1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the target machine instruction set to the code generator.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14 #define LLVM_CODEGEN_TARGETINSTRINFO_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/Uniformity.h"
20 #include "llvm/CodeGen/MIRFormatter.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineCycleAnalysis.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOutliner.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/MC/MCInstrInfo.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <utility>
37 #include <vector>
38 
39 namespace llvm {
40 
41 class DFAPacketizer;
42 class InstrItineraryData;
43 class LiveIntervals;
44 class LiveVariables;
45 class MachineLoop;
46 class MachineMemOperand;
47 class MachineRegisterInfo;
48 class MCAsmInfo;
49 class MCInst;
50 struct MCSchedModel;
51 class Module;
52 class ScheduleDAG;
53 class ScheduleDAGMI;
54 class ScheduleHazardRecognizer;
55 class SDNode;
56 class SelectionDAG;
57 class SMSchedule;
58 class SwingSchedulerDAG;
59 class RegScavenger;
60 class TargetRegisterClass;
61 class TargetRegisterInfo;
62 class TargetSchedModel;
63 class TargetSubtargetInfo;
64 enum class MachineCombinerPattern;
65 enum class MachineTraceStrategy;
66 
67 template <class T> class SmallVectorImpl;
68 
69 using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
70 
71 struct DestSourcePair {
72   const MachineOperand *Destination;
73   const MachineOperand *Source;
74 
75   DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
76       : Destination(&Dest), Source(&Src) {}
77 };
78 
79 /// Used to describe a register and immediate addition.
80 struct RegImmPair {
81   Register Reg;
82   int64_t Imm;
83 
84   RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
85 };
86 
87 /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
88 /// It holds the register values, the scale value and the displacement.
89 /// It also holds a descriptor for the expression used to calculate the address
90 /// from the operands.
91 struct ExtAddrMode {
92   enum class Formula {
93     Basic = 0,         // BaseReg + ScaledReg * Scale + Displacement
94     SExtScaledReg = 1, // BaseReg + sext(ScaledReg) * Scale + Displacement
95     ZExtScaledReg = 2  // BaseReg + zext(ScaledReg) * Scale + Displacement
96   };
97 
98   Register BaseReg;
99   Register ScaledReg;
100   int64_t Scale = 0;
101   int64_t Displacement = 0;
102   Formula Form = Formula::Basic;
103   ExtAddrMode() = default;
104 };
105 
106 //---------------------------------------------------------------------------
107 ///
108 /// TargetInstrInfo - Interface to description of machine instruction set
109 ///
110 class TargetInstrInfo : public MCInstrInfo {
111 public:
112   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
113                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
114       : CallFrameSetupOpcode(CFSetupOpcode),
115         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
116         ReturnOpcode(ReturnOpcode) {}
117   TargetInstrInfo(const TargetInstrInfo &) = delete;
118   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
119   virtual ~TargetInstrInfo();
120 
121   static bool isGenericOpcode(unsigned Opc) {
122     return Opc <= TargetOpcode::GENERIC_OP_END;
123   }
124 
125   static bool isGenericAtomicRMWOpcode(unsigned Opc) {
126     return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
127            Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
128   }
129 
130   /// Given a machine instruction descriptor, returns the register
131   /// class constraint for OpNum, or NULL.
132   virtual
133   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
134                                          const TargetRegisterInfo *TRI,
135                                          const MachineFunction &MF) const;
136 
137   /// Return true if the instruction is trivially rematerializable, meaning it
138   /// has no side effects and requires no operands that aren't always available.
139   /// This means the only allowed uses are constants and unallocatable physical
140   /// registers so that the instructions result is independent of the place
141   /// in the function.
142   bool isTriviallyReMaterializable(const MachineInstr &MI) const {
143     return (MI.getOpcode() == TargetOpcode::IMPLICIT_DEF &&
144             MI.getNumOperands() == 1) ||
145            (MI.getDesc().isRematerializable() &&
146             isReallyTriviallyReMaterializable(MI));
147   }
148 
149   /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
150   /// of instruction rematerialization or sinking.
151   virtual bool isIgnorableUse(const MachineOperand &MO) const {
152     return false;
153   }
154 
155   virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo,
156                             MachineCycleInfo *CI) const {
157     return true;
158   }
159 
160 protected:
161   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
162   /// set, this hook lets the target specify whether the instruction is actually
163   /// trivially rematerializable, taking into consideration its operands. This
164   /// predicate must return false if the instruction has any side effects other
165   /// than producing a value, or if it requres any address registers that are
166   /// not always available.
167   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const;
168 
169   /// This method commutes the operands of the given machine instruction MI.
170   /// The operands to be commuted are specified by their indices OpIdx1 and
171   /// OpIdx2.
172   ///
173   /// If a target has any instructions that are commutable but require
174   /// converting to different instructions or making non-trivial changes
175   /// to commute them, this method can be overloaded to do that.
176   /// The default implementation simply swaps the commutable operands.
177   ///
178   /// If NewMI is false, MI is modified in place and returned; otherwise, a
179   /// new machine instruction is created and returned.
180   ///
181   /// Do not call this method for a non-commutable instruction.
182   /// Even though the instruction is commutable, the method may still
183   /// fail to commute the operands, null pointer is returned in such cases.
184   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
185                                                unsigned OpIdx1,
186                                                unsigned OpIdx2) const;
187 
188   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
189   /// operand indices to (ResultIdx1, ResultIdx2).
190   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
191   /// predefined to some indices or be undefined (designated by the special
192   /// value 'CommuteAnyOperandIndex').
193   /// The predefined result indices cannot be re-defined.
194   /// The function returns true iff after the result pair redefinition
195   /// the fixed result pair is equal to or equivalent to the source pair of
196   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
197   /// the pairs (x,y) and (y,x) are equivalent.
198   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
199                                    unsigned CommutableOpIdx1,
200                                    unsigned CommutableOpIdx2);
201 
202 public:
203   /// These methods return the opcode of the frame setup/destroy instructions
204   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
205   /// order to abstract away the difference between operating with a frame
206   /// pointer and operating without, through the use of these two instructions.
207   ///
208   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
209   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
210 
211   /// Returns true if the argument is a frame pseudo instruction.
212   bool isFrameInstr(const MachineInstr &I) const {
213     return I.getOpcode() == getCallFrameSetupOpcode() ||
214            I.getOpcode() == getCallFrameDestroyOpcode();
215   }
216 
217   /// Returns true if the argument is a frame setup pseudo instruction.
218   bool isFrameSetup(const MachineInstr &I) const {
219     return I.getOpcode() == getCallFrameSetupOpcode();
220   }
221 
222   /// Returns size of the frame associated with the given frame instruction.
223   /// For frame setup instruction this is frame that is set up space set up
224   /// after the instruction. For frame destroy instruction this is the frame
225   /// freed by the caller.
226   /// Note, in some cases a call frame (or a part of it) may be prepared prior
227   /// to the frame setup instruction. It occurs in the calls that involve
228   /// inalloca arguments. This function reports only the size of the frame part
229   /// that is set up between the frame setup and destroy pseudo instructions.
230   int64_t getFrameSize(const MachineInstr &I) const {
231     assert(isFrameInstr(I) && "Not a frame instruction");
232     assert(I.getOperand(0).getImm() >= 0);
233     return I.getOperand(0).getImm();
234   }
235 
236   /// Returns the total frame size, which is made up of the space set up inside
237   /// the pair of frame start-stop instructions and the space that is set up
238   /// prior to the pair.
239   int64_t getFrameTotalSize(const MachineInstr &I) const {
240     if (isFrameSetup(I)) {
241       assert(I.getOperand(1).getImm() >= 0 &&
242              "Frame size must not be negative");
243       return getFrameSize(I) + I.getOperand(1).getImm();
244     }
245     return getFrameSize(I);
246   }
247 
248   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
249   unsigned getReturnOpcode() const { return ReturnOpcode; }
250 
251   /// Returns the actual stack pointer adjustment made by an instruction
252   /// as part of a call sequence. By default, only call frame setup/destroy
253   /// instructions adjust the stack, but targets may want to override this
254   /// to enable more fine-grained adjustment, or adjust by a different value.
255   virtual int getSPAdjust(const MachineInstr &MI) const;
256 
257   /// Return true if the instruction is a "coalescable" extension instruction.
258   /// That is, it's like a copy where it's legal for the source to overlap the
259   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
260   /// expected the pre-extension value is available as a subreg of the result
261   /// register. This also returns the sub-register index in SubIdx.
262   virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
263                                      Register &DstReg, unsigned &SubIdx) const {
264     return false;
265   }
266 
267   /// If the specified machine instruction is a direct
268   /// load from a stack slot, return the virtual or physical register number of
269   /// the destination along with the FrameIndex of the loaded stack slot.  If
270   /// not, return 0.  This predicate must return 0 if the instruction has
271   /// any side effects other than loading from the stack slot.
272   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
273                                        int &FrameIndex) const {
274     return 0;
275   }
276 
277   /// Optional extension of isLoadFromStackSlot that returns the number of
278   /// bytes loaded from the stack. This must be implemented if a backend
279   /// supports partial stack slot spills/loads to further disambiguate
280   /// what the load does.
281   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
282                                        int &FrameIndex,
283                                        unsigned &MemBytes) const {
284     MemBytes = 0;
285     return isLoadFromStackSlot(MI, FrameIndex);
286   }
287 
288   /// Check for post-frame ptr elimination stack locations as well.
289   /// This uses a heuristic so it isn't reliable for correctness.
290   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
291                                              int &FrameIndex) const {
292     return 0;
293   }
294 
295   /// If the specified machine instruction has a load from a stack slot,
296   /// return true along with the FrameIndices of the loaded stack slot and the
297   /// machine mem operands containing the reference.
298   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
299   /// any instructions that loads from the stack.  This is just a hint, as some
300   /// cases may be missed.
301   virtual bool hasLoadFromStackSlot(
302       const MachineInstr &MI,
303       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
304 
305   /// If the specified machine instruction is a direct
306   /// store to a stack slot, return the virtual or physical register number of
307   /// the source reg along with the FrameIndex of the loaded stack slot.  If
308   /// not, return 0.  This predicate must return 0 if the instruction has
309   /// any side effects other than storing to the stack slot.
310   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
311                                       int &FrameIndex) const {
312     return 0;
313   }
314 
315   /// Optional extension of isStoreToStackSlot that returns the number of
316   /// bytes stored to the stack. This must be implemented if a backend
317   /// supports partial stack slot spills/loads to further disambiguate
318   /// what the store does.
