1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the target machine instruction set to the code generator.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
14 #define LLVM_TARGET_TARGETINSTRINFO_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/CodeGen/LiveRegUnits.h"
21 #include "llvm/CodeGen/MIRFormatter.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineCombinerPattern.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineOutliner.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/Support/BranchProbability.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <utility>
38 #include <vector>
39 
40 namespace llvm {
41 
42 class AAResults;
43 class DFAPacketizer;
44 class InstrItineraryData;
45 class LiveIntervals;
46 class LiveVariables;
47 class MachineLoop;
48 class MachineMemOperand;
49 class MachineRegisterInfo;
50 class MCAsmInfo;
51 class MCInst;
52 struct MCSchedModel;
53 class Module;
54 class ScheduleDAG;
55 class ScheduleDAGMI;
56 class ScheduleHazardRecognizer;
57 class SDNode;
58 class SelectionDAG;
59 class RegScavenger;
60 class TargetRegisterClass;
61 class TargetRegisterInfo;
62 class TargetSchedModel;
63 class TargetSubtargetInfo;
64 
65 template <class T> class SmallVectorImpl;
66 
67 using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
68 
69 struct DestSourcePair {
70   const MachineOperand *Destination;
71   const MachineOperand *Source;
72 
73   DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
74       : Destination(&Dest), Source(&Src) {}
75 };
76 
77 /// Used to describe a register and immediate addition.
78 struct RegImmPair {
79   Register Reg;
80   int64_t Imm;
81 
82   RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
83 };
84 
85 //---------------------------------------------------------------------------
86 ///
87 /// TargetInstrInfo - Interface to description of machine instruction set
88 ///
89 class TargetInstrInfo : public MCInstrInfo {
90 public:
91   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
92                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
93       : CallFrameSetupOpcode(CFSetupOpcode),
94         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
95         ReturnOpcode(ReturnOpcode) {}
96   TargetInstrInfo(const TargetInstrInfo &) = delete;
97   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
98   virtual ~TargetInstrInfo();
99 
100   static bool isGenericOpcode(unsigned Opc) {
101     return Opc <= TargetOpcode::GENERIC_OP_END;
102   }
103 
104   /// Given a machine instruction descriptor, returns the register
105   /// class constraint for OpNum, or NULL.
106   virtual
107   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
108                                          const TargetRegisterInfo *TRI,
109                                          const MachineFunction &MF) const;
110 
111   /// Return true if the instruction is trivially rematerializable, meaning it
112   /// has no side effects and requires no operands that aren't always available.
113   /// This means the only allowed uses are constants and unallocatable physical
114   /// registers so that the instructions result is independent of the place
115   /// in the function.
116   bool isTriviallyReMaterializable(const MachineInstr &MI,
117                                    AAResults *AA = nullptr) const {
118     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
119            (MI.getDesc().isRematerializable() &&
120             (isReallyTriviallyReMaterializable(MI, AA) ||
121              isReallyTriviallyReMaterializableGeneric(MI, AA)));
122   }
123 
124 protected:
125   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
126   /// set, this hook lets the target specify whether the instruction is actually
127   /// trivially rematerializable, taking into consideration its operands. This
128   /// predicate must return false if the instruction has any side effects other
129   /// than producing a value, or if it requres any address registers that are
130   /// not always available.
131   /// Requirements must be check as stated in isTriviallyReMaterializable() .
132   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
133                                                  AAResults *AA) const {
134     return false;
135   }
136 
137   /// This method commutes the operands of the given machine instruction MI.
138   /// The operands to be commuted are specified by their indices OpIdx1 and
139   /// OpIdx2.
140   ///
141   /// If a target has any instructions that are commutable but require
142   /// converting to different instructions or making non-trivial changes
143   /// to commute them, this method can be overloaded to do that.
144   /// The default implementation simply swaps the commutable operands.
145   ///
146   /// If NewMI is false, MI is modified in place and returned; otherwise, a
147   /// new machine instruction is created and returned.
148   ///
149   /// Do not call this method for a non-commutable instruction.
150   /// Even though the instruction is commutable, the method may still
151   /// fail to commute the operands, null pointer is returned in such cases.
152   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
153                                                unsigned OpIdx1,
154                                                unsigned OpIdx2) const;
155 
156   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
157   /// operand indices to (ResultIdx1, ResultIdx2).
158   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
159   /// predefined to some indices or be undefined (designated by the special
160   /// value 'CommuteAnyOperandIndex').
161   /// The predefined result indices cannot be re-defined.
162   /// The function returns true iff after the result pair redefinition
163   /// the fixed result pair is equal to or equivalent to the source pair of
164   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
165   /// the pairs (x,y) and (y,x) are equivalent.
166   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
167                                    unsigned CommutableOpIdx1,
168                                    unsigned CommutableOpIdx2);
169 
170 private:
171   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
172   /// set and the target hook isReallyTriviallyReMaterializable returns false,
173   /// this function does target-independent tests to determine if the
174   /// instruction is really trivially rematerializable.
175   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
176                                                 AAResults *AA) const;
177 
178 public:
179   /// These methods return the opcode of the frame setup/destroy instructions
180   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
181   /// order to abstract away the difference between operating with a frame
182   /// pointer and operating without, through the use of these two instructions.
183   ///
184   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
185   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
186 
187   /// Returns true if the argument is a frame pseudo instruction.
188   bool isFrameInstr(const MachineInstr &I) const {
189     return I.getOpcode() == getCallFrameSetupOpcode() ||
190            I.getOpcode() == getCallFrameDestroyOpcode();
191   }
192 
193   /// Returns true if the argument is a frame setup pseudo instruction.
