /// any instructions that loads from the stack.  This is just a hint, as some
286   /// cases may be missed.
287   virtual bool hasLoadFromStackSlot(
288       const MachineInstr &MI,
289       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
290 
291   /// If the specified machine instruction is a direct
292   /// store to a stack slot, return the virtual or physical register number of
293   /// the source reg along with the FrameIndex of the loaded stack slot.  If
294   /// not, return 0.  This predicate must return 0 if the instruction has
295   /// any side effects other than storing to the stack slot.
296   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
297                                       int &FrameIndex) const {
298     return 0;
299   }
300 
301   /// Optional extension of isStoreToStackSlot that returns the number of
302   /// bytes stored to the stack. This must be implemented if a backend
303   /// supports partial stack slot spills/loads to further disambiguate
304   /// what the store does.
305   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
306                                       int &FrameIndex,
307                                       unsigned &MemBytes) const {
308     MemBytes = 0;
309     return isStoreToStackSlot(MI, FrameIndex);
310   }
311 
312   /// Check for post-frame ptr elimination stack locations as well.
313   /// This uses a heuristic, so it isn't reliable for correctness.
314   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
315                                             int &FrameIndex) const {
316     return 0;
317   }
318 
319   /// If the specified machine instruction has a store to a stack slot,
320   /// return true along with the FrameIndices of the loaded stack slot and the
321   /// machine mem operands containing the reference.
322   /// If not, return false.  Unlike isStoreToStackSlot,
323   /// this returns true for any instructions that stores to the
324   /// stack.  This is just a hint, as some cases may be missed.
325   virtual bool hasStoreToStackSlot(
326       const MachineInstr &MI,
327       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
328 
329   /// Return true if the specified machine instruction
330   /// is a copy of one stack slot to another and has no other effect.
331   /// Provide the identity of the two frame indices.
332   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
333                                int &SrcFrameIndex) const {
334     return false;
335   }
336 
337   /// Compute the size in bytes and offset within a stack slot of a spilled
338   /// register or subregister.
339   ///
340   /// \param [out] Size in bytes of the spilled value.
341   /// \param [out] Offset in bytes within the stack slot.
342   /// \returns true if both Size and Offset are successfully computed.
343   ///
344   /// Not all subregisters have computable spill slots. For example,
345   /// subregisters registers may not be byte-sized, and a pair of discontiguous
346   /// subregisters has no single offset.
347   ///
348   /// Targets with nontrivial bigendian implementations may need to override
349   /// this, particularly to support spilled vector registers.
350   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
351                                  unsigned &Size, unsigned &Offset,
352                                  const MachineFunction &MF) const;
353 
354   /// Return true if the given instruction is terminator that is unspillable,
355   /// according to isUnspillableTerminatorImpl.
356   bool isUnspillableTerminator(const MachineInstr *MI) const {
357     return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
358   }
359 
360   /// Returns the size in bytes of the specified MachineInstr, or ~0U
361   /// when this function is not implemented by a target.
362   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
363     return ~0U;
364   }
365 
366   /// Return true if the instruction is as cheap as a move instruction.
367   ///
368   /// Targets for different archs need to override this, and different
369   /// micro-architectures can also be finely tuned inside.
370   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
371     return MI.isAsCheapAsAMove();
372   }
373 
374   /// Return true if the instruction should be sunk by MachineSink.
375   ///
376   /// MachineSink determines on its own whether the instruction is safe to sink;
377   /// this gives the target a hook to override the default behavior with regards
378   /// to which instructions should be sunk.
379   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
380 
381   /// Return false if the instruction should not be hoisted by MachineLICM.
382   ///
383   /// MachineLICM determines on its own whether the instruction is safe to
384   /// hoist; this gives the target a hook to extend this assessment and prevent
385   /// an instruction being hoisted from a given loop for target specific
386   /// reasons.
387   virtual bool shouldHoist(const MachineInstr &MI,
388                            const MachineLoop *FromLoop) const {
389     return true;
390   }
391 
392   /// Re-issue the specified 'original' instruction at the
393   /// specific location targeting a new destination register.
394   /// The register in Orig->getOperand(0).getReg() will be substituted by
395   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
396   /// SubIdx.
397   virtual void reMaterialize(MachineBasicBlock &MBB,
398                              MachineBasicBlock::iterator MI, Register DestReg,
399                              unsigned SubIdx, const MachineInstr &Orig,
400                              const TargetRegisterInfo &TRI) const;
401 
402   /// Clones instruction or the whole instruction bundle \p Orig and
403   /// insert into \p MBB before \p InsertBefore. The target may update operands
404   /// that are required to be unique.
405   ///
406   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
407   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
408                                   MachineBasicBlock::iterator InsertBefore,
409                                   const MachineInstr &Orig) const;
410 
411   /// This method must be implemented by targets that
412   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
413   /// may be able to convert a two-address instruction into one or more true
414   /// three-address instructions on demand.  This allows the X86 target (for
415   /// example) to convert ADD and SHL instructions into LEA instructions if they
416   /// would require register copies due to two-addressness.
417   ///
418   /// This method returns a null pointer if the transformation cannot be
419   /// performed, otherwise it returns the last new instruction.
420   ///
421   /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
422   /// replacing \p MI with new instructions, even though this function does not
423   /// remove MI.
424   virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
425                                               LiveVariables *LV,
426                                               LiveIntervals *LIS) const {
427     return nullptr;
428   }
429 
430   // This constant can be used as an input value of operand index passed to
431   // the method findCommutedOpIndices() to tell the method that the
432   // corresponding operand index is not pre-defined and that the method
433   // can pick any commutable operand.
434   static const unsigned CommuteAnyOperandIndex = ~0U;
435 
436   /// This method commutes the operands of the given machine instruction MI.
437   ///
438   /// The operands to be commuted are specified by their indices OpIdx1 and
439   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
440   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
441   /// any arbitrarily chosen commutable operand. If both arguments are set to
442   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
443   /// operands; then commutes them if such operands could be found.
444   ///
445   /// If NewMI is false, MI is modified in place and returned; otherwise, a
446   /// new machine instruction is created and returned.
447   ///
448   /// Do not call this method for a non-commutable instruction or
449   /// for non-commuable operands.
450   /// Even though the instruction is commutable, the method may still
451   /// fail to commute the operands, null pointer is returned in such cases.
452   MachineInstr *
453   commuteInstruction(MachineInstr &MI, bool NewMI = false,
454                      unsigned OpIdx1 = CommuteAnyOperandIndex,
455                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
456 
457   /// Returns true iff the routine could find two commutable operands in the
458   /// given machine instruction.
459   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
460   /// If any of the INPUT values is set to the special value
461   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
462   /// operand, then returns its index in the corresponding argument.
463   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
464   /// looks for 2 commutable operands.
465   /// If INPUT values refer to some operands of MI, then the method simply
466   /// returns true if the corresponding operands are commutable and returns
467   /// false otherwise.
468   ///
469   /// For example, calling this method this way:
470   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
471   ///     findCommutedOpIndices(MI, Op1, Op2);
472   /// can be interpreted as a query asking to find an operand that would be
473   /// commutable with the operand#1.
474   virtual bool findCommutedOpIndices(const MachineInstr &MI,
475                                      unsigned &SrcOpIdx1,
476                                      unsigned &SrcOpIdx2) const;
477 
478   /// Returns true if the target has a preference on the operands order of
479   /// the given machine instruction. And specify if \p Commute is required to
480   /// get the desired operands order.
481   virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
482     return false;
483   }
484 
485   /// A pair composed of a register and a sub-register index.
486   /// Used to give some type checking when modeling Reg:SubReg.
487   struct RegSubRegPair {
488     Register Reg;
489     unsigned SubReg;
490 
491     RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
492         : Reg(Reg), SubReg(SubReg) {}
493 
494     bool operator==(const RegSubRegPair& P) const {
495       return Reg == P.Reg && SubReg == P.SubReg;
496     }
497     bool operator!=(const RegSubRegPair& P) const {
498       return !(*this == P);
499     }
500   };
501 
502   /// A pair composed of a pair of a register and a sub-register index,
503   /// and another sub-register index.