319   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
320                                       int &FrameIndex,
321                                       unsigned &MemBytes) const {
322     MemBytes = 0;
323     return isStoreToStackSlot(MI, FrameIndex);
324   }
325 
326   /// Check for post-frame ptr elimination stack locations as well.
327   /// This uses a heuristic, so it isn't reliable for correctness.
328   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
329                                             int &FrameIndex) const {
330     return 0;
331   }
332 
333   /// If the specified machine instruction has a store to a stack slot,
334   /// return true along with the FrameIndices of the loaded stack slot and the
335   /// machine mem operands containing the reference.
336   /// If not, return false.  Unlike isStoreToStackSlot,
337   /// this returns true for any instructions that stores to the
338   /// stack.  This is just a hint, as some cases may be missed.
339   virtual bool hasStoreToStackSlot(
340       const MachineInstr &MI,
341       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
342 
343   /// Return true if the specified machine instruction
344   /// is a copy of one stack slot to another and has no other effect.
345   /// Provide the identity of the two frame indices.
346   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
347                                int &SrcFrameIndex) const {
348     return false;
349   }
350 
351   /// Compute the size in bytes and offset within a stack slot of a spilled
352   /// register or subregister.
353   ///
354   /// \param [out] Size in bytes of the spilled value.
355   /// \param [out] Offset in bytes within the stack slot.
356   /// \returns true if both Size and Offset are successfully computed.
357   ///
358   /// Not all subregisters have computable spill slots. For example,
359   /// subregisters registers may not be byte-sized, and a pair of discontiguous
360   /// subregisters has no single offset.
361   ///
362   /// Targets with nontrivial bigendian implementations may need to override
363   /// this, particularly to support spilled vector registers.
364   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
365                                  unsigned &Size, unsigned &Offset,
366                                  const MachineFunction &MF) const;
367 
368   /// Return true if the given instruction is terminator that is unspillable,
369   /// according to isUnspillableTerminatorImpl.
370   bool isUnspillableTerminator(const MachineInstr *MI) const {
371     return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
372   }
373 
374   /// Returns the size in bytes of the specified MachineInstr, or ~0U
375   /// when this function is not implemented by a target.
376   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
377     return ~0U;
378   }
379 
380   /// Return true if the instruction is as cheap as a move instruction.
381   ///
382   /// Targets for different archs need to override this, and different
383   /// micro-architectures can also be finely tuned inside.
384   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
385     return MI.isAsCheapAsAMove();
386   }
387 
388   /// Return true if the instruction should be sunk by MachineSink.
389   ///
390   /// MachineSink determines on its own whether the instruction is safe to sink;
391   /// this gives the target a hook to override the default behavior with regards
392   /// to which instructions should be sunk.
393   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
394 
395   /// Return false if the instruction should not be hoisted by MachineLICM.
396   ///
397   /// MachineLICM determines on its own whether the instruction is safe to
398   /// hoist; this gives the target a hook to extend this assessment and prevent
399   /// an instruction being hoisted from a given loop for target specific
400   /// reasons.
401   virtual bool shouldHoist(const MachineInstr &MI,
402                            const MachineLoop *FromLoop) const {
403     return true;
404   }
405 
406   /// Re-issue the specified 'original' instruction at the
407   /// specific location targeting a new destination register.
408   /// The register in Orig->getOperand(0).getReg() will be substituted by
409   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
410   /// SubIdx.
411   virtual void reMaterialize(MachineBasicBlock &MBB,
412                              MachineBasicBlock::iterator MI, Register DestReg,
413                              unsigned SubIdx, const MachineInstr &Orig,
414                              const TargetRegisterInfo &TRI) const;
415 
416   /// Clones instruction or the whole instruction bundle \p Orig and
417   /// insert into \p MBB before \p InsertBefore. The target may update operands
418   /// that are required to be unique.
419   ///
420   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
421   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
422                                   MachineBasicBlock::iterator InsertBefore,
423                                   const MachineInstr &Orig) const;
424 
425   /// This method must be implemented by targets that
426   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
427   /// may be able to convert a two-address instruction into one or more true
428   /// three-address instructions on demand.  This allows the X86 target (for
429   /// example) to convert ADD and SHL instructions into LEA instructions if they
430   /// would require register copies due to two-addressness.
431   ///
432   /// This method returns a null pointer if the transformation cannot be
433   /// performed, otherwise it returns the last new instruction.
434   ///
435   /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
436   /// replacing \p MI with new instructions, even though this function does not
437   /// remove MI.
438   virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
439                                               LiveVariables *LV,
440                                               LiveIntervals *LIS) const {
441     return nullptr;
442   }
443 
444   // This constant can be used as an input value of operand index passed to
445   // the method findCommutedOpIndices() to tell the method that the
446   // corresponding operand index is not pre-defined and that the method
447   // can pick any commutable operand.
448   static const unsigned CommuteAnyOperandIndex = ~0U;
449 
450   /// This method commutes the operands of the given machine instruction MI.
451   ///
452   /// The operands to be commuted are specified by their indices OpIdx1 and
453   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
454   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
455   /// any arbitrarily chosen commutable operand. If both arguments are set to
456   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
457   /// operands; then commutes them if such operands could be found.
458   ///
459   /// If NewMI is false, MI is modified in place and returned; otherwise, a
460   /// new machine instruction is created and returned.
461   ///
462   /// Do not call this method for a non-commutable instruction or
463   /// for non-commuable operands.
464   /// Even though the instruction is commutable, the method may still
465   /// fail to commute the operands, null pointer is returned in such cases.
466   MachineInstr *
467   commuteInstruction(MachineInstr &MI, bool NewMI = false,
468                      unsigned OpIdx1 = CommuteAnyOperandIndex,
469                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
470 
471   /// Returns true iff the routine could find two commutable operands in the
472   /// given machine instruction.
473   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
474   /// If any of the INPUT values is set to the special value
475   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
476   /// operand, then returns its index in the corresponding argument.
477   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
478   /// looks for 2 commutable operands.
479   /// If INPUT values refer to some operands of MI, then the method simply
480   /// returns true if the corresponding operands are commutable and returns
481   /// false otherwise.
482   ///
483   /// For example, calling this method this way:
484   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
485   ///     findCommutedOpIndices(MI, Op1, Op2);
486   /// can be interpreted as a query asking to find an operand that would be
487   /// commutable with the operand#1.
488   virtual bool findCommutedOpIndices(const MachineInstr &MI,
489                                      unsigned &SrcOpIdx1,
490                                      unsigned &SrcOpIdx2) const;
491 
492   /// Returns true if the target has a preference on the operands order of
493   /// the given machine instruction. And specify if \p Commute is required to
494   /// get the desired operands order.
495   virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
496     return false;
497   }
498 
499   /// A pair composed of a register and a sub-register index.
500   /// Used to give some type checking when modeling Reg:SubReg.
501   struct RegSubRegPair {
502     Register Reg;
503     unsigned SubReg;
504 
505     RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
506         : Reg(Reg), SubReg(SubReg) {}
507 
508     bool operator==(const RegSubRegPair& P) const {
509       return Reg == P.Reg && SubReg == P.SubReg;
510     }
511     bool operator!=(const RegSubRegPair& P) const {
512       return !(*this == P);
513     }
514   };
515 
516   /// A pair composed of a pair of a register and a sub-register index,
517   /// and another sub-register index.
518   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
519   struct RegSubRegPairAndIdx : RegSubRegPair {
520     unsigned SubIdx;
521 
522     RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
523                         unsigned SubIdx = 0)
524         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
525   };
526 
527   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
528   /// and \p DefIdx.
529   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
530   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
531   /// flag are not added to this list.
532   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
533   /// two elements:
534   /// - %1:sub1, sub0
535   /// - %2<:0>, sub1
536   ///
537   /// \returns true if it is possible to build such an input sequence
538   /// with the pair \p MI, \p DefIdx. False otherwise.
539   ///
540   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
541   ///
542   /// \note The generic implementation does not provide any support for
543   /// MI.isRegSequenceLike(). In other words, one has to override
544   /// getRegSequenceLikeInputs for target specific instructions.
545   bool
546   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
547                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
548 
549   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
550   /// and \p DefIdx.
551   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
552   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
553   /// - %1:sub1, sub0
554   ///
555   /// \returns true if it is possible to build such an input sequence
556   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
557   /// False otherwise.
558   ///
559   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
560   ///
561   /// \note The generic implementation does not provide any support for
562   /// MI.isExtractSubregLike(). In other words, one has to override
563   /// getExtractSubregLikeInputs for target specific instructions.
564   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
565                               RegSubRegPairAndIdx &InputReg) const;
566 
567   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
568   /// and \p DefIdx.
569   /// \p [out] BaseReg and \p [out] InsertedReg contain
570   /// the equivalent inputs of INSERT_SUBREG.
571   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
572   /// - BaseReg: %0:sub0
573   /// - InsertedReg: %1:sub1, sub3
574   ///
575   /// \returns true if it is possible to build such an input sequence
576   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
577   /// False otherwise.
578   ///
579   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
580   ///
581   /// \note The generic implementation does not provide any support for
582   /// MI.isInsertSubregLike(). In other words, one has to override
583   /// getInsertSubregLikeInputs for target specific instructions.
584   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
585                              RegSubRegPair &BaseReg,
586                              RegSubRegPairAndIdx &InsertedReg) const;
587 
588   /// Return true if two machine instructions would produce identical values.
589   /// By default, this is only true when the two instructions
590   /// are deemed identical except for defs. If this function is called when the
591   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
592   /// aggressive checks.
593   virtual bool produceSameValue(const MachineInstr &MI0,
594                                 const MachineInstr &MI1,
595                                 const MachineRegisterInfo *MRI = nullptr) const;
596 
597   /// \returns true if a branch from an instruction with opcode \p BranchOpc
598   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
599   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
600                                      int64_t BrOffset) const {
601     llvm_unreachable("target did not implement");
602   }
603 
604   /// \returns The block that branch instruction \p MI jumps to.
605   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
606     llvm_unreachable("target did not implement");
607   }
608 
609   /// Insert an unconditional indirect branch at the end of \p MBB to \p
610   /// NewDestBB. Optionally, insert the clobbered register restoring in \p
611   /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
612   /// the offset of the position to insert the new branch.
613   virtual void insertIndirectBranch(MachineBasicBlock &MBB,
614                                     MachineBasicBlock &NewDestBB,
615                                     MachineBasicBlock &RestoreBB,
616                                     const DebugLoc &DL, int64_t BrOffset = 0,
617                                     RegScavenger *RS = nullptr) const {
618     llvm_unreachable("target did not implement");
619   }
620 
621   /// Analyze the branching code at the end of MBB, returning
622   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
623   /// implemented for a target).  Upon success, this returns false and returns
624   /// with the following information in various cases:
625   ///
626   /// 1. If this block ends with no branches (it just falls through to its succ)
627   ///    just return false, leaving TBB/FBB null.