194   bool isFrameSetup(const MachineInstr &I) const {
195     return I.getOpcode() == getCallFrameSetupOpcode();
196   }
197 
198   /// Returns size of the frame associated with the given frame instruction.
199   /// For frame setup instruction this is frame that is set up space set up
200   /// after the instruction. For frame destroy instruction this is the frame
201   /// freed by the caller.
202   /// Note, in some cases a call frame (or a part of it) may be prepared prior
203   /// to the frame setup instruction. It occurs in the calls that involve
204   /// inalloca arguments. This function reports only the size of the frame part
205   /// that is set up between the frame setup and destroy pseudo instructions.
206   int64_t getFrameSize(const MachineInstr &I) const {
207     assert(isFrameInstr(I) && "Not a frame instruction");
208     assert(I.getOperand(0).getImm() >= 0);
209     return I.getOperand(0).getImm();
210   }
211 
212   /// Returns the total frame size, which is made up of the space set up inside
213   /// the pair of frame start-stop instructions and the space that is set up
214   /// prior to the pair.
215   int64_t getFrameTotalSize(const MachineInstr &I) const {
216     if (isFrameSetup(I)) {
217       assert(I.getOperand(1).getImm() >= 0 &&
218              "Frame size must not be negative");
219       return getFrameSize(I) + I.getOperand(1).getImm();
220     }
221     return getFrameSize(I);
222   }
223 
224   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
225   unsigned getReturnOpcode() const { return ReturnOpcode; }
226 
227   /// Returns the actual stack pointer adjustment made by an instruction
228   /// as part of a call sequence. By default, only call frame setup/destroy
229   /// instructions adjust the stack, but targets may want to override this
230   /// to enable more fine-grained adjustment, or adjust by a different value.
231   virtual int getSPAdjust(const MachineInstr &MI) const;
232 
233   /// Return true if the instruction is a "coalescable" extension instruction.
234   /// That is, it's like a copy where it's legal for the source to overlap the
235   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
236   /// expected the pre-extension value is available as a subreg of the result
237   /// register. This also returns the sub-register index in SubIdx.
238   virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
239                                      unsigned &DstReg, unsigned &SubIdx) const {
240     return false;
241   }
242 
243   /// If the specified machine instruction is a direct
244   /// load from a stack slot, return the virtual or physical register number of
245   /// the destination along with the FrameIndex of the loaded stack slot.  If
246   /// not, return 0.  This predicate must return 0 if the instruction has
247   /// any side effects other than loading from the stack slot.
248   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
249                                        int &FrameIndex) const {
250     return 0;
251   }
252 
253   /// Optional extension of isLoadFromStackSlot that returns the number of
254   /// bytes loaded from the stack. This must be implemented if a backend
255   /// supports partial stack slot spills/loads to further disambiguate
256   /// what the load does.
257   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
258                                        int &FrameIndex,
259                                        unsigned &MemBytes) const {
260     MemBytes = 0;
261     return isLoadFromStackSlot(MI, FrameIndex);
262   }
263 
264   /// Check for post-frame ptr elimination stack locations as well.
265   /// This uses a heuristic so it isn't reliable for correctness.
266   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
267                                              int &FrameIndex) const {
268     return 0;
269   }
270 
271   /// If the specified machine instruction has a load from a stack slot,
272   /// return true along with the FrameIndices of the loaded stack slot and the
273   /// machine mem operands containing the reference.
274   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
275   /// any instructions that loads from the stack.  This is just a hint, as some
276   /// cases may be missed.
277   virtual bool hasLoadFromStackSlot(
278       const MachineInstr &MI,
279       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
280 
281   /// If the specified machine instruction is a direct
282   /// store to a stack slot, return the virtual or physical register number of
283   /// the source reg along with the FrameIndex of the loaded stack slot.  If
284   /// not, return 0.  This predicate must return 0 if the instruction has
285   /// any side effects other than storing to the stack slot.
286   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
287                                       int &FrameIndex) const {
288     return 0;
289   }
290 
291   /// Optional extension of isStoreToStackSlot that returns the number of
292   /// bytes stored to the stack. This must be implemented if a backend
293   /// supports partial stack slot spills/loads to further disambiguate
294   /// what the store does.
295   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
296                                       int &FrameIndex,
297                                       unsigned &MemBytes) const {
298     MemBytes = 0;
299     return isStoreToStackSlot(MI, FrameIndex);
300   }
301 
302   /// Check for post-frame ptr elimination stack locations as well.
303   /// This uses a heuristic, so it isn't reliable for correctness.
304   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
305                                             int &FrameIndex) const {
306     return 0;
307   }
308 
309   /// If the specified machine instruction has a store to a stack slot,
310   /// return true along with the FrameIndices of the loaded stack slot and the
311   /// machine mem operands containing the reference.
312   /// If not, return false.  Unlike isStoreToStackSlot,
313   /// this returns true for any instructions that stores to the
314   /// stack.  This is just a hint, as some cases may be missed.
315   virtual bool hasStoreToStackSlot(
316       const MachineInstr &MI,
317       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
318 
319   /// Return true if the specified machine instruction
320   /// is a copy of one stack slot to another and has no other effect.
321   /// Provide the identity of the two frame indices.
322   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
323                                int &SrcFrameIndex) const {
324     return false;
325   }
326 
327   /// Compute the size in bytes and offset within a stack slot of a spilled
328   /// register or subregister.
329   ///
330   /// \param [out] Size in bytes of the spilled value.