504   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
505   struct RegSubRegPairAndIdx : RegSubRegPair {
506     unsigned SubIdx;
507 
508     RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
509                         unsigned SubIdx = 0)
510         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
511   };
512 
513   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
514   /// and \p DefIdx.
515   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
516   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
517   /// flag are not added to this list.
518   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
519   /// two elements:
520   /// - %1:sub1, sub0
521   /// - %2<:0>, sub1
522   ///
523   /// \returns true if it is possible to build such an input sequence
524   /// with the pair \p MI, \p DefIdx. False otherwise.
525   ///
526   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
527   ///
528   /// \note The generic implementation does not provide any support for
529   /// MI.isRegSequenceLike(). In other words, one has to override
530   /// getRegSequenceLikeInputs for target specific instructions.
531   bool
532   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
533                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
534 
535   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
536   /// and \p DefIdx.
537   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
538   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
539   /// - %1:sub1, sub0
540   ///
541   /// \returns true if it is possible to build such an input sequence
542   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
543   /// False otherwise.
544   ///
545   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
546   ///
547   /// \note The generic implementation does not provide any support for
548   /// MI.isExtractSubregLike(). In other words, one has to override
549   /// getExtractSubregLikeInputs for target specific instructions.
550   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
551                               RegSubRegPairAndIdx &InputReg) const;
552 
553   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
554   /// and \p DefIdx.
555   /// \p [out] BaseReg and \p [out] InsertedReg contain
556   /// the equivalent inputs of INSERT_SUBREG.
557   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
558   /// - BaseReg: %0:sub0
559   /// - InsertedReg: %1:sub1, sub3
560   ///
561   /// \returns true if it is possible to build such an input sequence
562   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
563   /// False otherwise.
564   ///
565   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
566   ///
567   /// \note The generic implementation does not provide any support for
568   /// MI.isInsertSubregLike(). In other words, one has to override
569   /// getInsertSubregLikeInputs for target specific instructions.
570   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
571                              RegSubRegPair &BaseReg,
572                              RegSubRegPairAndIdx &InsertedReg) const;
573 
574   /// Return true if two machine instructions would produce identical values.
575   /// By default, this is only true when the two instructions
576   /// are deemed identical except for defs. If this function is called when the
577   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
578   /// aggressive checks.
579   virtual bool produceSameValue(const MachineInstr &MI0,
580                                 const MachineInstr &MI1,
581                                 const MachineRegisterInfo *MRI = nullptr) const;
582 
583   /// \returns true if a branch from an instruction with opcode \p BranchOpc
584   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
585   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
586                                      int64_t BrOffset) const {
587     llvm_unreachable("target did not implement");
588   }
589 
590   /// \returns The block that branch instruction \p MI jumps to.
591   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
592     llvm_unreachable("target did not implement");
593   }
594 
595   /// Insert an unconditional indirect branch at the end of \p MBB to \p
596   /// NewDestBB. Optionally, insert the clobbered register restoring in \p
597   /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
598   /// the offset of the position to insert the new branch.
599   virtual void insertIndirectBranch(MachineBasicBlock &MBB,
600                                     MachineBasicBlock &NewDestBB,
601                                     MachineBasicBlock &RestoreBB,
602                                     const DebugLoc &DL, int64_t BrOffset = 0,
603                                     RegScavenger *RS = nullptr) const {
604     llvm_unreachable("target did not implement");
605   }
606 
607   /// Analyze the branching code at the end of MBB, returning
608   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
609   /// implemented for a target).  Upon success, this returns false and returns
610   /// with the following information in various cases:
611   ///
612   /// 1. If this block ends with no branches (it just falls through to its succ)
613   ///    just return false, leaving TBB/FBB null.
614   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
615   ///    the destination block.
616   /// 3. If this block ends with a conditional branch and it falls through to a
617   ///    successor block, it sets TBB to be the branch destination block and a
618   ///    list of operands that evaluate the condition. These operands can be
619   ///    passed to other TargetInstrInfo methods to create new branches.
620   /// 4. If this block ends with a conditional branch followed by an
621   ///    unconditional branch, it returns the 'true' destination in TBB, the
622   ///    'false' destination in FBB, and a list of operands that evaluate the
623   ///    condition.  These operands can be passed to other TargetInstrInfo
624   ///    methods to create new branches.
625   ///
626   /// Note that removeBranch and insertBranch must be implemented to support
627   /// cases where this method returns success.
628   ///
629   /// If AllowModify is true, then this routine is allowed to modify the basic
630   /// block (e.g. delete instructions after the unconditional branch).
631   ///
632   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
633   /// before calling this function.
634   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
635                              MachineBasicBlock *&FBB,
636                              SmallVectorImpl<MachineOperand> &Cond,
637                              bool AllowModify = false) const {
638     return true;
639   }
640 
641   /// Represents a predicate at the MachineFunction level.  The control flow a
642   /// MachineBranchPredicate represents is:
643   ///
644   ///  Reg = LHS `Predicate` RHS         == ConditionDef
645   ///  if Reg then goto TrueDest else goto FalseDest
646   ///
647   struct MachineBranchPredicate {
648     enum ComparePredicate {
649       PRED_EQ,     // True if two values are equal
650       PRED_NE,     // True if two values are not equal
651       PRED_INVALID // Sentinel value
652     };
653 
654     ComparePredicate Predicate = PRED_INVALID;
655     MachineOperand LHS = MachineOperand::CreateImm(0);
656     MachineOperand RHS = MachineOperand::CreateImm(0);
657     MachineBasicBlock *TrueDest = nullptr;
658     MachineBasicBlock *FalseDest = nullptr;
659     MachineInstr *ConditionDef = nullptr;
660 
661     /// SingleUseCondition is true if ConditionDef is dead except for the
662     /// branch(es) at the end of the basic block.
663     ///
664     bool SingleUseCondition = false;
665 
666     explicit MachineBranchPredicate() = default;
667   };
668 
669   /// Analyze the branching code at the end of MBB and parse it into the
670   /// MachineBranchPredicate structure if possible.  Returns false on success
671   /// and true on failure.
672   ///
673   /// If AllowModify is true, then this routine is allowed to modify the basic
674   /// block (e.g. delete instructions after the unconditional branch).
675   ///
676   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
677                                       MachineBranchPredicate &MBP,
678                                       bool AllowModify = false) const {
679     return true;
680   }
681 
682   /// Remove the branching code at the end of the specific MBB.
683   /// This is only invoked in cases where analyzeBranch returns success. It
684   /// returns the number of instructions that were removed.
685   /// If \p BytesRemoved is non-null, report the change in code size from the
686   /// removed instructions.
687   virtual unsigned removeBranch(MachineBasicBlock &MBB,
688                                 int *BytesRemoved = nullptr) const {
689     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
690   }
691 
692   /// Insert branch code into the end of the specified MachineBasicBlock. The
693   /// operands to this method are the same as those returned by analyzeBranch.
694   /// This is only invoked in cases where analyzeBranch returns success. It
695   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
696   /// report the change in code size from the added instructions.
697   ///
698   /// It is also invoked by tail merging to add unconditional branches in
699   /// cases where analyzeBranch doesn't apply because there was no original
700   /// branch to analyze.  At least this much must be implemented, else tail
701   /// merging needs to be disabled.
702   ///
703   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
704   /// before calling this function.
705   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
706                                 MachineBasicBlock *FBB,
707                                 ArrayRef<MachineOperand> Cond,
708                                 const DebugLoc &DL,
709                                 int *BytesAdded = nullptr) const {
710     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
711   }
712 
713   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
714                                      MachineBasicBlock *DestBB,
715                                      const DebugLoc &DL,
716                                      int *BytesAdded = nullptr) const {
717     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
718                         BytesAdded);
719   }
720 
721   /// Object returned by analyzeLoopForPipelining. Allows software pipelining
722   /// implementations to query attributes of the loop being pipelined and to
723   /// apply target-specific updates to the loop once pipelining is complete.
724   class PipelinerLoopInfo {
725   public:
726     virtual ~PipelinerLoopInfo();
727     /// Return true if the given instruction should not be pipelined and should
728     /// be ignored. An example could be a loop comparison, or induction variable
729     /// update with no users being pipelined.
730     virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
731 
732     /// Create a condition to determine if the trip count of the loop is greater
733     /// than TC, where TC is always one more than for the previous prologue or
734     /// 0 if this is being called for the outermost prologue.