628   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
629   ///    the destination block.
630   /// 3. If this block ends with a conditional branch and it falls through to a
631   ///    successor block, it sets TBB to be the branch destination block and a
632   ///    list of operands that evaluate the condition. These operands can be
633   ///    passed to other TargetInstrInfo methods to create new branches.
634   /// 4. If this block ends with a conditional branch followed by an
635   ///    unconditional branch, it returns the 'true' destination in TBB, the
636   ///    'false' destination in FBB, and a list of operands that evaluate the
637   ///    condition.  These operands can be passed to other TargetInstrInfo
638   ///    methods to create new branches.
639   ///
640   /// Note that removeBranch and insertBranch must be implemented to support
641   /// cases where this method returns success.
642   ///
643   /// If AllowModify is true, then this routine is allowed to modify the basic
644   /// block (e.g. delete instructions after the unconditional branch).
645   ///
646   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
647   /// before calling this function.
648   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
649                              MachineBasicBlock *&FBB,
650                              SmallVectorImpl<MachineOperand> &Cond,
651                              bool AllowModify = false) const {
652     return true;
653   }
654 
655   /// Represents a predicate at the MachineFunction level.  The control flow a
656   /// MachineBranchPredicate represents is:
657   ///
658   ///  Reg = LHS `Predicate` RHS         == ConditionDef
659   ///  if Reg then goto TrueDest else goto FalseDest
660   ///
661   struct MachineBranchPredicate {
662     enum ComparePredicate {
663       PRED_EQ,     // True if two values are equal
664       PRED_NE,     // True if two values are not equal
665       PRED_INVALID // Sentinel value
666     };
667 
668     ComparePredicate Predicate = PRED_INVALID;
669     MachineOperand LHS = MachineOperand::CreateImm(0);
670     MachineOperand RHS = MachineOperand::CreateImm(0);
671     MachineBasicBlock *TrueDest = nullptr;
672     MachineBasicBlock *FalseDest = nullptr;
673     MachineInstr *ConditionDef = nullptr;
674 
675     /// SingleUseCondition is true if ConditionDef is dead except for the
676     /// branch(es) at the end of the basic block.
677     ///
678     bool SingleUseCondition = false;
679 
680     explicit MachineBranchPredicate() = default;
681   };
682 
683   /// Analyze the branching code at the end of MBB and parse it into the
684   /// MachineBranchPredicate structure if possible.  Returns false on success
685   /// and true on failure.
686   ///
687   /// If AllowModify is true, then this routine is allowed to modify the basic
688   /// block (e.g. delete instructions after the unconditional branch).
689   ///
690   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
691                                       MachineBranchPredicate &MBP,
692                                       bool AllowModify = false) const {
693     return true;
694   }
695 
696   /// Remove the branching code at the end of the specific MBB.
697   /// This is only invoked in cases where analyzeBranch returns success. It
698   /// returns the number of instructions that were removed.
699   /// If \p BytesRemoved is non-null, report the change in code size from the
700   /// removed instructions.
701   virtual unsigned removeBranch(MachineBasicBlock &MBB,
702                                 int *BytesRemoved = nullptr) const {
703     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
704   }
705 
706   /// Insert branch code into the end of the specified MachineBasicBlock. The
707   /// operands to this method are the same as those returned by analyzeBranch.
708   /// This is only invoked in cases where analyzeBranch returns success. It
709   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
710   /// report the change in code size from the added instructions.
711   ///
712   /// It is also invoked by tail merging to add unconditional branches in
713   /// cases where analyzeBranch doesn't apply because there was no original
714   /// branch to analyze.  At least this much must be implemented, else tail
715   /// merging needs to be disabled.
716   ///
717   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
718   /// before calling this function.
719   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
720                                 MachineBasicBlock *FBB,
721                                 ArrayRef<MachineOperand> Cond,
722                                 const DebugLoc &DL,
723                                 int *BytesAdded = nullptr) const {
724     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
725   }
726 
727   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
728                                      MachineBasicBlock *DestBB,
729                                      const DebugLoc &DL,
730                                      int *BytesAdded = nullptr) const {
731     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
732                         BytesAdded);
733   }
734 
735   /// Object returned by analyzeLoopForPipelining. Allows software pipelining
736   /// implementations to query attributes of the loop being pipelined and to
737   /// apply target-specific updates to the loop once pipelining is complete.
738   class PipelinerLoopInfo {
739   public:
740     virtual ~PipelinerLoopInfo();
741     /// Return true if the given instruction should not be pipelined and should
742     /// be ignored. An example could be a loop comparison, or induction variable
743     /// update with no users being pipelined.
744     virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
745 
746     /// Return true if the proposed schedule should used.  Otherwise return
747     /// false to not pipeline the loop. This function should be used to ensure
748     /// that pipelined loops meet target-specific quality heuristics.
749     virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) {
750       return true;
751     }
752 
753     /// Create a condition to determine if the trip count of the loop is greater
754     /// than TC, where TC is always one more than for the previous prologue or
755     /// 0 if this is being called for the outermost prologue.
756     ///
757     /// If the trip count is statically known to be greater than TC, return
758     /// true. If the trip count is statically known to be not greater than TC,
759     /// return false. Otherwise return nullopt and fill out Cond with the test
760     /// condition.
761     ///
762     /// Note: This hook is guaranteed to be called from the innermost to the
763     /// outermost prologue of the loop being software pipelined.
764     virtual std::optional<bool>
765     createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
766                                     SmallVectorImpl<MachineOperand> &Cond) = 0;
767 
768     /// Modify the loop such that the trip count is
769     /// OriginalTC + TripCountAdjust.
770     virtual void adjustTripCount(int TripCountAdjust) = 0;
771 
772     /// Called when the loop's preheader has been modified to NewPreheader.
773     virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
774 
775     /// Called when the loop is being removed. Any instructions in the preheader
776     /// should be removed.
777     ///
778     /// Once this function is called, no other functions on this object are
779     /// valid; the loop has been removed.
780     virtual void disposed() = 0;
781   };
782 
783   /// Analyze loop L, which must be a single-basic-block loop, and if the
784   /// conditions can be understood enough produce a PipelinerLoopInfo object.
785   virtual std::unique_ptr<PipelinerLoopInfo>
786   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
787     return nullptr;
788   }
789 
790   /// Analyze the loop code, return true if it cannot be understood. Upon
791   /// success, this function returns false and returns information about the
792   /// induction variable and compare instruction used at the end.
793   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
794                            MachineInstr *&CmpInst) const {
795     return true;
796   }
797 
798   /// Generate code to reduce the loop iteration by one and check if the loop
799   /// is finished.  Return the value/register of the new loop count.  We need
800   /// this function when peeling off one or more iterations of a loop. This
801   /// function assumes the nth iteration is peeled first.
802   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
803                                    MachineBasicBlock &PreHeader,
804                                    MachineInstr *IndVar, MachineInstr &Cmp,
805                                    SmallVectorImpl<MachineOperand> &Cond,
806                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
807                                    unsigned Iter, unsigned MaxIter) const {
808     llvm_unreachable("Target didn't implement ReduceLoopCount");
809   }
810 
811   /// Delete the instruction OldInst and everything after it, replacing it with
812   /// an unconditional branch to NewDest. This is used by the tail merging pass.
813   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
814                                        MachineBasicBlock *NewDest) const;
815 
816   /// Return true if it's legal to split the given basic
817   /// block at the specified instruction (i.e. instruction would be the start
818   /// of a new basic block).
819   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
820                                    MachineBasicBlock::iterator MBBI) const {
821     return true;
822   }
823 
824   /// Return true if it's profitable to predicate
825   /// instructions with accumulated instruction latency of "NumCycles"
826   /// of the specified basic block, where the probability of the instructions
827   /// being executed is given by Probability, and Confidence is a measure
828   /// of our confidence that it will be properly predicted.
829   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
830                                    unsigned ExtraPredCycles,
831                                    BranchProbability Probability) const {
832     return false;
833   }
834 
835   /// Second variant of isProfitableToIfCvt. This one
836   /// checks for the case where two basic blocks from true and false path
837   /// of a if-then-else (diamond) are predicated on mutually exclusive
838   /// predicates, where the probability of the true path being taken is given
839   /// by Probability, and Confidence is a measure of our confidence that it
840   /// will be properly predicted.
841   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
842                                    unsigned ExtraTCycles,
843                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
844                                    unsigned ExtraFCycles,
845                                    BranchProbability Probability) const {
846     return false;
847   }
848 
849   /// Return true if it's profitable for if-converter to duplicate instructions
850   /// of specified accumulated instruction latencies in the specified MBB to
851   /// enable if-conversion.
852   /// The probability of the instructions being executed is given by
853   /// Probability, and Confidence is a measure of our confidence that it
854   /// will be properly predicted.
855   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
856                                          unsigned NumCycles,
857                                          BranchProbability Probability) const {
858     return false;
859   }
860 
861   /// Return the increase in code size needed to predicate a contiguous run of
862   /// NumInsts instructions.
863   virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
864                                                     unsigned NumInsts) const {
865     return 0;
866   }
867 
868   /// Return an estimate for the code size reduction (in bytes) which will be
869   /// caused by removing the given branch instruction during if-conversion.
870   virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
871     return getInstSizeInBytes(MI);
872   }
873 
874   /// Return true if it's profitable to unpredicate
875   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
876   /// exclusive predicates.
877   /// e.g.
878   ///   subeq  r0, r1, #1
879   ///   addne  r0, r1, #1
880   /// =>
881   ///   sub    r0, r1, #1
882   ///   addne  r0, r1, #1
883   ///
884   /// This may be profitable is conditional instructions are always executed.
885   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
886                                          MachineBasicBlock &FMBB) const {
887     return false;
888   }
889 
890   /// Return true if it is possible to insert a select
891   /// instruction that chooses between TrueReg and FalseReg based on the
892   /// condition code in Cond.
893   ///
894   /// When successful, also return the latency in cycles from TrueReg,
895   /// FalseReg, and Cond to the destination register. In most cases, a select
896   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
897   ///
898   /// Some x86 implementations have 2-cycle cmov instructions.
899   ///
900   /// @param MBB         Block where select instruction would be inserted.
901   /// @param Cond        Condition returned by analyzeBranch.