331   /// \param [out] Offset in bytes within the stack slot.
332   /// \returns true if both Size and Offset are successfully computed.
333   ///
334   /// Not all subregisters have computable spill slots. For example,
335   /// subregisters registers may not be byte-sized, and a pair of discontiguous
336   /// subregisters has no single offset.
337   ///
338   /// Targets with nontrivial bigendian implementations may need to override
339   /// this, particularly to support spilled vector registers.
340   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
341                                  unsigned &Size, unsigned &Offset,
342                                  const MachineFunction &MF) const;
343 
344   /// Returns the size in bytes of the specified MachineInstr, or ~0U
345   /// when this function is not implemented by a target.
346   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
347     return ~0U;
348   }
349 
350   /// Return true if the instruction is as cheap as a move instruction.
351   ///
352   /// Targets for different archs need to override this, and different
353   /// micro-architectures can also be finely tuned inside.
354   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
355     return MI.isAsCheapAsAMove();
356   }
357 
358   /// Return true if the instruction should be sunk by MachineSink.
359   ///
360   /// MachineSink determines on its own whether the instruction is safe to sink;
361   /// this gives the target a hook to override the default behavior with regards
362   /// to which instructions should be sunk.
363   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
364 
365   /// Re-issue the specified 'original' instruction at the
366   /// specific location targeting a new destination register.
367   /// The register in Orig->getOperand(0).getReg() will be substituted by
368   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
369   /// SubIdx.
370   virtual void reMaterialize(MachineBasicBlock &MBB,
371                              MachineBasicBlock::iterator MI, unsigned DestReg,
372                              unsigned SubIdx, const MachineInstr &Orig,
373                              const TargetRegisterInfo &TRI) const;
374 
375   /// Clones instruction or the whole instruction bundle \p Orig and
376   /// insert into \p MBB before \p InsertBefore. The target may update operands
377   /// that are required to be unique.
378   ///
379   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
380   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
381                                   MachineBasicBlock::iterator InsertBefore,
382                                   const MachineInstr &Orig) const;
383 
384   /// This method must be implemented by targets that
385   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
386   /// may be able to convert a two-address instruction into one or more true
387   /// three-address instructions on demand.  This allows the X86 target (for
388   /// example) to convert ADD and SHL instructions into LEA instructions if they
389   /// would require register copies due to two-addressness.
390   ///
391   /// This method returns a null pointer if the transformation cannot be
392   /// performed, otherwise it returns the last new instruction.
393   ///
394   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
395                                               MachineInstr &MI,
396                                               LiveVariables *LV) const {
397     return nullptr;
398   }
399 
400   // This constant can be used as an input value of operand index passed to
401   // the method findCommutedOpIndices() to tell the method that the
402   // corresponding operand index is not pre-defined and that the method
403   // can pick any commutable operand.
404   static const unsigned CommuteAnyOperandIndex = ~0U;
405 
406   /// This method commutes the operands of the given machine instruction MI.
407   ///
408   /// The operands to be commuted are specified by their indices OpIdx1 and
409   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
410   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
411   /// any arbitrarily chosen commutable operand. If both arguments are set to
412   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
413   /// operands; then commutes them if such operands could be found.
414   ///
415   /// If NewMI is false, MI is modified in place and returned; otherwise, a
416   /// new machine instruction is created and returned.
417   ///
418   /// Do not call this method for a non-commutable instruction or
419   /// for non-commuable operands.
420   /// Even though the instruction is commutable, the method may still
421   /// fail to commute the operands, null pointer is returned in such cases.
422   MachineInstr *
423   commuteInstruction(MachineInstr &MI, bool NewMI = false,
424                      unsigned OpIdx1 = CommuteAnyOperandIndex,
425                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
426 
427   /// Returns true iff the routine could find two commutable operands in the
428   /// given machine instruction.
429   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
430   /// If any of the INPUT values is set to the special value
431   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
432   /// operand, then returns its index in the corresponding argument.
433   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
434   /// looks for 2 commutable operands.
435   /// If INPUT values refer to some operands of MI, then the method simply
436   /// returns true if the corresponding operands are commutable and returns
437   /// false otherwise.
438   ///
439   /// For example, calling this method this way:
440   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
441   ///     findCommutedOpIndices(MI, Op1, Op2);
442   /// can be interpreted as a query asking to find an operand that would be
443   /// commutable with the operand#1.
444   virtual bool findCommutedOpIndices(const MachineInstr &MI,
445                                      unsigned &SrcOpIdx1,
446                                      unsigned &SrcOpIdx2) const;
447 
448   /// A pair composed of a register and a sub-register index.
449   /// Used to give some type checking when modeling Reg:SubReg.
450   struct RegSubRegPair {
451     unsigned Reg;
452     unsigned SubReg;
453 
454     RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
455         : Reg(Reg), SubReg(SubReg) {}
456 
457     bool operator==(const RegSubRegPair& P) const {
458       return Reg == P.Reg && SubReg == P.SubReg;
459     }
460     bool operator!=(const RegSubRegPair& P) const {
461       return !(*this == P);
462     }
463   };
464 
465   /// A pair composed of a pair of a register and a sub-register index,
466   /// and another sub-register index.
467   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
468   struct RegSubRegPairAndIdx : RegSubRegPair {
469     unsigned SubIdx;
470 
471     RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
472                         unsigned SubIdx = 0)
473         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
474   };
475 
476   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
477   /// and \p DefIdx.
478   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
479   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
480   /// flag are not added to this list.