735     ///
736     /// If the trip count is statically known to be greater than TC, return
737     /// true. If the trip count is statically known to be not greater than TC,
738     /// return false. Otherwise return nullopt and fill out Cond with the test
739     /// condition.
740     ///
741     /// Note: This hook is guaranteed to be called from the innermost to the
742     /// outermost prologue of the loop being software pipelined.
743     virtual Optional<bool>
744     createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
745                                     SmallVectorImpl<MachineOperand> &Cond) = 0;
746 
747     /// Modify the loop such that the trip count is
748     /// OriginalTC + TripCountAdjust.
749     virtual void adjustTripCount(int TripCountAdjust) = 0;
750 
751     /// Called when the loop's preheader has been modified to NewPreheader.
752     virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
753 
754     /// Called when the loop is being removed. Any instructions in the preheader
755     /// should be removed.
756     ///
757     /// Once this function is called, no other functions on this object are
758     /// valid; the loop has been removed.
759     virtual void disposed() = 0;
760   };
761 
762   /// Analyze loop L, which must be a single-basic-block loop, and if the
763   /// conditions can be understood enough produce a PipelinerLoopInfo object.
764   virtual std::unique_ptr<PipelinerLoopInfo>
765   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
766     return nullptr;
767   }
768 
769   /// Analyze the loop code, return true if it cannot be understood. Upon
770   /// success, this function returns false and returns information about the
771   /// induction variable and compare instruction used at the end.
772   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
773                            MachineInstr *&CmpInst) const {
774     return true;
775   }
776 
777   /// Generate code to reduce the loop iteration by one and check if the loop
778   /// is finished.  Return the value/register of the new loop count.  We need
779   /// this function when peeling off one or more iterations of a loop. This
780   /// function assumes the nth iteration is peeled first.
781   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
782                                    MachineBasicBlock &PreHeader,
783                                    MachineInstr *IndVar, MachineInstr &Cmp,
784                                    SmallVectorImpl<MachineOperand> &Cond,
785                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
786                                    unsigned Iter, unsigned MaxIter) const {
787     llvm_unreachable("Target didn't implement ReduceLoopCount");
788   }
789 
790   /// Delete the instruction OldInst and everything after it, replacing it with
791   /// an unconditional branch to NewDest. This is used by the tail merging pass.
792   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
793                                        MachineBasicBlock *NewDest) const;
794 
795   /// Return true if it's legal to split the given basic
796   /// block at the specified instruction (i.e. instruction would be the start
797   /// of a new basic block).
798   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
799                                    MachineBasicBlock::iterator MBBI) const {
800     return true;
801   }
802 
803   /// Return true if it's profitable to predicate
804   /// instructions with accumulated instruction latency of "NumCycles"
805   /// of the specified basic block, where the probability of the instructions
806   /// being executed is given by Probability, and Confidence is a measure
807   /// of our confidence that it will be properly predicted.
808   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
809                                    unsigned ExtraPredCycles,
810                                    BranchProbability Probability) const {
811     return false;
812   }
813 
814   /// Second variant of isProfitableToIfCvt. This one
815   /// checks for the case where two basic blocks from true and false path
816   /// of a if-then-else (diamond) are predicated on mutually exclusive
817   /// predicates, where the probability of the true path being taken is given
818   /// by Probability, and Confidence is a measure of our confidence that it
819   /// will be properly predicted.
820   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
821                                    unsigned ExtraTCycles,
822                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
823                                    unsigned ExtraFCycles,
824                                    BranchProbability Probability) const {
825     return false;
826   }
827 
828   /// Return true if it's profitable for if-converter to duplicate instructions
829   /// of specified accumulated instruction latencies in the specified MBB to
830   /// enable if-conversion.
831   /// The probability of the instructions being executed is given by
832   /// Probability, and Confidence is a measure of our confidence that it
833   /// will be properly predicted.
834   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
835                                          unsigned NumCycles,
836                                          BranchProbability Probability) const {
837     return false;
838   }
839 
840   /// Return the increase in code size needed to predicate a contiguous run of
841   /// NumInsts instructions.
842   virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
843                                                     unsigned NumInsts) const {
844     return 0;
845   }
846 
847   /// Return an estimate for the code size reduction (in bytes) which will be
848   /// caused by removing the given branch instruction during if-conversion.
849   virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
850     return getInstSizeInBytes(MI);
851   }
852 
853   /// Return true if it's profitable to unpredicate
854   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
855   /// exclusive predicates.
856   /// e.g.
857   ///   subeq  r0, r1, #1
858   ///   addne  r0, r1, #1
859   /// =>
860   ///   sub    r0, r1, #1
861   ///   addne  r0, r1, #1
862   ///
863   /// This may be profitable is conditional instructions are always executed.
864   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
865                                          MachineBasicBlock &FMBB) const {
866     return false;
867   }
868 
869   /// Return true if it is possible to insert a select
870   /// instruction that chooses between TrueReg and FalseReg based on the
871   /// condition code in Cond.
872   ///
873   /// When successful, also return the latency in cycles from TrueReg,
874   /// FalseReg, and Cond to the destination register. In most cases, a select
875   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
876   ///
877   /// Some x86 implementations have 2-cycle cmov instructions.
878   ///
879   /// @param MBB         Block where select instruction would be inserted.
880   /// @param Cond        Condition returned by analyzeBranch.
881   /// @param DstReg      Virtual dest register that the result should write to.
882   /// @param TrueReg     Virtual register to select when Cond is true.
883   /// @param FalseReg    Virtual register to select when Cond is false.
884   /// @param CondCycles  Latency from Cond+Branch to select output.
885   /// @param TrueCycles  Latency from TrueReg to select output.
886   /// @param FalseCycles Latency from FalseReg to select output.
887   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
888                                ArrayRef<MachineOperand> Cond, Register DstReg,
889                                Register TrueReg, Register FalseReg,
890                                int &CondCycles, int &TrueCycles,
891                                int &FalseCycles) const {
892     return false;
893   }
894 
895   /// Insert a select instruction into MBB before I that will copy TrueReg to
896   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
897   ///
898   /// This function can only be called after canInsertSelect() returned true.
899   /// The condition in Cond comes from analyzeBranch, and it can be assumed
900   /// that the same flags or registers required by Cond are available at the
901   /// insertion point.
902   ///
903   /// @param MBB      Block where select instruction should be inserted.
904   /// @param I        Insertion point.
905   /// @param DL       Source location for debugging.
906   /// @param DstReg   Virtual register to be defined by select instruction.
907   /// @param Cond     Condition as computed by analyzeBranch.
908   /// @param TrueReg  Virtual register to copy when Cond is true.
909   /// @param FalseReg Virtual register to copy when Cons is false.
910   virtual void insertSelect(MachineBasicBlock &MBB,
911                             MachineBasicBlock::iterator I, const DebugLoc &DL,
912                             Register DstReg, ArrayRef<MachineOperand> Cond,
913                             Register TrueReg, Register FalseReg) const {
914     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
915   }
916 
917   /// Analyze the given select instruction, returning true if
918   /// it cannot be understood. It is assumed that MI->isSelect() is true.
919   ///
920   /// When successful, return the controlling condition and the operands that
921   /// determine the true and false result values.
922   ///
923   ///   Result = SELECT Cond, TrueOp, FalseOp
924   ///
925   /// Some targets can optimize select instructions, for example by predicating
926   /// the instruction defining one of the operands. Such targets should set
927   /// Optimizable.
928   ///
929   /// @param         MI Select instruction to analyze.
930   /// @param Cond    Condition controlling the select.
931   /// @param TrueOp  Operand number of the value selected when Cond is true.
932   /// @param FalseOp Operand number of the value selected when Cond is false.
933   /// @param Optimizable Returned as true if MI is optimizable.
934   /// @returns False on success.
935   virtual bool analyzeSelect(const MachineInstr &MI,
936                              SmallVectorImpl<MachineOperand> &Cond,
937                              unsigned &TrueOp, unsigned &FalseOp,
938                              bool &Optimizable) const {
939     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
940     return true;
941   }
942 
943   /// Given a select instruction that was understood by
944   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
945   /// merging it with one of its operands. Returns NULL on failure.