902   /// @param DstReg      Virtual dest register that the result should write to.
903   /// @param TrueReg     Virtual register to select when Cond is true.
904   /// @param FalseReg    Virtual register to select when Cond is false.
905   /// @param CondCycles  Latency from Cond+Branch to select output.
906   /// @param TrueCycles  Latency from TrueReg to select output.
907   /// @param FalseCycles Latency from FalseReg to select output.
908   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
909                                ArrayRef<MachineOperand> Cond, Register DstReg,
910                                Register TrueReg, Register FalseReg,
911                                int &CondCycles, int &TrueCycles,
912                                int &FalseCycles) const {
913     return false;
914   }
915 
916   /// Insert a select instruction into MBB before I that will copy TrueReg to
917   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
918   ///
919   /// This function can only be called after canInsertSelect() returned true.
920   /// The condition in Cond comes from analyzeBranch, and it can be assumed
921   /// that the same flags or registers required by Cond are available at the
922   /// insertion point.
923   ///
924   /// @param MBB      Block where select instruction should be inserted.
925   /// @param I        Insertion point.
926   /// @param DL       Source location for debugging.
927   /// @param DstReg   Virtual register to be defined by select instruction.
928   /// @param Cond     Condition as computed by analyzeBranch.
929   /// @param TrueReg  Virtual register to copy when Cond is true.
930   /// @param FalseReg Virtual register to copy when Cons is false.
931   virtual void insertSelect(MachineBasicBlock &MBB,
932                             MachineBasicBlock::iterator I, const DebugLoc &DL,
933                             Register DstReg, ArrayRef<MachineOperand> Cond,
934                             Register TrueReg, Register FalseReg) const {
935     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
936   }
937 
938   /// Analyze the given select instruction, returning true if
939   /// it cannot be understood. It is assumed that MI->isSelect() is true.
940   ///
941   /// When successful, return the controlling condition and the operands that
942   /// determine the true and false result values.
943   ///
944   ///   Result = SELECT Cond, TrueOp, FalseOp
945   ///
946   /// Some targets can optimize select instructions, for example by predicating
947   /// the instruction defining one of the operands. Such targets should set
948   /// Optimizable.
949   ///
950   /// @param         MI Select instruction to analyze.
951   /// @param Cond    Condition controlling the select.
952   /// @param TrueOp  Operand number of the value selected when Cond is true.
953   /// @param FalseOp Operand number of the value selected when Cond is false.
954   /// @param Optimizable Returned as true if MI is optimizable.
955   /// @returns False on success.
956   virtual bool analyzeSelect(const MachineInstr &MI,
957                              SmallVectorImpl<MachineOperand> &Cond,
958                              unsigned &TrueOp, unsigned &FalseOp,
959                              bool &Optimizable) const {
960     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
961     return true;
962   }
963 
964   /// Given a select instruction that was understood by
965   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
966   /// merging it with one of its operands. Returns NULL on failure.
967   ///
968   /// When successful, returns the new select instruction. The client is
969   /// responsible for deleting MI.
970   ///
971   /// If both sides of the select can be optimized, PreferFalse is used to pick
972   /// a side.
973   ///
974   /// @param MI          Optimizable select instruction.
975   /// @param NewMIs     Set that record all MIs in the basic block up to \p
976   /// MI. Has to be updated with any newly created MI or deleted ones.
977   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
978   /// @returns Optimized instruction or NULL.
979   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
980                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
981                                        bool PreferFalse = false) const {
982     // This function must be implemented if Optimizable is ever set.
983     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
984   }
985 
986   /// Emit instructions to copy a pair of physical registers.
987   ///
988   /// This function should support copies within any legal register class as
989   /// well as any cross-class copies created during instruction selection.
990   ///
991   /// The source and destination registers may overlap, which may require a
992   /// careful implementation when multiple copy instructions are required for
993   /// large registers. See for example the ARM target.
994   virtual void copyPhysReg(MachineBasicBlock &MBB,
995                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
996                            MCRegister DestReg, MCRegister SrcReg,
997                            bool KillSrc) const {
998     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
999   }
1000 
1001   /// Allow targets to tell MachineVerifier whether a specific register
1002   /// MachineOperand can be used as part of PC-relative addressing.
1003   /// PC-relative addressing modes in many CISC architectures contain
1004   /// (non-PC) registers as offsets or scaling values, which inherently
1005   /// tags the corresponding MachineOperand with OPERAND_PCREL.
1006   ///
1007   /// @param MO The MachineOperand in question. MO.isReg() should always
1008   /// be true.
1009   /// @return Whether this operand is allowed to be used PC-relatively.
1010   virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1011     return false;
1012   }
1013 
1014   /// Return an index for MachineJumpTableInfo if \p insn is an indirect jump
1015   /// using a jump table, otherwise -1.
1016   virtual int getJumpTableIndex(const MachineInstr &MI) const { return -1; }
1017 
1018 protected:
1019   /// Target-dependent implementation for IsCopyInstr.
1020   /// If the specific machine instruction is a instruction that moves/copies
1021   /// value from one register to another register return destination and source
1022   /// registers as machine operands.
1023   virtual std::optional<DestSourcePair>
1024   isCopyInstrImpl(const MachineInstr &MI) const {
1025     return std::nullopt;
1026   }
1027 
1028   virtual std::optional<DestSourcePair>
1029   isCopyLikeInstrImpl(const MachineInstr &MI) const {
1030     return std::nullopt;
1031   }
1032 
1033   /// Return true if the given terminator MI is not expected to spill. This
1034   /// sets the live interval as not spillable and adjusts phi node lowering to
1035   /// not introduce copies after the terminator. Use with care, these are
1036   /// currently used for hardware loop intrinsics in very controlled situations,
1037   /// created prior to registry allocation in loops that only have single phi
1038   /// users for the terminators value. They may run out of registers if not used
1039   /// carefully.
1040   virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1041     return false;
1042   }
1043 
1044 public:
1045   /// If the specific machine instruction is a instruction that moves/copies
1046   /// value from one register to another register return destination and source
1047   /// registers as machine operands.
1048   /// For COPY-instruction the method naturally returns destination and source
1049   /// registers as machine operands, for all other instructions the method calls
1050   /// target-dependent implementation.
1051   std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1052     if (MI.isCopy()) {
1053       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1054     }
1055     return isCopyInstrImpl(MI);
1056   }
1057 
1058   // Similar to `isCopyInstr`, but adds non-copy semantics on MIR, but
1059   // ultimately generates a copy instruction.
1060   std::optional<DestSourcePair> isCopyLikeInstr(const MachineInstr &MI) const {
1061     if (auto IsCopyInstr = isCopyInstr(MI))
1062       return IsCopyInstr;
1063     return isCopyLikeInstrImpl(MI);
1064   }
1065 
1066   bool isFullCopyInstr(const MachineInstr &MI) const {
1067     auto DestSrc = isCopyInstr(MI);
1068     if (!DestSrc)
1069       return false;
1070 
1071     const MachineOperand *DestRegOp = DestSrc->Destination;
1072     const MachineOperand *SrcRegOp = DestSrc->Source;
1073     return !DestRegOp->getSubReg() && !SrcRegOp->getSubReg();
1074   }
1075 
1076   /// If the specific machine instruction is an instruction that adds an
1077   /// immediate value and a register, and stores the result in the given
1078   /// register \c Reg, return a pair of the source register and the offset
1079   /// which has been added.
1080   virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1081                                                    Register Reg) const {
1082     return std::nullopt;
1083   }
1084 
1085   /// Returns true if MI is an instruction that defines Reg to have a constant
1086   /// value and the value is recorded in ImmVal. The ImmVal is a result that
1087   /// should be interpreted as modulo size of Reg.
1088   virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1089                                        const Register Reg,
1090                                        int64_t &ImmVal) const {
1091     return false;
1092   }
1093 
1094   /// Store the specified register of the given register class to the specified
1095   /// stack frame index. The store instruction is to be added to the given
1096   /// machine basic block before the specified machine instruction. If isKill
1097   /// is true, the register operand is the last use and must be marked kill. If
1098   /// \p SrcReg is being directly spilled as part of assigning a virtual
1099   /// register, \p VReg is the register being assigned. This additional register
1100   /// argument is needed for certain targets when invoked from RegAllocFast to
1101   /// map the spilled physical register to its virtual register. A null register
1102   /// can be passed elsewhere.
1103   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1104                                    MachineBasicBlock::iterator MI,
1105                                    Register SrcReg, bool isKill, int FrameIndex,
1106                                    const TargetRegisterClass *RC,
1107                                    const TargetRegisterInfo *TRI,
1108                                    Register VReg) const {
1109     llvm_unreachable("Target didn't implement "
1110                      "TargetInstrInfo::storeRegToStackSlot!");
1111   }
1112 
1113   /// Load the specified register of the given register class from the specified
1114   /// stack frame index. The load instruction is to be added to the given
1115   /// machine basic block before the specified machine instruction. If \p
1116   /// DestReg is being directly reloaded as part of assigning a virtual
1117   /// register, \p VReg is the register being assigned. This additional register
1118   /// argument is needed for certain targets when invoked from RegAllocFast to
1119   /// map the loaded physical register to its virtual register. A null register
1120   /// can be passed elsewhere.
1121   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1122                                     MachineBasicBlock::iterator MI,
1123                                     Register DestReg, int FrameIndex,
1124                                     const TargetRegisterClass *RC,
1125                                     const TargetRegisterInfo *TRI,
1126                                     Register VReg) const {
1127     llvm_unreachable("Target didn't implement "
1128                      "TargetInstrInfo::loadRegFromStackSlot!");
1129   }
1130 
1131   /// This function is called for all pseudo instructions
1132   /// that remain after register allocation. Many pseudo instructions are
1133   /// created to help register allocation. This is the place to convert them
1134   /// into real instructions. The target can edit MI in place, or it can insert
1135   /// new instructions and erase MI. The function should return true if
1136   /// anything was changed.
1137   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1138 
1139   /// Check whether the target can fold a load that feeds a subreg operand
1140   /// (or a subreg operand that feeds a store).
1141   /// For example, X86 may want to return true if it can fold
1142   /// movl (%esp), %eax
1143   /// subb, %al, ...
1144   /// Into:
1145   /// subb (%esp), ...
1146   ///
1147   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1148   /// reject subregs - but since this behavior used to be enforced in the
1149   /// target-independent code, moving this responsibility to the targets
1150   /// has the potential of causing nasty silent breakage in out-of-tree targets.