481   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
482   /// two elements:
483   /// - %1:sub1, sub0
484   /// - %2<:0>, sub1
485   ///
486   /// \returns true if it is possible to build such an input sequence
487   /// with the pair \p MI, \p DefIdx. False otherwise.
488   ///
489   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
490   ///
491   /// \note The generic implementation does not provide any support for
492   /// MI.isRegSequenceLike(). In other words, one has to override
493   /// getRegSequenceLikeInputs for target specific instructions.
494   bool
495   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
496                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
497 
498   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
499   /// and \p DefIdx.
500   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
501   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
502   /// - %1:sub1, sub0
503   ///
504   /// \returns true if it is possible to build such an input sequence
505   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
506   /// False otherwise.
507   ///
508   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
509   ///
510   /// \note The generic implementation does not provide any support for
511   /// MI.isExtractSubregLike(). In other words, one has to override
512   /// getExtractSubregLikeInputs for target specific instructions.
513   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
514                               RegSubRegPairAndIdx &InputReg) const;
515 
516   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
517   /// and \p DefIdx.
518   /// \p [out] BaseReg and \p [out] InsertedReg contain
519   /// the equivalent inputs of INSERT_SUBREG.
520   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
521   /// - BaseReg: %0:sub0
522   /// - InsertedReg: %1:sub1, sub3
523   ///
524   /// \returns true if it is possible to build such an input sequence
525   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
526   /// False otherwise.
527   ///
528   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
529   ///
530   /// \note The generic implementation does not provide any support for
531   /// MI.isInsertSubregLike(). In other words, one has to override
532   /// getInsertSubregLikeInputs for target specific instructions.
533   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
534                              RegSubRegPair &BaseReg,
535                              RegSubRegPairAndIdx &InsertedReg) const;
536 
537   /// Return true if two machine instructions would produce identical values.
538   /// By default, this is only true when the two instructions
539   /// are deemed identical except for defs. If this function is called when the
540   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
541   /// aggressive checks.
542   virtual bool produceSameValue(const MachineInstr &MI0,
543                                 const MachineInstr &MI1,
544                                 const MachineRegisterInfo *MRI = nullptr) const;
545 
546   /// \returns true if a branch from an instruction with opcode \p BranchOpc
547   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
548   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
549                                      int64_t BrOffset) const {
550     llvm_unreachable("target did not implement");
551   }
552 
553   /// \returns The block that branch instruction \p MI jumps to.
554   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
555     llvm_unreachable("target did not implement");
556   }
557 
558   /// Insert an unconditional indirect branch at the end of \p MBB to \p
559   /// NewDestBB.  \p BrOffset indicates the offset of \p NewDestBB relative to
560   /// the offset of the position to insert the new branch.
561   ///
562   /// \returns The number of bytes added to the block.
563   virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
564                                         MachineBasicBlock &NewDestBB,
565                                         const DebugLoc &DL,
566                                         int64_t BrOffset = 0,
567                                         RegScavenger *RS = nullptr) const {
568     llvm_unreachable("target did not implement");
569   }
570 
571   /// Analyze the branching code at the end of MBB, returning
572   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
573   /// implemented for a target).  Upon success, this returns false and returns
574   /// with the following information in various cases:
575   ///
576   /// 1. If this block ends with no branches (it just falls through to its succ)
577   ///    just return false, leaving TBB/FBB null.
578   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
579   ///    the destination block.
580   /// 3. If this block ends with a conditional branch and it falls through to a
581   ///    successor block, it sets TBB to be the branch destination block and a
582   ///    list of operands that evaluate the condition. These operands can be
583   ///    passed to other TargetInstrInfo methods to create new branches.
584   /// 4. If this block ends with a conditional branch followed by an
585   ///    unconditional branch, it returns the 'true' destination in TBB, the
586   ///    'false' destination in FBB, and a list of operands that evaluate the
587   ///    condition.  These operands can be passed to other TargetInstrInfo
588   ///    methods to create new branches.
589   ///
590   /// Note that removeBranch and insertBranch must be implemented to support
591   /// cases where this method returns success.
592   ///
593   /// If AllowModify is true, then this routine is allowed to modify the basic
594   /// block (e.g. delete instructions after the unconditional branch).
595   ///
596   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
597   /// before calling this function.
598   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
599                              MachineBasicBlock *&FBB,
600                              SmallVectorImpl<MachineOperand> &Cond,
601                              bool AllowModify = false) const {
602     return true;
603   }
604 
605   /// Represents a predicate at the MachineFunction level.  The control flow a
606   /// MachineBranchPredicate represents is:
607   ///
608   ///  Reg = LHS `Predicate` RHS         == ConditionDef
609   ///  if Reg then goto TrueDest else goto FalseDest
610   ///
611   struct MachineBranchPredicate {
612     enum ComparePredicate {
613       PRED_EQ,     // True if two values are equal
614       PRED_NE,     // True if two values are not equal
615       PRED_INVALID // Sentinel value
616     };
617 
618     ComparePredicate Predicate = PRED_INVALID;
619     MachineOperand LHS = MachineOperand::CreateImm(0);
620     MachineOperand RHS = MachineOperand::CreateImm(0);
621     MachineBasicBlock *TrueDest = nullptr;
622     MachineBasicBlock *FalseDest = nullptr;
623     MachineInstr *ConditionDef = nullptr;
624 
625     /// SingleUseCondition is true if ConditionDef is dead except for the
626     /// branch(es) at the end of the basic block.