946   ///
947   /// When successful, returns the new select instruction. The client is
948   /// responsible for deleting MI.
949   ///
950   /// If both sides of the select can be optimized, PreferFalse is used to pick
951   /// a side.
952   ///
953   /// @param MI          Optimizable select instruction.
954   /// @param NewMIs     Set that record all MIs in the basic block up to \p
955   /// MI. Has to be updated with any newly created MI or deleted ones.
956   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
957   /// @returns Optimized instruction or NULL.
958   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
959                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
960                                        bool PreferFalse = false) const {
961     // This function must be implemented if Optimizable is ever set.
962     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
963   }
964 
965   /// Emit instructions to copy a pair of physical registers.
966   ///
967   /// This function should support copies within any legal register class as
968   /// well as any cross-class copies created during instruction selection.
969   ///
970   /// The source and destination registers may overlap, which may require a
971   /// careful implementation when multiple copy instructions are required for
972   /// large registers. See for example the ARM target.
973   virtual void copyPhysReg(MachineBasicBlock &MBB,
974                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
975                            MCRegister DestReg, MCRegister SrcReg,
976                            bool KillSrc) const {
977     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
978   }
979 
980   /// Allow targets to tell MachineVerifier whether a specific register
981   /// MachineOperand can be used as part of PC-relative addressing.
982   /// PC-relative addressing modes in many CISC architectures contain
983   /// (non-PC) registers as offsets or scaling values, which inherently
984   /// tags the corresponding MachineOperand with OPERAND_PCREL.
985   ///
986   /// @param MO The MachineOperand in question. MO.isReg() should always
987   /// be true.
988   /// @return Whether this operand is allowed to be used PC-relatively.
989   virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
990     return false;
991   }
992 
993 protected:
994   /// Target-dependent implementation for IsCopyInstr.
995   /// If the specific machine instruction is a instruction that moves/copies
996   /// value from one register to another register return destination and source
997   /// registers as machine operands.
998   virtual Optional<DestSourcePair>
999   isCopyInstrImpl(const MachineInstr &MI) const {
1000     return None;
1001   }
1002 
1003   /// Return true if the given terminator MI is not expected to spill. This
1004   /// sets the live interval as not spillable and adjusts phi node lowering to
1005   /// not introduce copies after the terminator. Use with care, these are
1006   /// currently used for hardware loop intrinsics in very controlled situations,
1007   /// created prior to registry allocation in loops that only have single phi
1008   /// users for the terminators value. They may run out of registers if not used
1009   /// carefully.
1010   virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1011     return false;
1012   }
1013 
1014 public:
1015   /// If the specific machine instruction is a instruction that moves/copies
1016   /// value from one register to another register return destination and source
1017   /// registers as machine operands.
1018   /// For COPY-instruction the method naturally returns destination and source
1019   /// registers as machine operands, for all other instructions the method calls
1020   /// target-dependent implementation.
1021   Optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1022     if (MI.isCopy()) {
1023       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1024     }
1025     return isCopyInstrImpl(MI);
1026   }
1027 
1028   /// If the specific machine instruction is an instruction that adds an
1029   /// immediate value and a physical register, and stores the result in
1030   /// the given physical register \c Reg, return a pair of the source
1031   /// register and the offset which has been added.
1032   virtual Optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1033                                               Register Reg) const {
1034     return None;
1035   }
1036 
1037   /// Returns true if MI is an instruction that defines Reg to have a constant
1038   /// value and the value is recorded in ImmVal. The ImmVal is a result that
1039   /// should be interpreted as modulo size of Reg.
1040   virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1041                                        const Register Reg,
1042                                        int64_t &ImmVal) const {
1043     return false;
1044   }
1045 
1046   /// Store the specified register of the given register class to the specified
1047   /// stack frame index. The store instruction is to be added to the given
1048   /// machine basic block before the specified machine instruction. If isKill
1049   /// is true, the register operand is the last use and must be marked kill.
1050   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1051                                    MachineBasicBlock::iterator MI,
1052                                    Register SrcReg, bool isKill, int FrameIndex,
1053                                    const TargetRegisterClass *RC,
1054                                    const TargetRegisterInfo *TRI) const {
1055     llvm_unreachable("Target didn't implement "
1056                      "TargetInstrInfo::storeRegToStackSlot!");
1057   }
1058 
1059   /// Load the specified register of the given register class from the specified
1060   /// stack frame index. The load instruction is to be added to the given
1061   /// machine basic block before the specified machine instruction.
1062   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1063                                     MachineBasicBlock::iterator MI,
1064                                     Register DestReg, int FrameIndex,
1065                                     const TargetRegisterClass *RC,
1066                                     const TargetRegisterInfo *TRI) const {
1067     llvm_unreachable("Target didn't implement "
1068                      "TargetInstrInfo::loadRegFromStackSlot!");
1069   }
1070 
1071   /// This function is called for all pseudo instructions
1072   /// that remain after register allocation. Many pseudo instructions are
1073   /// created to help register allocation. This is the place to convert them
1074   /// into real instructions. The target can edit MI in place, or it can insert
1075   /// new instructions and erase MI. The function should return true if
1076   /// anything was changed.
1077   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1078 
1079   /// Check whether the target can fold a load that feeds a subreg operand
1080   /// (or a subreg operand that feeds a store).
1081   /// For example, X86 may want to return true if it can fold
1082   /// movl (%esp), %eax
1083   /// subb, %al, ...
1084   /// Into:
1085   /// subb (%esp), ...
1086   ///
1087   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1088   /// reject subregs - but since this behavior used to be enforced in the
1089   /// target-independent code, moving this responsibility to the targets
1090   /// has the potential of causing nasty silent breakage in out-of-tree targets.
1091   virtual bool isSubregFoldable() const { return false; }
1092 
1093   /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1094   /// operands which can't be folded into stack references. Operands outside
1095   /// of the range are most likely foldable but it is not guaranteed.
1096   /// These instructions are unique in that stack references for some operands
1097   /// have the same execution cost (e.g. none) as the unfolded register forms.
1098   /// The ranged return is guaranteed to include all operands which can't be
1099   /// folded at zero cost.
1100   virtual std::pair<unsigned, unsigned>
1101   getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1102 
1103   /// Attempt to fold a load or store of the specified stack
1104   /// slot into the specified machine instruction for the specified operand(s).
1105   /// If this is possible, a new instruction is returned with the specified
1106   /// operand folded, otherwise NULL is returned.
1107   /// The new instruction is inserted before MI, and the client is responsible
1108   /// for removing the old instruction.
1109   /// If VRM is passed, the assigned physregs can be inspected by target to
1110   /// decide on using an opcode (note that those assignments can still change).
1111   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1112                                   int FI,
1113                                   LiveIntervals *LIS = nullptr,
1114                                   VirtRegMap *VRM = nullptr) const;
1115 
1116   /// Same as the previous version except it allows folding of any load and
1117   /// store from / to any address, not just from a specific stack slot.
1118   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1119                                   MachineInstr &LoadMI,
1120                                   LiveIntervals *LIS = nullptr) const;
1121 
1122   /// Return true when there is potentially a faster code sequence
1123   /// for an instruction chain ending in \p Root. All potential patterns are
1124   /// returned in the \p Pattern vector. Pattern should be sorted in priority
1125   /// order since the pattern evaluator stops checking as soon as it finds a
1126   /// faster sequence.
1127   /// \param Root - Instruction that could be combined with one of its operands
1128   /// \param Patterns - Vector of possible combination patterns
1129   virtual bool
1130   getMachineCombinerPatterns(MachineInstr &Root,
1131                              SmallVectorImpl<MachineCombinerPattern> &Patterns,
1132                              bool DoRegPressureReduce) const;
1133 
1134   /// Return true if target supports reassociation of instructions in machine
1135   /// combiner pass to reduce register pressure for a given BB.
1136   virtual bool
1137   shouldReduceRegisterPressure(MachineBasicBlock *MBB,
1138                                RegisterClassInfo *RegClassInfo) const {
1139     return false;
1140   }
1141 
1142   /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1143   virtual void
1144   finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
1145                     SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1146 
1147   /// Return true when a code sequence can improve throughput. It
1148   /// should be called only for instructions in loops.