1151   virtual bool isSubregFoldable() const { return false; }
1152 
1153   /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1154   /// operands which can't be folded into stack references. Operands outside
1155   /// of the range are most likely foldable but it is not guaranteed.
1156   /// These instructions are unique in that stack references for some operands
1157   /// have the same execution cost (e.g. none) as the unfolded register forms.
1158   /// The ranged return is guaranteed to include all operands which can't be
1159   /// folded at zero cost.
1160   virtual std::pair<unsigned, unsigned>
1161   getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1162 
1163   /// Attempt to fold a load or store of the specified stack
1164   /// slot into the specified machine instruction for the specified operand(s).
1165   /// If this is possible, a new instruction is returned with the specified
1166   /// operand folded, otherwise NULL is returned.
1167   /// The new instruction is inserted before MI, and the client is responsible
1168   /// for removing the old instruction.
1169   /// If VRM is passed, the assigned physregs can be inspected by target to
1170   /// decide on using an opcode (note that those assignments can still change).
1171   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1172                                   int FI,
1173                                   LiveIntervals *LIS = nullptr,
1174                                   VirtRegMap *VRM = nullptr) const;
1175 
1176   /// Same as the previous version except it allows folding of any load and
1177   /// store from / to any address, not just from a specific stack slot.
1178   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1179                                   MachineInstr &LoadMI,
1180                                   LiveIntervals *LIS = nullptr) const;
1181 
1182   /// This function defines the logic to lower COPY instruction to
1183   /// target specific instruction(s).
1184   void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const;
1185 
1186   /// Return true when there is potentially a faster code sequence
1187   /// for an instruction chain ending in \p Root. All potential patterns are
1188   /// returned in the \p Pattern vector. Pattern should be sorted in priority
1189   /// order since the pattern evaluator stops checking as soon as it finds a
1190   /// faster sequence.
1191   /// \param Root - Instruction that could be combined with one of its operands
1192   /// \param Patterns - Vector of possible combination patterns
1193   virtual bool
1194   getMachineCombinerPatterns(MachineInstr &Root,
1195                              SmallVectorImpl<MachineCombinerPattern> &Patterns,
1196                              bool DoRegPressureReduce) const;
1197 
1198   /// Return true if target supports reassociation of instructions in machine
1199   /// combiner pass to reduce register pressure for a given BB.
1200   virtual bool
1201   shouldReduceRegisterPressure(const MachineBasicBlock *MBB,
1202                                const RegisterClassInfo *RegClassInfo) const {
1203     return false;
1204   }
1205 
1206   /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1207   virtual void
1208   finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
1209                     SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1210 
1211   /// Return true when a code sequence can improve throughput. It
1212   /// should be called only for instructions in loops.
1213   /// \param Pattern - combiner pattern
1214   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
1215 
1216   /// Return true if the input \P Inst is part of a chain of dependent ops
1217   /// that are suitable for reassociation, otherwise return false.
1218   /// If the instruction's operands must be commuted to have a previous
1219   /// instruction of the same type define the first source operand, \P Commuted
1220   /// will be set to true.
1221   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1222 
1223   /// Return true when \P Inst is both associative and commutative. If \P Invert
1224   /// is true, then the inverse of \P Inst operation must be tested.
1225   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst,
1226                                            bool Invert = false) const {
1227     return false;
1228   }
1229 
1230   /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1231   /// for sub and vice versa).
1232   virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1233     return std::nullopt;
1234   }
1235 
1236   /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1237   bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1238 
1239   /// Return true when \P Inst has reassociable operands in the same \P MBB.
1240   virtual bool hasReassociableOperands(const MachineInstr &Inst,
1241                                        const MachineBasicBlock *MBB) const;
1242 
1243   /// Return true when \P Inst has reassociable sibling.
1244   virtual bool hasReassociableSibling(const MachineInstr &Inst,
1245                                       bool &Commuted) const;
1246 
1247   /// When getMachineCombinerPatterns() finds patterns, this function generates
1248   /// the instructions that could replace the original code sequence. The client
1249   /// has to decide whether the actual replacement is beneficial or not.
1250   /// \param Root - Instruction that could be combined with one of its operands
1251   /// \param Pattern - Combination pattern for Root
1252   /// \param InsInstrs - Vector of new instructions that implement P
1253   /// \param DelInstrs - Old instructions, including Root, that could be
1254   /// replaced by InsInstr
1255   /// \param InstIdxForVirtReg - map of virtual register to instruction in
1256   /// InsInstr that defines it
1257   virtual void genAlternativeCodeSequence(
1258       MachineInstr &Root, MachineCombinerPattern Pattern,
1259       SmallVectorImpl<MachineInstr *> &InsInstrs,
1260       SmallVectorImpl<MachineInstr *> &DelInstrs,
1261       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1262 
1263   /// When calculate the latency of the root instruction, accumulate the
1264   /// latency of the sequence to the root latency.
1265   /// \param Root - Instruction that could be combined with one of its operands
1266   virtual bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const {
1267     return true;
1268   }
1269 
1270   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1271   /// reduce critical path length.
1272   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1273                       MachineCombinerPattern Pattern,
1274                       SmallVectorImpl<MachineInstr *> &InsInstrs,
1275                       SmallVectorImpl<MachineInstr *> &DelInstrs,
1276                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1277 
1278   /// Reassociation of some instructions requires inverse operations (e.g.
1279   /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1280   /// (new root opcode, new prev opcode) that must be used to reassociate \P
1281   /// Root and \P Prev accoring to \P Pattern.
1282   std::pair<unsigned, unsigned>
1283   getReassociationOpcodes(MachineCombinerPattern Pattern,
1284                           const MachineInstr &Root,
1285                           const MachineInstr &Prev) const;
1286 
1287   /// The limit on resource length extension we accept in MachineCombiner Pass.
1288   virtual int getExtendResourceLenLimit() const { return 0; }
1289 
1290   /// This is an architecture-specific helper function of reassociateOps.
1291   /// Set special operand attributes for new instructions after reassociation.
1292   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1293                                      MachineInstr &NewMI1,
1294                                      MachineInstr &NewMI2) const {}
1295 
1296   /// Return true when a target supports MachineCombiner.
1297   virtual bool useMachineCombiner() const { return false; }
1298 
1299   /// Return a strategy that MachineCombiner must use when creating traces.
1300   virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const;
1301 
1302   /// Return true if the given SDNode can be copied during scheduling
1303   /// even if it has glue.
1304   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1305 
1306 protected:
1307   /// Target-dependent implementation for foldMemoryOperand.
1308   /// Target-independent code in foldMemoryOperand will
1309   /// take care of adding a MachineMemOperand to the newly created instruction.
1310   /// The instruction and any auxiliary instructions necessary will be inserted
1311   /// at InsertPt.
1312   virtual MachineInstr *
1313   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1314                         ArrayRef<unsigned> Ops,
1315                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
1316                         LiveIntervals *LIS = nullptr,
1317                         VirtRegMap *VRM = nullptr) const {
1318     return nullptr;
1319   }
1320 
1321   /// Target-dependent implementation for foldMemoryOperand.
1322   /// Target-independent code in foldMemoryOperand will
1323   /// take care of adding a MachineMemOperand to the newly created instruction.
1324   /// The instruction and any auxiliary instructions necessary will be inserted
1325   /// at InsertPt.
1326   virtual MachineInstr *foldMemoryOperandImpl(
1327       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1328       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1329       LiveIntervals *LIS = nullptr) const {
1330     return nullptr;
1331   }
1332 
1333   /// Target-dependent implementation of getRegSequenceInputs.
1334   ///
1335   /// \returns true if it is possible to build the equivalent
1336   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1337   ///
1338   /// \pre MI.isRegSequenceLike().
1339   ///
1340   /// \see TargetInstrInfo::getRegSequenceInputs.
1341   virtual bool getRegSequenceLikeInputs(
1342       const MachineInstr &MI, unsigned DefIdx,
1343       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1344     return false;
1345   }
1346 
1347   /// Target-dependent implementation of getExtractSubregInputs.
1348   ///
1349   /// \returns true if it is possible to build the equivalent
1350   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1351   ///
1352   /// \pre MI.isExtractSubregLike().
1353   ///
1354   /// \see TargetInstrInfo::getExtractSubregInputs.
1355   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1356                                           unsigned DefIdx,
1357                                           RegSubRegPairAndIdx &InputReg) const {
1358     return false;
1359   }
1360 
1361   /// Target-dependent implementation of getInsertSubregInputs.
1362   ///
1363   /// \returns true if it is possible to build the equivalent
1364   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1365   ///
1366   /// \pre MI.isInsertSubregLike().
1367   ///
1368   /// \see TargetInstrInfo::getInsertSubregInputs.
1369   virtual bool
1370   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1371                             RegSubRegPair &BaseReg,
1372                             RegSubRegPairAndIdx &InsertedReg) const {
1373     return false;
1374   }
1375 
1376 public:
1377   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1378   /// a store or a load and a store into two or more instruction. If this is
1379   /// possible, returns true as well as the new instructions by reference.
1380   virtual bool
1381   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1382                       bool UnfoldLoad, bool UnfoldStore,
1383                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
1384     return false;
1385   }
1386 
1387   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1388                                    SmallVectorImpl<SDNode *> &NewNodes) const {
1389     return false;
1390   }
1391 
1392   /// Returns the opcode of the would be new
1393   /// instruction after load / store are unfolded from an instruction of the
1394   /// specified opcode. It returns zero if the specified unfolding is not
1395   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1396   /// index of the operand which will hold the register holding the loaded
1397   /// value.
1398   virtual unsigned
1399   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1400                              unsigned *LoadRegIndex = nullptr) const {
1401     return 0;
1402   }
1403 
1404   /// This is used by the pre-regalloc scheduler to determine if two loads are
1405   /// loading from the same base address. It should only return true if the base
1406   /// pointers are the same and the only differences between the two addresses
1407   /// are the offset. It also returns the offsets by reference.
1408   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1409                                        int64_t &Offset1,
1410                                        int64_t &Offset2) const {
1411     return false;
1412   }
1413 
1414   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1415   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1416   /// On some targets if two loads are loading from
1417   /// addresses in the same cache line, it's better if they are scheduled
1418   /// together. This function takes two integers that represent the load offsets
1419   /// from the common base address. It returns true if it decides it's desirable
1420   /// to schedule the two loads together. "NumLoads" is the number of loads that
1421   /// have already been scheduled after Load1.
1422   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1423                                        int64_t Offset1, int64_t Offset2,
1424                                        unsigned NumLoads) const {
1425     return false;
1426   }
1427 
1428   /// Get the base operand and byte offset of an instruction that reads/writes
1429   /// memory. This is a convenience function for callers that are only prepared
1430   /// to handle a single base operand.