627     ///
628     bool SingleUseCondition = false;
629 
630     explicit MachineBranchPredicate() = default;
631   };
632 
633   /// Analyze the branching code at the end of MBB and parse it into the
634   /// MachineBranchPredicate structure if possible.  Returns false on success
635   /// and true on failure.
636   ///
637   /// If AllowModify is true, then this routine is allowed to modify the basic
638   /// block (e.g. delete instructions after the unconditional branch).
639   ///
640   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
641                                       MachineBranchPredicate &MBP,
642                                       bool AllowModify = false) const {
643     return true;
644   }
645 
646   /// Remove the branching code at the end of the specific MBB.
647   /// This is only invoked in cases where AnalyzeBranch returns success. It
648   /// returns the number of instructions that were removed.
649   /// If \p BytesRemoved is non-null, report the change in code size from the
650   /// removed instructions.
651   virtual unsigned removeBranch(MachineBasicBlock &MBB,
652                                 int *BytesRemoved = nullptr) const {
653     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
654   }
655 
656   /// Insert branch code into the end of the specified MachineBasicBlock. The
657   /// operands to this method are the same as those returned by AnalyzeBranch.
658   /// This is only invoked in cases where AnalyzeBranch returns success. It
659   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
660   /// report the change in code size from the added instructions.
661   ///
662   /// It is also invoked by tail merging to add unconditional branches in
663   /// cases where AnalyzeBranch doesn't apply because there was no original
664   /// branch to analyze.  At least this much must be implemented, else tail
665   /// merging needs to be disabled.
666   ///
667   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
668   /// before calling this function.
669   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
670                                 MachineBasicBlock *FBB,
671                                 ArrayRef<MachineOperand> Cond,
672                                 const DebugLoc &DL,
673                                 int *BytesAdded = nullptr) const {
674     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
675   }
676 
677   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
678                                      MachineBasicBlock *DestBB,
679                                      const DebugLoc &DL,
680                                      int *BytesAdded = nullptr) const {
681     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
682                         BytesAdded);
683   }
684 
685   /// Object returned by analyzeLoopForPipelining. Allows software pipelining
686   /// implementations to query attributes of the loop being pipelined and to
687   /// apply target-specific updates to the loop once pipelining is complete.
688   class PipelinerLoopInfo {
689   public:
690     virtual ~PipelinerLoopInfo();
691     /// Return true if the given instruction should not be pipelined and should
692     /// be ignored. An example could be a loop comparison, or induction variable
693     /// update with no users being pipelined.
694     virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
695 
696     /// Create a condition to determine if the trip count of the loop is greater
697     /// than TC.
698     ///
699     /// If the trip count is statically known to be greater than TC, return
700     /// true. If the trip count is statically known to be not greater than TC,
701     /// return false. Otherwise return nullopt and fill out Cond with the test
702     /// condition.
703     virtual Optional<bool>
704     createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
705                                     SmallVectorImpl<MachineOperand> &Cond) = 0;
706 
707     /// Modify the loop such that the trip count is
708     /// OriginalTC + TripCountAdjust.
709     virtual void adjustTripCount(int TripCountAdjust) = 0;
710 
711     /// Called when the loop's preheader has been modified to NewPreheader.
712     virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
713 
714     /// Called when the loop is being removed. Any instructions in the preheader
715     /// should be removed.
716     ///
717     /// Once this function is called, no other functions on this object are
718     /// valid; the loop has been removed.
719     virtual void disposed() = 0;
720   };
721 
722   /// Analyze loop L, which must be a single-basic-block loop, and if the
723   /// conditions can be understood enough produce a PipelinerLoopInfo object.
724   virtual std::unique_ptr<PipelinerLoopInfo>
725   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
726     return nullptr;
727   }
728 
729   /// Analyze the loop code, return true if it cannot be understoo. Upon
730   /// success, this function returns false and returns information about the
731   /// induction variable and compare instruction used at the end.
732   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
733                            MachineInstr *&CmpInst) const {
734     return true;
735   }
736 
737   /// Generate code to reduce the loop iteration by one and check if the loop
738   /// is finished.  Return the value/register of the new loop count.  We need
739   /// this function when peeling off one or more iterations of a loop. This
740   /// function assumes the nth iteration is peeled first.
741   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
742                                    MachineBasicBlock &PreHeader,
743                                    MachineInstr *IndVar, MachineInstr &Cmp,
744                                    SmallVectorImpl<MachineOperand> &Cond,
745                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
746                                    unsigned Iter, unsigned MaxIter) const {
747     llvm_unreachable("Target didn't implement ReduceLoopCount");
748   }
749 
750   /// Delete the instruction OldInst and everything after it, replacing it with
751   /// an unconditional branch to NewDest. This is used by the tail merging pass.
752   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
753                                        MachineBasicBlock *NewDest) const;
754 
755   /// Return true if it's legal to split the given basic
756   /// block at the specified instruction (i.e. instruction would be the start
757   /// of a new basic block).
758   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
759                                    MachineBasicBlock::iterator MBBI) const {
760     return true;
761   }
762 
763   /// Return true if it's profitable to predicate
764   /// instructions with accumulated instruction latency of "NumCycles"
765   /// of the specified basic block, where the probability of the instructions
766   /// being executed is given by Probability, and Confidence is a measure
767   /// of our confidence that it will be properly predicted.
768   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
769                                    unsigned ExtraPredCycles,
770                                    BranchProbability Probability) const {
771     return false;
772   }
773 
774   /// Second variant of isProfitableToIfCvt. This one
775   /// checks for the case where two basic blocks from true and false path
776   /// of a if-then-else (diamond) are predicated on mutally exclusive
777   /// predicates, where the probability of the true path being taken is given
778   /// by Probability, and Confidence is a measure of our confidence that it
779   /// will be properly predicted.