1149   /// \param Pattern - combiner pattern
1150   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
1151 
1152   /// Return true if the input \P Inst is part of a chain of dependent ops
1153   /// that are suitable for reassociation, otherwise return false.
1154   /// If the instruction's operands must be commuted to have a previous
1155   /// instruction of the same type define the first source operand, \P Commuted
1156   /// will be set to true.
1157   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1158 
1159   /// Return true when \P Inst is both associative and commutative.
1160   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
1161     return false;
1162   }
1163 
1164   /// Return true when \P Inst has reassociable operands in the same \P MBB.
1165   virtual bool hasReassociableOperands(const MachineInstr &Inst,
1166                                        const MachineBasicBlock *MBB) const;
1167 
1168   /// Return true when \P Inst has reassociable sibling.
1169   bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
1170 
1171   /// When getMachineCombinerPatterns() finds patterns, this function generates
1172   /// the instructions that could replace the original code sequence. The client
1173   /// has to decide whether the actual replacement is beneficial or not.
1174   /// \param Root - Instruction that could be combined with one of its operands
1175   /// \param Pattern - Combination pattern for Root
1176   /// \param InsInstrs - Vector of new instructions that implement P
1177   /// \param DelInstrs - Old instructions, including Root, that could be
1178   /// replaced by InsInstr
1179   /// \param InstIdxForVirtReg - map of virtual register to instruction in
1180   /// InsInstr that defines it
1181   virtual void genAlternativeCodeSequence(
1182       MachineInstr &Root, MachineCombinerPattern Pattern,
1183       SmallVectorImpl<MachineInstr *> &InsInstrs,
1184       SmallVectorImpl<MachineInstr *> &DelInstrs,
1185       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1186 
1187   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1188   /// reduce critical path length.
1189   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1190                       MachineCombinerPattern Pattern,
1191                       SmallVectorImpl<MachineInstr *> &InsInstrs,
1192                       SmallVectorImpl<MachineInstr *> &DelInstrs,
1193                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1194 
1195   /// The limit on resource length extension we accept in MachineCombiner Pass.
1196   virtual int getExtendResourceLenLimit() const { return 0; }
1197 
1198   /// This is an architecture-specific helper function of reassociateOps.
1199   /// Set special operand attributes for new instructions after reassociation.
1200   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1201                                      MachineInstr &NewMI1,
1202                                      MachineInstr &NewMI2) const {}
1203 
1204   /// Return true when a target supports MachineCombiner.
1205   virtual bool useMachineCombiner() const { return false; }
1206 
1207   /// Return true if the given SDNode can be copied during scheduling
1208   /// even if it has glue.
1209   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1210 
1211 protected:
1212   /// Target-dependent implementation for foldMemoryOperand.
1213   /// Target-independent code in foldMemoryOperand will
1214   /// take care of adding a MachineMemOperand to the newly created instruction.
1215   /// The instruction and any auxiliary instructions necessary will be inserted
1216   /// at InsertPt.
1217   virtual MachineInstr *
1218   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1219                         ArrayRef<unsigned> Ops,
1220                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
1221                         LiveIntervals *LIS = nullptr,
1222                         VirtRegMap *VRM = nullptr) const {
1223     return nullptr;
1224   }
1225 
1226   /// Target-dependent implementation for foldMemoryOperand.
1227   /// Target-independent code in foldMemoryOperand will
1228   /// take care of adding a MachineMemOperand to the newly created instruction.
1229   /// The instruction and any auxiliary instructions necessary will be inserted
1230   /// at InsertPt.
1231   virtual MachineInstr *foldMemoryOperandImpl(
1232       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1233       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1234       LiveIntervals *LIS = nullptr) const {
1235     return nullptr;
1236   }
1237 
1238   /// Target-dependent implementation of getRegSequenceInputs.
1239   ///
1240   /// \returns true if it is possible to build the equivalent
1241   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1242   ///
1243   /// \pre MI.isRegSequenceLike().
1244   ///
1245   /// \see TargetInstrInfo::getRegSequenceInputs.
1246   virtual bool getRegSequenceLikeInputs(
1247       const MachineInstr &MI, unsigned DefIdx,
1248       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1249     return false;
1250   }
1251 
1252   /// Target-dependent implementation of getExtractSubregInputs.
1253   ///
1254   /// \returns true if it is possible to build the equivalent
1255   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1256   ///
1257   /// \pre MI.isExtractSubregLike().
1258   ///
1259   /// \see TargetInstrInfo::getExtractSubregInputs.
1260   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1261                                           unsigned DefIdx,
1262                                           RegSubRegPairAndIdx &InputReg) const {
1263     return false;
1264   }
1265 
1266   /// Target-dependent implementation of getInsertSubregInputs.
1267   ///
1268   /// \returns true if it is possible to build the equivalent
1269   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1270   ///
1271   /// \pre MI.isInsertSubregLike().
1272   ///
1273   /// \see TargetInstrInfo::getInsertSubregInputs.
1274   virtual bool
1275   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1276                             RegSubRegPair &BaseReg,
1277                             RegSubRegPairAndIdx &InsertedReg) const {
1278     return false;
1279   }
1280 
1281 public:
1282   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1283   /// a store or a load and a store into two or more instruction. If this is
1284   /// possible, returns true as well as the new instructions by reference.
1285   virtual bool
1286   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1287                       bool UnfoldLoad, bool UnfoldStore,
1288                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
1289     return false;
1290   }
1291 
1292   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1293                                    SmallVectorImpl<SDNode *> &NewNodes) const {
1294     return false;
1295   }
1296 
1297   /// Returns the opcode of the would be new
1298   /// instruction after load / store are unfolded from an instruction of the
1299   /// specified opcode. It returns zero if the specified unfolding is not
1300   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1301   /// index of the operand which will hold the register holding the loaded
1302   /// value.
1303   virtual unsigned
1304   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1305                              unsigned *LoadRegIndex = nullptr) const {
1306     return 0;
1307   }
1308 
1309   /// This is used by the pre-regalloc scheduler to determine if two loads are
1310   /// loading from the same base address. It should only return true if the base
1311   /// pointers are the same and the only differences between the two addresses
1312   /// are the offset. It also returns the offsets by reference.
1313   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1314                                        int64_t &Offset1,
1315                                        int64_t &Offset2) const {
1316     return false;
1317   }
1318 
1319   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1320   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1321   /// On some targets if two loads are loading from
1322   /// addresses in the same cache line, it's better if they are scheduled
1323   /// together. This function takes two integers that represent the load offsets
1324   /// from the common base address. It returns true if it decides it's desirable
1325   /// to schedule the two loads together. "NumLoads" is the number of loads that
1326   /// have already been scheduled after Load1.
1327   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1328                                        int64_t Offset1, int64_t Offset2,
1329                                        unsigned NumLoads) const {
1330     return false;
1331   }
1332 
1333   /// Get the base operand and byte offset of an instruction that reads/writes
1334   /// memory. This is a convenience function for callers that are only prepared
1335   /// to handle a single base operand.
1336   bool getMemOperandWithOffset(const MachineInstr &MI,
1337                                const MachineOperand *&BaseOp, int64_t &Offset,
1338                                bool &OffsetIsScalable,
1339                                const TargetRegisterInfo *TRI) const;
1340 
1341   /// Get zero or more base operands and the byte offset of an instruction that
1342   /// reads/writes memory. Note that there may be zero base operands if the
1343   /// instruction accesses a constant address.
1344   /// It returns false if MI does not read/write memory.
1345   /// It returns false if base operands and offset could not be determined.
1346   /// It is not guaranteed to always recognize base operands and offsets in all
1347   /// cases.
1348   virtual bool getMemOperandsWithOffsetWidth(
1349       const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1350       int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
1351       const TargetRegisterInfo *TRI) const {
1352     return false;
1353   }
1354 
1355   /// Return true if the instruction contains a base register and offset. If
1356   /// true, the function also sets the operand position in the instruction
1357   /// for the base register and offset.
1358   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1359                                         unsigned &BasePos,
1360                                         unsigned &OffsetPos) const {
1361     return false;
1362   }
1363 
1364   /// Target dependent implementation to get the values constituting the address
1365   /// MachineInstr that is accessing memory. These values are returned as a
1366   /// struct ExtAddrMode which contains all relevant information to make up the
1367   /// address.