1431   /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1432   /// abstraction that supports negative offsets.
1433   bool getMemOperandWithOffset(const MachineInstr &MI,
1434                                const MachineOperand *&BaseOp, int64_t &Offset,
1435                                bool &OffsetIsScalable,
1436                                const TargetRegisterInfo *TRI) const;
1437 
1438   /// Get zero or more base operands and the byte offset of an instruction that
1439   /// reads/writes memory. Note that there may be zero base operands if the
1440   /// instruction accesses a constant address.
1441   /// It returns false if MI does not read/write memory.
1442   /// It returns false if base operands and offset could not be determined.
1443   /// It is not guaranteed to always recognize base operands and offsets in all
1444   /// cases.
1445   /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1446   /// abstraction that supports negative offsets.
1447   virtual bool getMemOperandsWithOffsetWidth(
1448       const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1449       int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
1450       const TargetRegisterInfo *TRI) const {
1451     return false;
1452   }
1453 
1454   /// Return true if the instruction contains a base register and offset. If
1455   /// true, the function also sets the operand position in the instruction
1456   /// for the base register and offset.
1457   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1458                                         unsigned &BasePos,
1459                                         unsigned &OffsetPos) const {
1460     return false;
1461   }
1462 
1463   /// Target dependent implementation to get the values constituting the address
1464   /// MachineInstr that is accessing memory. These values are returned as a
1465   /// struct ExtAddrMode which contains all relevant information to make up the
1466   /// address.
1467   virtual std::optional<ExtAddrMode>
1468   getAddrModeFromMemoryOp(const MachineInstr &MemI,
1469                           const TargetRegisterInfo *TRI) const {
1470     return std::nullopt;
1471   }
1472 
1473   /// Check if it's possible and beneficial to fold the addressing computation
1474   /// `AddrI` into the addressing mode of the load/store instruction `MemI`. The
1475   /// memory instruction is a user of the virtual register `Reg`, which in turn
1476   /// is the ultimate destination of zero or more COPY instructions from the
1477   /// output register of `AddrI`.
1478   /// Return the adddressing mode after folding in `AM`.
1479   virtual bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg,
1480                                    const MachineInstr &AddrI,
1481                                    ExtAddrMode &AM) const {
1482     return false;
1483   }
1484 
1485   /// Emit a load/store instruction with the same value register as `MemI`, but
1486   /// using the address from `AM`. The addressing mode must have been obtained
1487   /// from `canFoldIntoAddr` for the same memory instruction.
1488   virtual MachineInstr *emitLdStWithAddr(MachineInstr &MemI,
1489                                          const ExtAddrMode &AM) const {
1490     llvm_unreachable("target did not implement emitLdStWithAddr()");
1491   }
1492 
1493   /// Returns true if MI's Def is NullValueReg, and the MI
1494   /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1495   /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1496   /// function can return true even if becomes zero. Specifically cases such as
1497   /// NullValueReg = shl NullValueReg, 63.
1498   virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1499                                        const Register NullValueReg,
1500                                        const TargetRegisterInfo *TRI) const {
1501     return false;
1502   }
1503 
1504   /// If the instruction is an increment of a constant value, return the amount.
1505   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1506     return false;
1507   }
1508 
1509   /// Returns true if the two given memory operations should be scheduled
1510   /// adjacent. Note that you have to add:
1511   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1512   /// or
1513   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1514   /// to TargetPassConfig::createMachineScheduler() to have an effect.
1515   ///
1516   /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1517   /// \p Offset1 and \p Offset2 are the byte offsets for the memory
1518   /// operations.
1519   /// \p OffsetIsScalable1 and \p OffsetIsScalable2 indicate if the offset is
1520   /// scaled by a runtime quantity.
1521   /// \p ClusterSize is the number of operations in the resulting load/store
1522   /// cluster if this hook returns true.
1523   /// \p NumBytes is the number of bytes that will be loaded from all the
1524   /// clustered loads if this hook returns true.
1525   virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1526                                    int64_t Offset1, bool OffsetIsScalable1,
1527                                    ArrayRef<const MachineOperand *> BaseOps2,
1528                                    int64_t Offset2, bool OffsetIsScalable2,
1529                                    unsigned ClusterSize,
1530                                    unsigned NumBytes) const {
1531     llvm_unreachable("target did not implement shouldClusterMemOps()");
1532   }
1533 
1534   /// Reverses the branch condition of the specified condition list,
1535   /// returning false on success and true if it cannot be reversed.
1536   virtual bool
1537   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1538     return true;
1539   }
1540 
1541   /// Insert a noop into the instruction stream at the specified point.
1542   virtual void insertNoop(MachineBasicBlock &MBB,
1543                           MachineBasicBlock::iterator MI) const;
1544 
1545   /// Insert noops into the instruction stream at the specified point.
1546   virtual void insertNoops(MachineBasicBlock &MBB,
1547                            MachineBasicBlock::iterator MI,
1548                            unsigned Quantity) const;
1549 
1550   /// Return the noop instruction to use for a noop.
1551   virtual MCInst getNop() const;
1552 
1553   /// Return true for post-incremented instructions.
1554   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1555 
1556   /// Returns true if the instruction is already predicated.
1557   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1558 
1559   /// Assumes the instruction is already predicated and returns true if the
1560   /// instruction can be predicated again.
1561   virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1562     assert(isPredicated(MI) && "Instruction is not predicated");
1563     return false;
1564   }
1565 
1566   // Returns a MIRPrinter comment for this machine operand.
1567   virtual std::string
1568   createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1569                           unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1570 
1571   /// Returns true if the instruction is a
1572   /// terminator instruction that has not been predicated.
1573   bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1574 
1575   /// Returns true if MI is an unconditional tail call.
1576   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1577     return false;
1578   }
1579 
1580   /// Returns true if the tail call can be made conditional on BranchCond.
1581   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1582                                           const MachineInstr &TailCall) const {
1583     return false;
1584   }
1585 
1586   /// Replace the conditional branch in MBB with a conditional tail call.
1587   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1588                                          SmallVectorImpl<MachineOperand> &Cond,
1589                                          const MachineInstr &TailCall) const {
1590     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1591   }
1592 
1593   /// Convert the instruction into a predicated instruction.
1594   /// It returns true if the operation was successful.
1595   virtual bool PredicateInstruction(MachineInstr &MI,
1596                                     ArrayRef<MachineOperand> Pred) const;
1597 
1598   /// Returns true if the first specified predicate
1599   /// subsumes the second, e.g. GE subsumes GT.
1600   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1601                                  ArrayRef<MachineOperand> Pred2) const {
1602     return false;
1603   }
1604 
1605   /// If the specified instruction defines any predicate
1606   /// or condition code register(s) used for predication, returns true as well
1607   /// as the definition predicate(s) by reference.
1608   /// SkipDead should be set to false at any point that dead
1609   /// predicate instructions should be considered as being defined.
1610   /// A dead predicate instruction is one that is guaranteed to be removed
1611   /// after a call to PredicateInstruction.
1612   virtual bool ClobbersPredicate(MachineInstr &MI,
1613                                  std::vector<MachineOperand> &Pred,
1614                                  bool SkipDead) const {
1615     return false;
1616   }
1617 
1618   /// Return true if the specified instruction can be predicated.
1619   /// By default, this returns true for every instruction with a
1620   /// PredicateOperand.
1621   virtual bool isPredicable(const MachineInstr &MI) const {
1622     return MI.getDesc().isPredicable();
1623   }
1624 
1625   /// Return true if it's safe to move a machine
1626   /// instruction that defines the specified register class.
1627   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1628     return true;
1629   }
1630 
1631   /// Test if the given instruction should be considered a scheduling boundary.
1632   /// This primarily includes labels and terminators.
1633   virtual bool isSchedulingBoundary(const MachineInstr &MI,
1634                                     const MachineBasicBlock *MBB,
1635                                     const MachineFunction &MF) const;
1636 
1637   /// Measure the specified inline asm to determine an approximation of its
1638   /// length.
1639   virtual unsigned getInlineAsmLength(
1640     const char *Str, const MCAsmInfo &MAI,
1641     const TargetSubtargetInfo *STI = nullptr) const;
1642 
1643   /// Allocate and return a hazard recognizer to use for this target when
1644   /// scheduling the machine instructions before register allocation.
1645   virtual ScheduleHazardRecognizer *
1646   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1647                                const ScheduleDAG *DAG) const;
1648 
1649   /// Allocate and return a hazard recognizer to use for this target when
1650   /// scheduling the machine instructions before register allocation.
1651   virtual ScheduleHazardRecognizer *
1652   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1653                                  const ScheduleDAGMI *DAG) const;
1654 
1655   /// Allocate and return a hazard recognizer to use for this target when
1656   /// scheduling the machine instructions after register allocation.
1657   virtual ScheduleHazardRecognizer *
1658   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1659                                      const ScheduleDAG *DAG) const;
1660 
1661   /// Allocate and return a hazard recognizer to use for by non-scheduling
1662   /// passes.
1663   virtual ScheduleHazardRecognizer *
1664   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1665     return nullptr;
1666   }
1667 
1668   /// Provide a global flag for disabling the PreRA hazard recognizer that
1669   /// targets may choose to honor.
1670   bool usePreRAHazardRecognizer() const;
1671 
1672   /// For a comparison instruction, return the source registers
1673   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1674   /// compares against in CmpValue. Return true if the comparison instruction
1675   /// can be analyzed.
1676   virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1677                               Register &SrcReg2, int64_t &Mask,
1678                               int64_t &Value) const {
1679     return false;
1680   }
1681 
1682   /// See if the comparison instruction can be converted
1683   /// into something more efficient. E.g., on ARM most instructions can set the
1684   /// flags register, obviating the need for a separate CMP.
1685   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1686                                     Register SrcReg2, int64_t Mask,
1687                                     int64_t Value,
1688                                     const MachineRegisterInfo *MRI) const {
1689     return false;
1690   }
1691   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1692 
1693   /// Try to remove the load by folding it to a register operand at the use.
1694   /// We fold the load instructions if and only if the
1695   /// def and use are in the same BB. We only look at one load and see
1696   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1697   /// defined by the load we are trying to fold. DefMI returns the machine
1698   /// instruction that defines FoldAsLoadDefReg, and the function returns
1699   /// the machine instruction generated due to folding.