780   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
781                                    unsigned ExtraTCycles,
782                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
783                                    unsigned ExtraFCycles,
784                                    BranchProbability Probability) const {
785     return false;
786   }
787 
788   /// Return true if it's profitable for if-converter to duplicate instructions
789   /// of specified accumulated instruction latencies in the specified MBB to
790   /// enable if-conversion.
791   /// The probability of the instructions being executed is given by
792   /// Probability, and Confidence is a measure of our confidence that it
793   /// will be properly predicted.
794   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
795                                          unsigned NumCycles,
796                                          BranchProbability Probability) const {
797     return false;
798   }
799 
800   /// Return the increase in code size needed to predicate a contiguous run of
801   /// NumInsts instructions.
802   virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
803                                                     unsigned NumInsts) const {
804     return 0;
805   }
806 
807   /// Return an estimate for the code size reduction (in bytes) which will be
808   /// caused by removing the given branch instruction during if-conversion.
809   virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
810     return getInstSizeInBytes(MI);
811   }
812 
813   /// Return true if it's profitable to unpredicate
814   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
815   /// exclusive predicates.
816   /// e.g.
817   ///   subeq  r0, r1, #1
818   ///   addne  r0, r1, #1
819   /// =>
820   ///   sub    r0, r1, #1
821   ///   addne  r0, r1, #1
822   ///
823   /// This may be profitable is conditional instructions are always executed.
824   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
825                                          MachineBasicBlock &FMBB) const {
826     return false;
827   }
828 
829   /// Return true if it is possible to insert a select
830   /// instruction that chooses between TrueReg and FalseReg based on the
831   /// condition code in Cond.
832   ///
833   /// When successful, also return the latency in cycles from TrueReg,
834   /// FalseReg, and Cond to the destination register. In most cases, a select
835   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
836   ///
837   /// Some x86 implementations have 2-cycle cmov instructions.
838   ///
839   /// @param MBB         Block where select instruction would be inserted.
840   /// @param Cond        Condition returned by AnalyzeBranch.
841   /// @param TrueReg     Virtual register to select when Cond is true.
842   /// @param FalseReg    Virtual register to select when Cond is false.
843   /// @param CondCycles  Latency from Cond+Branch to select output.
844   /// @param TrueCycles  Latency from TrueReg to select output.
845   /// @param FalseCycles Latency from FalseReg to select output.
846   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
847                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
848                                unsigned FalseReg, int &CondCycles,
849                                int &TrueCycles, int &FalseCycles) const {
850     return false;
851   }
852 
853   /// Insert a select instruction into MBB before I that will copy TrueReg to
854   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
855   ///
856   /// This function can only be called after canInsertSelect() returned true.
857   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
858   /// that the same flags or registers required by Cond are available at the
859   /// insertion point.
860   ///
861   /// @param MBB      Block where select instruction should be inserted.
862   /// @param I        Insertion point.
863   /// @param DL       Source location for debugging.
864   /// @param DstReg   Virtual register to be defined by select instruction.
865   /// @param Cond     Condition as computed by AnalyzeBranch.
866   /// @param TrueReg  Virtual register to copy when Cond is true.
867   /// @param FalseReg Virtual register to copy when Cons is false.
868   virtual void insertSelect(MachineBasicBlock &MBB,
869                             MachineBasicBlock::iterator I, const DebugLoc &DL,
870                             unsigned DstReg, ArrayRef<MachineOperand> Cond,
871                             unsigned TrueReg, unsigned FalseReg) const {
872     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
873   }
874 
875   /// Analyze the given select instruction, returning true if
876   /// it cannot be understood. It is assumed that MI->isSelect() is true.
877   ///
878   /// When successful, return the controlling condition and the operands that
879   /// determine the true and false result values.
880   ///
881   ///   Result = SELECT Cond, TrueOp, FalseOp
882   ///
883   /// Some targets can optimize select instructions, for example by predicating
884   /// the instruction defining one of the operands. Such targets should set
885   /// Optimizable.
886   ///
887   /// @param         MI Select instruction to analyze.
888   /// @param Cond    Condition controlling the select.
889   /// @param TrueOp  Operand number of the value selected when Cond is true.
890   /// @param FalseOp Operand number of the value selected when Cond is false.
891   /// @param Optimizable Returned as true if MI is optimizable.
892   /// @returns False on success.
893   virtual bool analyzeSelect(const MachineInstr &MI,
894                              SmallVectorImpl<MachineOperand> &Cond,
895                              unsigned &TrueOp, unsigned &FalseOp,
896                              bool &Optimizable) const {
897     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
898     return true;
899   }
900 
901   /// Given a select instruction that was understood by
902   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
903   /// merging it with one of its operands. Returns NULL on failure.
904   ///
905   /// When successful, returns the new select instruction. The client is
906   /// responsible for deleting MI.
907   ///
908   /// If both sides of the select can be optimized, PreferFalse is used to pick
909   /// a side.
910   ///
911   /// @param MI          Optimizable select instruction.
912   /// @param NewMIs     Set that record all MIs in the basic block up to \p
913   /// MI. Has to be updated with any newly created MI or deleted ones.
914   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
915   /// @returns Optimized instruction or NULL.
916   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
917                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
918                                        bool PreferFalse = false) const {
919     // This function must be implemented if Optimizable is ever set.
920     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
921   }
922 
923   /// Emit instructions to copy a pair of physical registers.