1368   virtual Optional<ExtAddrMode>
1369   getAddrModeFromMemoryOp(const MachineInstr &MemI,
1370                           const TargetRegisterInfo *TRI) const {
1371     return None;
1372   }
1373 
1374   /// Returns true if MI's Def is NullValueReg, and the MI
1375   /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1376   /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1377   /// function can return true even if becomes zero. Specifically cases such as
1378   /// NullValueReg = shl NullValueReg, 63.
1379   virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1380                                        const Register NullValueReg,
1381                                        const TargetRegisterInfo *TRI) const {
1382     return false;
1383   }
1384 
1385   /// If the instruction is an increment of a constant value, return the amount.
1386   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1387     return false;
1388   }
1389 
1390   /// Returns true if the two given memory operations should be scheduled
1391   /// adjacent. Note that you have to add:
1392   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1393   /// or
1394   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1395   /// to TargetPassConfig::createMachineScheduler() to have an effect.
1396   ///
1397   /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1398   /// \p NumLoads is the number of loads that will be in the cluster if this
1399   /// hook returns true.
1400   /// \p NumBytes is the number of bytes that will be loaded from all the
1401   /// clustered loads if this hook returns true.
1402   virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1403                                    ArrayRef<const MachineOperand *> BaseOps2,
1404                                    unsigned NumLoads, unsigned NumBytes) const {
1405     llvm_unreachable("target did not implement shouldClusterMemOps()");
1406   }
1407 
1408   /// Reverses the branch condition of the specified condition list,
1409   /// returning false on success and true if it cannot be reversed.
1410   virtual bool
1411   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1412     return true;
1413   }
1414 
1415   /// Insert a noop into the instruction stream at the specified point.
1416   virtual void insertNoop(MachineBasicBlock &MBB,
1417                           MachineBasicBlock::iterator MI) const;
1418 
1419   /// Insert noops into the instruction stream at the specified point.
1420   virtual void insertNoops(MachineBasicBlock &MBB,
1421                            MachineBasicBlock::iterator MI,
1422                            unsigned Quantity) const;
1423 
1424   /// Return the noop instruction to use for a noop.
1425   virtual MCInst getNop() const;
1426 
1427   /// Return true for post-incremented instructions.
1428   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1429 
1430   /// Returns true if the instruction is already predicated.
1431   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1432 
1433   // Returns a MIRPrinter comment for this machine operand.
1434   virtual std::string
1435   createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1436                           unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1437 
1438   /// Returns true if the instruction is a
1439   /// terminator instruction that has not been predicated.
1440   bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1441 
1442   /// Returns true if MI is an unconditional tail call.
1443   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1444     return false;
1445   }
1446 
1447   /// Returns true if the tail call can be made conditional on BranchCond.
1448   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1449                                           const MachineInstr &TailCall) const {
1450     return false;
1451   }
1452 
1453   /// Replace the conditional branch in MBB with a conditional tail call.
1454   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1455                                          SmallVectorImpl<MachineOperand> &Cond,
1456                                          const MachineInstr &TailCall) const {
1457     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1458   }
1459 
1460   /// Convert the instruction into a predicated instruction.
1461   /// It returns true if the operation was successful.
1462   virtual bool PredicateInstruction(MachineInstr &MI,
1463                                     ArrayRef<MachineOperand> Pred) const;
1464 
1465   /// Returns true if the first specified predicate
1466   /// subsumes the second, e.g. GE subsumes GT.
1467   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1468                                  ArrayRef<MachineOperand> Pred2) const {
1469     return false;
1470   }
1471 
1472   /// If the specified instruction defines any predicate
1473   /// or condition code register(s) used for predication, returns true as well
1474   /// as the definition predicate(s) by reference.
1475   /// SkipDead should be set to false at any point that dead
1476   /// predicate instructions should be considered as being defined.
1477   /// A dead predicate instruction is one that is guaranteed to be removed
1478   /// after a call to PredicateInstruction.
1479   virtual bool ClobbersPredicate(MachineInstr &MI,
1480                                  std::vector<MachineOperand> &Pred,
1481                                  bool SkipDead) const {
1482     return false;
1483   }
1484 
1485   /// Return true if the specified instruction can be predicated.
1486   /// By default, this returns true for every instruction with a
1487   /// PredicateOperand.
1488   virtual bool isPredicable(const MachineInstr &MI) const {
1489     return MI.getDesc().isPredicable();
1490   }
1491 
1492   /// Return true if it's safe to move a machine
1493   /// instruction that defines the specified register class.
1494   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1495     return true;
1496   }
1497 
1498   /// Test if the given instruction should be considered a scheduling boundary.
1499   /// This primarily includes labels and terminators.
1500   virtual bool isSchedulingBoundary(const MachineInstr &MI,
1501                                     const MachineBasicBlock *MBB,
1502                                     const MachineFunction &MF) const;
1503 
1504   /// Measure the specified inline asm to determine an approximation of its
1505   /// length.
1506   virtual unsigned getInlineAsmLength(
1507     const char *Str, const MCAsmInfo &MAI,
1508     const TargetSubtargetInfo *STI = nullptr) const;
1509 
1510   /// Allocate and return a hazard recognizer to use for this target when
1511   /// scheduling the machine instructions before register allocation.
1512   virtual ScheduleHazardRecognizer *
1513   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1514                                const ScheduleDAG *DAG) const;
1515 
1516   /// Allocate and return a hazard recognizer to use for this target when
1517   /// scheduling the machine instructions before register allocation.
1518   virtual ScheduleHazardRecognizer *
1519   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1520                                  const ScheduleDAGMI *DAG) const;
1521 
1522   /// Allocate and return a hazard recognizer to use for this target when
1523   /// scheduling the machine instructions after register allocation.
1524   virtual ScheduleHazardRecognizer *
1525   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1526                                      const ScheduleDAG *DAG) const;
1527 
1528   /// Allocate and return a hazard recognizer to use for by non-scheduling
1529   /// passes.
1530   virtual ScheduleHazardRecognizer *
1531   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1532     return nullptr;
1533   }
1534 
1535   /// Provide a global flag for disabling the PreRA hazard recognizer that
1536   /// targets may choose to honor.
1537   bool usePreRAHazardRecognizer() const;
1538 
1539   /// For a comparison instruction, return the source registers
1540   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1541   /// compares against in CmpValue. Return true if the comparison instruction
1542   /// can be analyzed.
1543   virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1544                               Register &SrcReg2, int64_t &Mask,
1545                               int64_t &Value) const {
1546     return false;
1547   }
1548 
1549   /// See if the comparison instruction can be converted
1550   /// into something more efficient. E.g., on ARM most instructions can set the
1551   /// flags register, obviating the need for a separate CMP.
1552   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1553                                     Register SrcReg2, int64_t Mask,
1554                                     int64_t Value,
1555                                     const MachineRegisterInfo *MRI) const {
1556     return false;
1557   }
1558   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1559 
1560   /// Try to remove the load by folding it to a register operand at the use.
1561   /// We fold the load instructions if and only if the
1562   /// def and use are in the same BB. We only look at one load and see
1563   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1564   /// defined by the load we are trying to fold. DefMI returns the machine
1565   /// instruction that defines FoldAsLoadDefReg, and the function returns
1566   /// the machine instruction generated due to folding.
1567   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1568                                           const MachineRegisterInfo *MRI,
1569                                           Register &FoldAsLoadDefReg,
1570                                           MachineInstr *&DefMI) const {
1571     return nullptr;
1572   }
1573 
1574   /// 'Reg' is known to be defined by a move immediate instruction,
1575   /// try to fold the immediate into the use instruction.
1576   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1577   /// then the caller may assume that DefMI has been erased from its parent
1578   /// block. The caller may assume that it will not be erased by this
1579   /// function otherwise.
1580   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1581                              Register Reg, MachineRegisterInfo *MRI) const {
1582     return false;
1583   }
1584 
1585   /// Return the number of u-operations the given machine
1586   /// instruction will be decoded to on the target cpu. The itinerary's
1587   /// IssueWidth is the number of microops that can be dispatched each
1588   /// cycle. An instruction with zero microops takes no dispatch resources.