1700   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1701                                           const MachineRegisterInfo *MRI,
1702                                           Register &FoldAsLoadDefReg,
1703                                           MachineInstr *&DefMI) const {
1704     return nullptr;
1705   }
1706 
1707   /// 'Reg' is known to be defined by a move immediate instruction,
1708   /// try to fold the immediate into the use instruction.
1709   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1710   /// then the caller may assume that DefMI has been erased from its parent
1711   /// block. The caller may assume that it will not be erased by this
1712   /// function otherwise.
1713   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1714                              Register Reg, MachineRegisterInfo *MRI) const {
1715     return false;
1716   }
1717 
1718   /// Return the number of u-operations the given machine
1719   /// instruction will be decoded to on the target cpu. The itinerary's
1720   /// IssueWidth is the number of microops that can be dispatched each
1721   /// cycle. An instruction with zero microops takes no dispatch resources.
1722   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1723                                   const MachineInstr &MI) const;
1724 
1725   /// Return true for pseudo instructions that don't consume any
1726   /// machine resources in their current form. These are common cases that the
1727   /// scheduler should consider free, rather than conservatively handling them
1728   /// as instructions with no itinerary.
1729   bool isZeroCost(unsigned Opcode) const {
1730     return Opcode <= TargetOpcode::COPY;
1731   }
1732 
1733   virtual std::optional<unsigned>
1734   getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode,
1735                     unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const;
1736 
1737   /// Compute and return the use operand latency of a given pair of def and use.
1738   /// In most cases, the static scheduling itinerary was enough to determine the
1739   /// operand latency. But it may not be possible for instructions with variable
1740   /// number of defs / uses.
1741   ///
1742   /// This is a raw interface to the itinerary that may be directly overridden
1743   /// by a target. Use computeOperandLatency to get the best estimate of
1744   /// latency.
1745   virtual std::optional<unsigned>
1746   getOperandLatency(const InstrItineraryData *ItinData,
1747                     const MachineInstr &DefMI, unsigned DefIdx,
1748                     const MachineInstr &UseMI, unsigned UseIdx) const;
1749 
1750   /// Compute the instruction latency of a given instruction.
1751   /// If the instruction has higher cost when predicated, it's returned via
1752   /// PredCost.
1753   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1754                                    const MachineInstr &MI,
1755                                    unsigned *PredCost = nullptr) const;
1756 
1757   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1758 
1759   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1760                                    SDNode *Node) const;
1761 
1762   /// Return the default expected latency for a def based on its opcode.
1763   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1764                              const MachineInstr &DefMI) const;
1765 
1766   /// Return true if this opcode has high latency to its result.
1767   virtual bool isHighLatencyDef(int opc) const { return false; }
1768 
1769   /// Compute operand latency between a def of 'Reg'
1770   /// and a use in the current loop. Return true if the target considered
1771   /// it 'high'. This is used by optimization passes such as machine LICM to
1772   /// determine whether it makes sense to hoist an instruction out even in a
1773   /// high register pressure situation.
1774   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1775                                      const MachineRegisterInfo *MRI,
1776                                      const MachineInstr &DefMI, unsigned DefIdx,
1777                                      const MachineInstr &UseMI,
1778                                      unsigned UseIdx) const {
1779     return false;
1780   }
1781 
1782   /// Compute operand latency of a def of 'Reg'. Return true
1783   /// if the target considered it 'low'.
1784   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1785                                 const MachineInstr &DefMI,
1786                                 unsigned DefIdx) const;
1787 
1788   /// Perform target-specific instruction verification.
1789   virtual bool verifyInstruction(const MachineInstr &MI,
1790                                  StringRef &ErrInfo) const {
1791     return true;
1792   }
1793 
1794   /// Return the current execution domain and bit mask of
1795   /// possible domains for instruction.
1796   ///
1797   /// Some micro-architectures have multiple execution domains, and multiple
1798   /// opcodes that perform the same operation in different domains.  For
1799   /// example, the x86 architecture provides the por, orps, and orpd
1800   /// instructions that all do the same thing.  There is a latency penalty if a
1801   /// register is written in one domain and read in another.
1802   ///
1803   /// This function returns a pair (domain, mask) containing the execution
1804   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1805   /// function can be used to change the opcode to one of the domains in the
1806   /// bit mask.  Instructions whose execution domain can't be changed should
1807   /// return a 0 mask.
1808   ///
1809   /// The execution domain numbers don't have any special meaning except domain
1810   /// 0 is used for instructions that are not associated with any interesting
1811   /// execution domain.
1812   ///
1813   virtual std::pair<uint16_t, uint16_t>
1814   getExecutionDomain(const MachineInstr &MI) const {
1815     return std::make_pair(0, 0);
1816   }
1817 
1818   /// Change the opcode of MI to execute in Domain.
1819   ///
1820   /// The bit (1 << Domain) must be set in the mask returned from
1821   /// getExecutionDomain(MI).
1822   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1823 
1824   /// Returns the preferred minimum clearance
1825   /// before an instruction with an unwanted partial register update.
1826   ///
1827   /// Some instructions only write part of a register, and implicitly need to
1828   /// read the other parts of the register.  This may cause unwanted stalls
1829   /// preventing otherwise unrelated instructions from executing in parallel in
1830   /// an out-of-order CPU.
1831   ///
1832   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1833   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1834   /// the instruction needs to wait for the old value of the register to become
1835   /// available:
1836   ///
1837   ///   addps %xmm1, %xmm0
1838   ///   movaps %xmm0, (%rax)
1839   ///   cvtsi2ss %rbx, %xmm0
1840   ///
1841   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1842   /// instruction before it can issue, even though the high bits of %xmm0
1843   /// probably aren't needed.
1844   ///
1845   /// This hook returns the preferred clearance before MI, measured in
1846   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1847   /// instructions before MI.  It should only return a positive value for
1848   /// unwanted dependencies.  If the old bits of the defined register have
1849   /// useful values, or if MI is determined to otherwise read the dependency,
1850   /// the hook should return 0.
1851   ///
1852   /// The unwanted dependency may be handled by:
1853   ///
1854   /// 1. Allocating the same register for an MI def and use.  That makes the
1855   ///    unwanted dependency identical to a required dependency.
1856   ///
1857   /// 2. Allocating a register for the def that has no defs in the previous N
1858   ///    instructions.
1859   ///
1860   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1861   ///    allows the target to insert a dependency breaking instruction.
1862   ///
1863   virtual unsigned
1864   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1865                                const TargetRegisterInfo *TRI) const {
1866     // The default implementation returns 0 for no partial register dependency.
1867     return 0;
1868   }
1869 
1870   /// Return the minimum clearance before an instruction that reads an
1871   /// unused register.
1872   ///
1873   /// For example, AVX instructions may copy part of a register operand into
1874   /// the unused high bits of the destination register.
1875   ///
1876   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1877   ///
1878   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1879   /// false dependence on any previous write to %xmm0.
1880   ///
1881   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1882   /// does not take an operand index. Instead sets \p OpNum to the index of the
1883   /// unused register.
1884   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1885                                         const TargetRegisterInfo *TRI) const {
1886     // The default implementation returns 0 for no undef register dependency.
1887     return 0;
1888   }
1889 
1890   /// Insert a dependency-breaking instruction
1891   /// before MI to eliminate an unwanted dependency on OpNum.
1892   ///
1893   /// If it wasn't possible to avoid a def in the last N instructions before MI
1894   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1895   /// unwanted dependency.
1896   ///
1897   /// On x86, an xorps instruction can be used as a dependency breaker:
1898   ///
1899   ///   addps %xmm1, %xmm0
1900   ///   movaps %xmm0, (%rax)
1901   ///   xorps %xmm0, %xmm0
1902   ///   cvtsi2ss %rbx, %xmm0
1903   ///
1904   /// An <imp-kill> operand should be added to MI if an instruction was
1905   /// inserted.  This ties the instructions together in the post-ra scheduler.
1906   ///
1907   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1908                                          const TargetRegisterInfo *TRI) const {}
1909 
1910   /// Create machine specific model for scheduling.
1911   virtual DFAPacketizer *
1912   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1913     return nullptr;
1914   }
1915 
1916   /// Sometimes, it is possible for the target
1917   /// to tell, even without aliasing information, that two MIs access different
1918   /// memory addresses. This function returns true if two MIs access different
1919   /// memory addresses and false otherwise.
1920   ///
1921   /// Assumes any physical registers used to compute addresses have the same
1922   /// value for both instructions. (This is the most useful assumption for
1923   /// post-RA scheduling.)
1924   ///
1925   /// See also MachineInstr::mayAlias, which is implemented on top of this
1926   /// function.
1927   virtual bool
1928   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1929                                   const MachineInstr &MIb) const {
1930     assert(MIa.mayLoadOrStore() &&
1931            "MIa must load from or modify a memory location");
1932     assert(MIb.mayLoadOrStore() &&
1933            "MIb must load from or modify a memory location");
1934     return false;
1935   }
1936 
1937   /// Return the value to use for the MachineCSE's LookAheadLimit,
1938   /// which is a heuristic used for CSE'ing phys reg defs.
1939   virtual unsigned getMachineCSELookAheadLimit() const {
1940     // The default lookahead is small to prevent unprofitable quadratic
1941     // behavior.
1942     return 5;
1943   }
1944 
1945   /// Return the maximal number of alias checks on memory operands. For
1946   /// instructions with more than one memory operands, the alias check on a
1947   /// single MachineInstr pair has quadratic overhead and results in
1948   /// unacceptable performance in the worst case. The limit here is to clamp
1949   /// that maximal checks performed. Usually, that's the product of memory
1950   /// operand numbers from that pair of MachineInstr to be checked. For
1951   /// instance, with two MachineInstrs with 4 and 5 memory operands
1952   /// correspondingly, a total of 20 checks are required. With this limit set to
1953   /// 16, their alias check is skipped. We choose to limit the product instead
1954   /// of the individual instruction as targets may have special MachineInstrs
1955   /// with a considerably high number of memory operands, such as `ldm` in ARM.
1956   /// Setting this limit per MachineInstr would result in either too high
1957   /// overhead or too rigid restriction.
1958   virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1959 
1960   /// Return an array that contains the ids of the target indices (used for the
1961   /// TargetIndex machine operand) and their names.
1962   ///
1963   /// MIR Serialization is able to serialize only the target indices that are
1964   /// defined by this method.
1965   virtual ArrayRef<std::pair<int, const char *>>
1966   getSerializableTargetIndices() const {
1967     return std::nullopt;
1968   }
1969 
1970   /// Decompose the machine operand's target flags into two values - the direct
1971   /// target flag value and any of bit flags that are applied.