924   ///
925   /// This function should support copies within any legal register class as
926   /// well as any cross-class copies created during instruction selection.
927   ///
928   /// The source and destination registers may overlap, which may require a
929   /// careful implementation when multiple copy instructions are required for
930   /// large registers. See for example the ARM target.
931   virtual void copyPhysReg(MachineBasicBlock &MBB,
932                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
933                            MCRegister DestReg, MCRegister SrcReg,
934                            bool KillSrc) const {
935     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
936   }
937 
938 protected:
939   /// Target-dependent implementation for IsCopyInstr.
940   /// If the specific machine instruction is a instruction that moves/copies
941   /// value from one register to another register return destination and source
942   /// registers as machine operands.
943   virtual Optional<DestSourcePair>
944   isCopyInstrImpl(const MachineInstr &MI) const {
945     return None;
946   }
947 
948 public:
949   /// If the specific machine instruction is a instruction that moves/copies
950   /// value from one register to another register return destination and source
951   /// registers as machine operands.
952   /// For COPY-instruction the method naturally returns destination and source
953   /// registers as machine operands, for all other instructions the method calls
954   /// target-dependent implementation.
955   Optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
956     if (MI.isCopy()) {
957       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
958     }
959     return isCopyInstrImpl(MI);
960   }
961 
962   /// If the specific machine instruction is an instruction that adds an
963   /// immediate value and a physical register, and stores the result in
964   /// the given physical register \c Reg, return a pair of the source
965   /// register and the offset which has been added.
966   virtual Optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
967                                               Register Reg) const {
968     return None;
969   }
970 
971   /// Store the specified register of the given register class to the specified
972   /// stack frame index. The store instruction is to be added to the given
973   /// machine basic block before the specified machine instruction. If isKill
974   /// is true, the register operand is the last use and must be marked kill.
975   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
976                                    MachineBasicBlock::iterator MI,
977                                    unsigned SrcReg, bool isKill, int FrameIndex,
978                                    const TargetRegisterClass *RC,
979                                    const TargetRegisterInfo *TRI) const {
980     llvm_unreachable("Target didn't implement "
981                      "TargetInstrInfo::storeRegToStackSlot!");
982   }
983 
984   /// Load the specified register of the given register class from the specified
985   /// stack frame index. The load instruction is to be added to the given
986   /// machine basic block before the specified machine instruction.
987   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
988                                     MachineBasicBlock::iterator MI,
989                                     unsigned DestReg, int FrameIndex,
990                                     const TargetRegisterClass *RC,
991                                     const TargetRegisterInfo *TRI) const {
992     llvm_unreachable("Target didn't implement "
993                      "TargetInstrInfo::loadRegFromStackSlot!");
994   }
995 
996   /// This function is called for all pseudo instructions
997   /// that remain after register allocation. Many pseudo instructions are
998   /// created to help register allocation. This is the place to convert them
999   /// into real instructions. The target can edit MI in place, or it can insert
1000   /// new instructions and erase MI. The function should return true if
1001   /// anything was changed.
1002   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1003 
1004   /// Check whether the target can fold a load that feeds a subreg operand
1005   /// (or a subreg operand that feeds a store).
1006   /// For example, X86 may want to return true if it can fold
1007   /// movl (%esp), %eax
1008   /// subb, %al, ...
1009   /// Into:
1010   /// subb (%esp), ...
1011   ///
1012   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1013   /// reject subregs - but since this behavior used to be enforced in the
1014   /// target-independent code, moving this responsibility to the targets
1015   /// has the potential of causing nasty silent breakage in out-of-tree targets.
1016   virtual bool isSubregFoldable() const { return false; }
1017 
1018   /// Attempt to fold a load or store of the specified stack
1019   /// slot into the specified machine instruction for the specified operand(s).
1020   /// If this is possible, a new instruction is returned with the specified
1021   /// operand folded, otherwise NULL is returned.
1022   /// The new instruction is inserted before MI, and the client is responsible
1023   /// for removing the old instruction.
1024   /// If VRM is passed, the assigned physregs can be inspected by target to
1025   /// decide on using an opcode (note that those assignments can still change).
1026   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1027                                   int FI,
1028                                   LiveIntervals *LIS = nullptr,
1029                                   VirtRegMap *VRM = nullptr) const;
1030 
1031   /// Same as the previous version except it allows folding of any load and
1032   /// store from / to any address, not just from a specific stack slot.
1033   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1034                                   MachineInstr &LoadMI,
1035                                   LiveIntervals *LIS = nullptr) const;
1036 
1037   /// Return true when there is potentially a faster code sequence
1038   /// for an instruction chain ending in \p Root. All potential patterns are
1039   /// returned in the \p Pattern vector. Pattern should be sorted in priority
1040   /// order since the pattern evaluator stops checking as soon as it finds a
1041   /// faster sequence.
1042   /// \param Root - Instruction that could be combined with one of its operands
1043   /// \param Patterns - Vector of possible combination patterns
1044   virtual bool getMachineCombinerPatterns(
1045       MachineInstr &Root,
1046       SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
1047 
1048   /// Return true when a code sequence can improve throughput. It
1049   /// should be called only for instructions in loops.
1050   /// \param Pattern - combiner pattern
1051   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
1052 
1053   /// Return true if the input \P Inst is part of a chain of dependent ops
1054   /// that are suitable for reassociation, otherwise return false.
1055   /// If the instruction's operands must be commuted to have a previous
1056   /// instruction of the same type define the first source operand, \P Commuted
1057   /// will be set to true.