1589   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1590                                   const MachineInstr &MI) const;
1591 
1592   /// Return true for pseudo instructions that don't consume any
1593   /// machine resources in their current form. These are common cases that the
1594   /// scheduler should consider free, rather than conservatively handling them
1595   /// as instructions with no itinerary.
1596   bool isZeroCost(unsigned Opcode) const {
1597     return Opcode <= TargetOpcode::COPY;
1598   }
1599 
1600   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1601                                 SDNode *DefNode, unsigned DefIdx,
1602                                 SDNode *UseNode, unsigned UseIdx) const;
1603 
1604   /// Compute and return the use operand latency of a given pair of def and use.
1605   /// In most cases, the static scheduling itinerary was enough to determine the
1606   /// operand latency. But it may not be possible for instructions with variable
1607   /// number of defs / uses.
1608   ///
1609   /// This is a raw interface to the itinerary that may be directly overridden
1610   /// by a target. Use computeOperandLatency to get the best estimate of
1611   /// latency.
1612   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1613                                 const MachineInstr &DefMI, unsigned DefIdx,
1614                                 const MachineInstr &UseMI,
1615                                 unsigned UseIdx) const;
1616 
1617   /// Compute the instruction latency of a given instruction.
1618   /// If the instruction has higher cost when predicated, it's returned via
1619   /// PredCost.
1620   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1621                                    const MachineInstr &MI,
1622                                    unsigned *PredCost = nullptr) const;
1623 
1624   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1625 
1626   virtual int getInstrLatency(const InstrItineraryData *ItinData,
1627                               SDNode *Node) const;
1628 
1629   /// Return the default expected latency for a def based on its opcode.
1630   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1631                              const MachineInstr &DefMI) const;
1632 
1633   /// Return true if this opcode has high latency to its result.
1634   virtual bool isHighLatencyDef(int opc) const { return false; }
1635 
1636   /// Compute operand latency between a def of 'Reg'
1637   /// and a use in the current loop. Return true if the target considered
1638   /// it 'high'. This is used by optimization passes such as machine LICM to
1639   /// determine whether it makes sense to hoist an instruction out even in a
1640   /// high register pressure situation.
1641   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1642                                      const MachineRegisterInfo *MRI,
1643                                      const MachineInstr &DefMI, unsigned DefIdx,
1644                                      const MachineInstr &UseMI,
1645                                      unsigned UseIdx) const {
1646     return false;
1647   }
1648 
1649   /// Compute operand latency of a def of 'Reg'. Return true
1650   /// if the target considered it 'low'.
1651   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1652                                 const MachineInstr &DefMI,
1653                                 unsigned DefIdx) const;
1654 
1655   /// Perform target-specific instruction verification.
1656   virtual bool verifyInstruction(const MachineInstr &MI,
1657                                  StringRef &ErrInfo) const {
1658     return true;
1659   }
1660 
1661   /// Return the current execution domain and bit mask of
1662   /// possible domains for instruction.
1663   ///
1664   /// Some micro-architectures have multiple execution domains, and multiple
1665   /// opcodes that perform the same operation in different domains.  For
1666   /// example, the x86 architecture provides the por, orps, and orpd
1667   /// instructions that all do the same thing.  There is a latency penalty if a
1668   /// register is written in one domain and read in another.
1669   ///
1670   /// This function returns a pair (domain, mask) containing the execution
1671   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1672   /// function can be used to change the opcode to one of the domains in the
1673   /// bit mask.  Instructions whose execution domain can't be changed should
1674   /// return a 0 mask.
1675   ///
1676   /// The execution domain numbers don't have any special meaning except domain
1677   /// 0 is used for instructions that are not associated with any interesting
1678   /// execution domain.
1679   ///
1680   virtual std::pair<uint16_t, uint16_t>
1681   getExecutionDomain(const MachineInstr &MI) const {
1682     return std::make_pair(0, 0);
1683   }
1684 
1685   /// Change the opcode of MI to execute in Domain.
1686   ///
1687   /// The bit (1 << Domain) must be set in the mask returned from
1688   /// getExecutionDomain(MI).
1689   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1690 
1691   /// Returns the preferred minimum clearance
1692   /// before an instruction with an unwanted partial register update.
1693   ///
1694   /// Some instructions only write part of a register, and implicitly need to
1695   /// read the other parts of the register.  This may cause unwanted stalls
1696   /// preventing otherwise unrelated instructions from executing in parallel in
1697   /// an out-of-order CPU.
1698   ///
1699   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1700   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1701   /// the instruction needs to wait for the old value of the register to become
1702   /// available:
1703   ///
1704   ///   addps %xmm1, %xmm0
1705   ///   movaps %xmm0, (%rax)
1706   ///   cvtsi2ss %rbx, %xmm0
1707   ///
1708   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1709   /// instruction before it can issue, even though the high bits of %xmm0
1710   /// probably aren't needed.
1711   ///
1712   /// This hook returns the preferred clearance before MI, measured in
1713   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1714   /// instructions before MI.  It should only return a positive value for
1715   /// unwanted dependencies.  If the old bits of the defined register have
1716   /// useful values, or if MI is determined to otherwise read the dependency,
1717   /// the hook should return 0.
1718   ///
1719   /// The unwanted dependency may be handled by:
1720   ///
1721   /// 1. Allocating the same register for an MI def and use.  That makes the
1722   ///    unwanted dependency identical to a required dependency.
1723   ///
1724   /// 2. Allocating a register for the def that has no defs in the previous N
1725   ///    instructions.
1726   ///
1727   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1728   ///    allows the target to insert a dependency breaking instruction.
1729   ///
1730   virtual unsigned
1731   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1732                                const TargetRegisterInfo *TRI) const {
1733     // The default implementation returns 0 for no partial register dependency.
1734     return 0;
1735   }
1736 
1737   /// Return the minimum clearance before an instruction that reads an
1738   /// unused register.
1739   ///
1740   /// For example, AVX instructions may copy part of a register operand into
1741   /// the unused high bits of the destination register.
1742   ///
1743   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1744   ///
1745   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1746   /// false dependence on any previous write to %xmm0.
1747   ///
1748   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1749   /// does not take an operand index. Instead sets \p OpNum to the index of the
1750   /// unused register.
1751   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1752                                         const TargetRegisterInfo *TRI) const {
1753     // The default implementation returns 0 for no undef register dependency.
1754     return 0;
1755   }
1756 
1757   /// Insert a dependency-breaking instruction
1758   /// before MI to eliminate an unwanted dependency on OpNum.
1759   ///
1760   /// If it wasn't possible to avoid a def in the last N instructions before MI
1761   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1762   /// unwanted dependency.
1763   ///
1764   /// On x86, an xorps instruction can be used as a dependency breaker:
1765   ///
1766   ///   addps %xmm1, %xmm0
1767   ///   movaps %xmm0, (%rax)
1768   ///   xorps %xmm0, %xmm0
1769   ///   cvtsi2ss %rbx, %xmm0
1770   ///
1771   /// An <imp-kill> operand should be added to MI if an instruction was
1772   /// inserted.  This ties the instructions together in the post-ra scheduler.
1773   ///
1774   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1775                                          const TargetRegisterInfo *TRI) const {}
1776 
1777   /// Create machine specific model for scheduling.
1778   virtual DFAPacketizer *
1779   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1780     return nullptr;
1781   }
1782 
1783   /// Sometimes, it is possible for the target
1784   /// to tell, even without aliasing information, that two MIs access different
1785   /// memory addresses. This function returns true if two MIs access different
1786   /// memory addresses and false otherwise.
1787   ///
1788   /// Assumes any physical registers used to compute addresses have the same
1789   /// value for both instructions. (This is the most useful assumption for
1790   /// post-RA scheduling.)
1791   ///
1792   /// See also MachineInstr::mayAlias, which is implemented on top of this
1793   /// function.
1794   virtual bool
1795   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1796                                   const MachineInstr &MIb) const {
1797     assert(MIa.mayLoadOrStore() &&
1798            "MIa must load from or modify a memory location");
1799     assert(MIb.mayLoadOrStore() &&
1800            "MIb must load from or modify a memory location");
1801     return false;
1802   }
1803 
1804   /// Return the value to use for the MachineCSE's LookAheadLimit,
1805   /// which is a heuristic used for CSE'ing phys reg defs.