1972   virtual std::pair<unsigned, unsigned>
1973   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1974     return std::make_pair(0u, 0u);
1975   }
1976 
1977   /// Return an array that contains the direct target flag values and their
1978   /// names.
1979   ///
1980   /// MIR Serialization is able to serialize only the target flags that are
1981   /// defined by this method.
1982   virtual ArrayRef<std::pair<unsigned, const char *>>
1983   getSerializableDirectMachineOperandTargetFlags() const {
1984     return std::nullopt;
1985   }
1986 
1987   /// Return an array that contains the bitmask target flag values and their
1988   /// names.
1989   ///
1990   /// MIR Serialization is able to serialize only the target flags that are
1991   /// defined by this method.
1992   virtual ArrayRef<std::pair<unsigned, const char *>>
1993   getSerializableBitmaskMachineOperandTargetFlags() const {
1994     return std::nullopt;
1995   }
1996 
1997   /// Return an array that contains the MMO target flag values and their
1998   /// names.
1999   ///
2000   /// MIR Serialization is able to serialize only the MMO target flags that are
2001   /// defined by this method.
2002   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
2003   getSerializableMachineMemOperandTargetFlags() const {
2004     return std::nullopt;
2005   }
2006 
2007   /// Determines whether \p Inst is a tail call instruction. Override this
2008   /// method on targets that do not properly set MCID::Return and MCID::Call on
2009   /// tail call instructions."
2010   virtual bool isTailCall(const MachineInstr &Inst) const {
2011     return Inst.isReturn() && Inst.isCall();
2012   }
2013 
2014   /// True if the instruction is bound to the top of its basic block and no
2015   /// other instructions shall be inserted before it. This can be implemented
2016   /// to prevent register allocator to insert spills for \p Reg before such
2017   /// instructions.
2018   virtual bool isBasicBlockPrologue(const MachineInstr &MI,
2019                                     Register Reg = Register()) const {
2020     return false;
2021   }
2022 
2023   /// Allows targets to use appropriate copy instruction while spilitting live
2024   /// range of a register in register allocation.
2025   virtual unsigned getLiveRangeSplitOpcode(Register Reg,
2026                                            const MachineFunction &MF) const {
2027     return TargetOpcode::COPY;
2028   }
2029 
2030   /// During PHI eleimination lets target to make necessary checks and
2031   /// insert the copy to the PHI destination register in a target specific
2032   /// manner.
2033   virtual MachineInstr *createPHIDestinationCopy(
2034       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
2035       const DebugLoc &DL, Register Src, Register Dst) const {
2036     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2037         .addReg(Src);
2038   }
2039 
2040   /// During PHI eleimination lets target to make necessary checks and
2041   /// insert the copy to the PHI destination register in a target specific
2042   /// manner.
2043   virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
2044                                             MachineBasicBlock::iterator InsPt,
2045                                             const DebugLoc &DL, Register Src,
2046                                             unsigned SrcSubReg,
2047                                             Register Dst) const {
2048     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2049         .addReg(Src, 0, SrcSubReg);
2050   }
2051 
2052   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
2053   /// information for a set of outlining candidates. Returns std::nullopt if the
2054   /// candidates are not suitable for outlining.
2055   virtual std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo(
2056       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
2057     llvm_unreachable(
2058         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
2059   }
2060 
2061   /// Optional target hook to create the LLVM IR attributes for the outlined
2062   /// function. If overridden, the overriding function must call the default
2063   /// implementation.
2064   virtual void mergeOutliningCandidateAttributes(
2065       Function &F, std::vector<outliner::Candidate> &Candidates) const;
2066 
2067 protected:
2068   /// Target-dependent implementation for getOutliningTypeImpl.
2069   virtual outliner::InstrType
2070   getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
2071     llvm_unreachable(
2072         "Target didn't implement TargetInstrInfo::getOutliningTypeImpl!");
2073   }
2074 
2075 public:
2076   /// Returns how or if \p MIT should be outlined. \p Flags is the
2077   /// target-specific information returned by isMBBSafeToOutlineFrom.
2078   outliner::InstrType
2079   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const;
2080 
2081   /// Optional target hook that returns true if \p MBB is safe to outline from,
2082   /// and returns any target-specific information in \p Flags.
2083   virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
2084                                       unsigned &Flags) const;
2085 
2086   /// Optional target hook which partitions \p MBB into outlinable ranges for
2087   /// instruction mapping purposes. Each range is defined by two iterators:
2088   /// [start, end).
2089   ///
2090   /// Ranges are expected to be ordered top-down. That is, ranges closer to the
2091   /// top of the block should come before ranges closer to the end of the block.
2092   ///
2093   /// Ranges cannot overlap.
2094   ///
2095   /// If an entire block is mappable, then its range is [MBB.begin(), MBB.end())
2096   ///
2097   /// All instructions not present in an outlinable range are considered
2098   /// illegal.
2099   virtual SmallVector<
2100       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
2101   getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const {
2102     return {std::make_pair(MBB.begin(), MBB.end())};
2103   }
2104 
2105   /// Insert a custom frame for outlined functions.
2106   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
2107                                   const outliner::OutlinedFunction &OF) const {
2108     llvm_unreachable(
2109         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
2110   }
2111 
2112   /// Insert a call to an outlined function into the program.
2113   /// Returns an iterator to the spot where we inserted the call. This must be
2114   /// implemented by the target.
2115   virtual MachineBasicBlock::iterator
2116   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
2117                      MachineBasicBlock::iterator &It, MachineFunction &MF,
2118                      outliner::Candidate &C) const {
2119     llvm_unreachable(
2120         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2121   }
2122 
2123   /// Insert an architecture-specific instruction to clear a register. If you
2124   /// need to avoid sideeffects (e.g. avoid XOR on x86, which sets EFLAGS), set
2125   /// \p AllowSideEffects to \p false.
2126   virtual void buildClearRegister(Register Reg, MachineBasicBlock &MBB,
2127                                   MachineBasicBlock::iterator Iter,
2128                                   DebugLoc &DL,
2129                                   bool AllowSideEffects = true) const {
2130 #if 0
2131     // FIXME: This should exist once all platforms that use stack protectors
2132     // implements it.
2133     llvm_unreachable(
2134         "Target didn't implement TargetInstrInfo::buildClearRegister!");
2135 #endif
2136   }
2137 
2138   /// Return true if the function can safely be outlined from.
2139   /// A function \p MF is considered safe for outlining if an outlined function
2140   /// produced from instructions in F will produce a program which produces the
2141   /// same output for any set of given inputs.
2142   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
2143                                            bool OutlineFromLinkOnceODRs) const {
2144     llvm_unreachable("Target didn't implement "
2145                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2146   }
2147 
2148   /// Return true if the function should be outlined from by default.
2149   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
2150     return false;
2151   }
2152 
2153   /// Return true if the function is a viable candidate for machine function
2154   /// splitting. The criteria for if a function can be split may vary by target.
2155   virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const;
2156 
2157   /// Return true if the MachineBasicBlock can safely be split to the cold
2158   /// section. On AArch64, certain instructions may cause a block to be unsafe
2159   /// to split to the cold section.
2160   virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const {
2161     return true;
2162   }
2163 
2164   /// Produce the expression describing the \p MI loading a value into
2165   /// the physical register \p Reg. This hook should only be used with
2166   /// \p MIs belonging to VReg-less functions.
2167   virtual std::optional<ParamLoadedValue>
2168   describeLoadedValue(const MachineInstr &MI, Register Reg) const;
2169 
2170   /// Given the generic extension instruction \p ExtMI, returns true if this
2171   /// extension is a likely candidate for being folded into an another
2172   /// instruction.
2173   virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
2174                                         MachineRegisterInfo &MRI) const {
2175     return false;
2176   }
2177 
2178   /// Return MIR formatter to format/parse MIR operands.  Target can override
2179   /// this virtual function and return target specific MIR formatter.
2180   virtual const MIRFormatter *getMIRFormatter() const {
2181     if (!Formatter.get())
2182       Formatter = std::make_unique<MIRFormatter>();
2183     return Formatter.get();
2184   }
2185 
2186   /// Returns the target-specific default value for tail duplication.
2187   /// This value will be used if the tail-dup-placement-threshold argument is
2188   /// not provided.
2189   virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const {
2190     return OptLevel >= CodeGenOptLevel::Aggressive ? 4 : 2;
2191   }
2192 
2193   /// Returns the callee operand from the given \p MI.
2194   virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2195     return MI.getOperand(0);
2196   }
2197 
2198   /// Return the uniformity behavior of the given instruction.
2199   virtual InstructionUniformity
2200   getInstructionUniformity(const MachineInstr &MI) const {
2201     return InstructionUniformity::Default;
2202   }
2203 
2204   /// Returns true if the given \p MI defines a TargetIndex operand that can be
2205   /// tracked by their offset, can have values, and can have debug info
2206   /// associated with it. If so, sets \p Index and \p Offset of the target index
2207   /// operand.
2208   virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
2209                                         int64_t &Offset) const {
2210     return false;
2211   }
2212 
2213   // Get the call frame size just before MI.
2214   unsigned getCallFrameSizeAt(MachineInstr &MI) const;
2215 
2216   /// Fills in the necessary MachineOperands to refer to a frame index.
2217   /// The best way to understand this is to print `asm(""::"m"(x));` after
2218   /// finalize-isel. Example:
2219   /// INLINEASM ... 262190 /* mem:m */, %stack.0.x.addr, 1, $noreg, 0, $noreg
2220   /// we would add placeholders for:                     ^  ^       ^  ^
2221   virtual void getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops,
2222                                      int FI) const {
2223     llvm_unreachable("unknown number of operands necessary");
2224   }
2225 
2226 private:
2227   mutable std::unique_ptr<MIRFormatter> Formatter;
2228   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2229   unsigned CatchRetOpcode;
2230   unsigned ReturnOpcode;
2231 };
2232 
2233 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2234 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
2235   using RegInfo = DenseMapInfo<unsigned>;
2236 
2237   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
2238     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2239                                           RegInfo::getEmptyKey());
2240   }
2241 
2242   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
2243     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2244                                           RegInfo::getTombstoneKey());
2245   }
2246 
2247   /// Reuse getHashValue implementation from
2248   /// std::pair<unsigned, unsigned>.
2249   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2250     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
2251     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2252   }
2253 
2254   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
2255                       const TargetInstrInfo::RegSubRegPair &RHS) {
2256     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
2257            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
2258   }
2259 };
2260 
2261 } // end namespace llvm
2262 
2263 #endif // LLVM_CODEGEN_TARGETINSTRINFO_H
2264