1806   virtual unsigned getMachineCSELookAheadLimit() const {
1807     // The default lookahead is small to prevent unprofitable quadratic
1808     // behavior.
1809     return 5;
1810   }
1811 
1812   /// Return the maximal number of alias checks on memory operands. For
1813   /// instructions with more than one memory operands, the alias check on a
1814   /// single MachineInstr pair has quadratic overhead and results in
1815   /// unacceptable performance in the worst case. The limit here is to clamp
1816   /// that maximal checks performed. Usually, that's the product of memory
1817   /// operand numbers from that pair of MachineInstr to be checked. For
1818   /// instance, with two MachineInstrs with 4 and 5 memory operands
1819   /// correspondingly, a total of 20 checks are required. With this limit set to
1820   /// 16, their alias check is skipped. We choose to limit the product instead
1821   /// of the individual instruction as targets may have special MachineInstrs
1822   /// with a considerably high number of memory operands, such as `ldm` in ARM.
1823   /// Setting this limit per MachineInstr would result in either too high
1824   /// overhead or too rigid restriction.
1825   virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1826 
1827   /// Return an array that contains the ids of the target indices (used for the
1828   /// TargetIndex machine operand) and their names.
1829   ///
1830   /// MIR Serialization is able to serialize only the target indices that are
1831   /// defined by this method.
1832   virtual ArrayRef<std::pair<int, const char *>>
1833   getSerializableTargetIndices() const {
1834     return None;
1835   }
1836 
1837   /// Decompose the machine operand's target flags into two values - the direct
1838   /// target flag value and any of bit flags that are applied.
1839   virtual std::pair<unsigned, unsigned>
1840   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1841     return std::make_pair(0u, 0u);
1842   }
1843 
1844   /// Return an array that contains the direct target flag values and their
1845   /// names.
1846   ///
1847   /// MIR Serialization is able to serialize only the target flags that are
1848   /// defined by this method.
1849   virtual ArrayRef<std::pair<unsigned, const char *>>
1850   getSerializableDirectMachineOperandTargetFlags() const {
1851     return None;
1852   }
1853 
1854   /// Return an array that contains the bitmask target flag values and their
1855   /// names.
1856   ///
1857   /// MIR Serialization is able to serialize only the target flags that are
1858   /// defined by this method.
1859   virtual ArrayRef<std::pair<unsigned, const char *>>
1860   getSerializableBitmaskMachineOperandTargetFlags() const {
1861     return None;
1862   }
1863 
1864   /// Return an array that contains the MMO target flag values and their
1865   /// names.
1866   ///
1867   /// MIR Serialization is able to serialize only the MMO target flags that are
1868   /// defined by this method.
1869   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1870   getSerializableMachineMemOperandTargetFlags() const {
1871     return None;
1872   }
1873 
1874   /// Determines whether \p Inst is a tail call instruction. Override this
1875   /// method on targets that do not properly set MCID::Return and MCID::Call on
1876   /// tail call instructions."
1877   virtual bool isTailCall(const MachineInstr &Inst) const {
1878     return Inst.isReturn() && Inst.isCall();
1879   }
1880 
1881   /// True if the instruction is bound to the top of its basic block and no
1882   /// other instructions shall be inserted before it. This can be implemented
1883   /// to prevent register allocator to insert spills before such instructions.
1884   virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1885     return false;
1886   }
1887 
1888   /// During PHI eleimination lets target to make necessary checks and
1889   /// insert the copy to the PHI destination register in a target specific
1890   /// manner.
1891   virtual MachineInstr *createPHIDestinationCopy(
1892       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
1893       const DebugLoc &DL, Register Src, Register Dst) const {
1894     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1895         .addReg(Src);
1896   }
1897 
1898   /// During PHI eleimination lets target to make necessary checks and
1899   /// insert the copy to the PHI destination register in a target specific
1900   /// manner.
1901   virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
1902                                             MachineBasicBlock::iterator InsPt,
1903                                             const DebugLoc &DL, Register Src,
1904                                             unsigned SrcSubReg,
1905                                             Register Dst) const {
1906     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1907         .addReg(Src, 0, SrcSubReg);
1908   }
1909 
1910   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1911   /// information for a set of outlining candidates.
1912   virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1913       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1914     llvm_unreachable(
1915         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1916   }
1917 
1918   /// Optional target hook to create the LLVM IR attributes for the outlined
1919   /// function. If overridden, the overriding function must call the default
1920   /// implementation.
1921   virtual void mergeOutliningCandidateAttributes(
1922       Function &F, std::vector<outliner::Candidate> &Candidates) const;
1923 
1924   /// Returns how or if \p MI should be outlined.
1925   virtual outliner::InstrType
1926   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1927     llvm_unreachable(
1928         "Target didn't implement TargetInstrInfo::getOutliningType!");
1929   }
1930 
1931   /// Optional target hook that returns true if \p MBB is safe to outline from,
1932   /// and returns any target-specific information in \p Flags.
1933   virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1934                                       unsigned &Flags) const;
1935 
1936   /// Insert a custom frame for outlined functions.
1937   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1938                                   const outliner::OutlinedFunction &OF) const {
1939     llvm_unreachable(
1940         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1941   }
1942 
1943   /// Insert a call to an outlined function into the program.
1944   /// Returns an iterator to the spot where we inserted the call. This must be
1945   /// implemented by the target.
1946   virtual MachineBasicBlock::iterator
1947   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1948                      MachineBasicBlock::iterator &It, MachineFunction &MF,
1949                      outliner::Candidate &C) const {
1950     llvm_unreachable(
1951         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1952   }
1953 
1954   /// Return true if the function can safely be outlined from.
1955   /// A function \p MF is considered safe for outlining if an outlined function
1956   /// produced from instructions in F will produce a program which produces the
1957   /// same output for any set of given inputs.
1958   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1959                                            bool OutlineFromLinkOnceODRs) const {
1960     llvm_unreachable("Target didn't implement "
1961                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1962   }
1963 
1964   /// Return true if the function should be outlined from by default.
1965   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
1966     return false;
1967   }
1968 
1969   /// Produce the expression describing the \p MI loading a value into
1970   /// the physical register \p Reg. This hook should only be used with
1971   /// \p MIs belonging to VReg-less functions.
1972   virtual Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI,
1973                                                          Register Reg) const;
1974 
1975   /// Given the generic extension instruction \p ExtMI, returns true if this
1976   /// extension is a likely candidate for being folded into an another
1977   /// instruction.
1978   virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
1979                                         MachineRegisterInfo &MRI) const {
1980     return false;
1981   }
1982 
1983   /// Return MIR formatter to format/parse MIR operands.  Target can override
1984   /// this virtual function and return target specific MIR formatter.
1985   virtual const MIRFormatter *getMIRFormatter() const {
1986     if (!Formatter.get())
1987       Formatter = std::make_unique<MIRFormatter>();
1988     return Formatter.get();
1989   }
1990 
1991   /// Returns the target-specific default value for tail duplication.
1992   /// This value will be used if the tail-dup-placement-threshold argument is
1993   /// not provided.
1994   virtual unsigned getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
1995     return OptLevel >= CodeGenOpt::Aggressive ? 4 : 2;
1996   }
1997 
1998   /// Returns the callee operand from the given \p MI.
1999   virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2000     return MI.getOperand(0);
2001   }
2002 
2003 private:
2004   mutable std::unique_ptr<MIRFormatter> Formatter;
2005   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2006   unsigned CatchRetOpcode;
2007   unsigned ReturnOpcode;
2008 };
2009 
2010 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2011 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
2012   using RegInfo = DenseMapInfo<unsigned>;
2013 
2014   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
2015     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2016                                           RegInfo::getEmptyKey());
2017   }
2018 
2019   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
2020     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2021                                           RegInfo::getTombstoneKey());
2022   }
2023 
2024   /// Reuse getHashValue implementation from
2025   /// std::pair<unsigned, unsigned>.
2026   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2027     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
2028     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2029   }
2030 
2031   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
2032                       const TargetInstrInfo::RegSubRegPair &RHS) {
2033     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
2034            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
2035   }
2036 };
2037 
2038 } // end namespace llvm
2039 
2040 #endif // LLVM_CODEGEN_TARGETINSTRINFO_H
2041