1058   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1059 
1060   /// Return true when \P Inst is both associative and commutative.
1061   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
1062     return false;
1063   }
1064 
1065   /// Return true when \P Inst has reassociable operands in the same \P MBB.
1066   virtual bool hasReassociableOperands(const MachineInstr &Inst,
1067                                        const MachineBasicBlock *MBB) const;
1068 
1069   /// Return true when \P Inst has reassociable sibling.
1070   bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
1071 
1072   /// When getMachineCombinerPatterns() finds patterns, this function generates
1073   /// the instructions that could replace the original code sequence. The client
1074   /// has to decide whether the actual replacement is beneficial or not.
1075   /// \param Root - Instruction that could be combined with one of its operands
1076   /// \param Pattern - Combination pattern for Root
1077   /// \param InsInstrs - Vector of new instructions that implement P
1078   /// \param DelInstrs - Old instructions, including Root, that could be
1079   /// replaced by InsInstr
1080   /// \param InstIdxForVirtReg - map of virtual register to instruction in
1081   /// InsInstr that defines it
1082   virtual void genAlternativeCodeSequence(
1083       MachineInstr &Root, MachineCombinerPattern Pattern,
1084       SmallVectorImpl<MachineInstr *> &InsInstrs,
1085       SmallVectorImpl<MachineInstr *> &DelInstrs,
1086       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1087 
1088   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1089   /// reduce critical path length.
1090   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1091                       MachineCombinerPattern Pattern,
1092                       SmallVectorImpl<MachineInstr *> &InsInstrs,
1093                       SmallVectorImpl<MachineInstr *> &DelInstrs,
1094                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1095 
1096   /// This is an architecture-specific helper function of reassociateOps.
1097   /// Set special operand attributes for new instructions after reassociation.
1098   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1099                                      MachineInstr &NewMI1,
1100                                      MachineInstr &NewMI2) const {}
1101 
1102   /// Return true when a target supports MachineCombiner.
1103   virtual bool useMachineCombiner() const { return false; }
1104 
1105   /// Return true if the given SDNode can be copied during scheduling
1106   /// even if it has glue.
1107   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1108 
1109 protected:
1110   /// Target-dependent implementation for foldMemoryOperand.
1111   /// Target-independent code in foldMemoryOperand will
1112   /// take care of adding a MachineMemOperand to the newly created instruction.
1113   /// The instruction and any auxiliary instructions necessary will be inserted
1114   /// at InsertPt.
1115   virtual MachineInstr *
1116   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1117                         ArrayRef<unsigned> Ops,
1118                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
1119                         LiveIntervals *LIS = nullptr,
1120                         VirtRegMap *VRM = nullptr) const {
1121     return nullptr;
1122   }
1123 
1124   /// Target-dependent implementation for foldMemoryOperand.
1125   /// Target-independent code in foldMemoryOperand will
1126   /// take care of adding a MachineMemOperand to the newly created instruction.
1127   /// The instruction and any auxiliary instructions necessary will be inserted
1128   /// at InsertPt.
1129   virtual MachineInstr *foldMemoryOperandImpl(
1130       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1131       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1132       LiveIntervals *LIS = nullptr) const {
1133     return nullptr;
1134   }
1135 
1136   /// Target-dependent implementation of getRegSequenceInputs.
1137   ///
1138   /// \returns true if it is possible to build the equivalent
1139   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1140   ///
1141   /// \pre MI.isRegSequenceLike().
1142   ///
1143   /// \see TargetInstrInfo::getRegSequenceInputs.
1144   virtual bool getRegSequenceLikeInputs(
1145       const MachineInstr &MI, unsigned DefIdx,
1146       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1147     return false;
1148   }
1149 
1150   /// Target-dependent implementation of getExtractSubregInputs.
1151   ///
1152   /// \returns true if it is possible to build the equivalent
1153   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1154   ///
1155   /// \pre MI.isExtractSubregLike().
1156   ///
1157   /// \see TargetInstrInfo::getExtractSubregInputs.
1158   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1159                                           unsigned DefIdx,
1160                                           RegSubRegPairAndIdx &InputReg) const {
1161     return false;
1162   }
1163 
1164   /// Target-dependent implementation of getInsertSubregInputs.
1165   ///
1166   /// \returns true if it is possible to build the equivalent
1167   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1168   ///
1169   /// \pre MI.isInsertSubregLike().
1170   ///
1171   /// \see TargetInstrInfo::getInsertSubregInputs.
1172   virtual bool
1173   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1174                             RegSubRegPair &BaseReg,
1175                             RegSubRegPairAndIdx &InsertedReg) const {
1176     return false;
1177   }
1178 
1179 public:
1180   /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1181   /// (e.g. stack) the target returns the corresponding address space.
1182   virtual unsigned
1183   getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
1184     return 0;
1185   }
1186 
1187   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1188   /// a store or a load and a store into two or more instruction. If this is
1189   /// possible, returns true as well as the new instructions by reference.
1190   virtual bool
1191   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1192                       bool UnfoldLoad, bool UnfoldStore,
1193                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
1194     return false;
1195   }
1196 
1197   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1198                                    SmallVectorImpl<SDNode *> &NewNodes) const {
1199     return false;
1200   }
1201 
1202   /// Returns the opcode of the would be new
1203   /// instruction after load / store are unfolded from an instruction of the
1204   /// specified opcode. It returns zero if the specified unfolding is not
1205   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1206   /// index of the operand which will hold the register holding the loaded
1207   /// value.
1208   virtual unsigned
1209   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1210                              unsigned *LoadRegIndex = nullptr) const {
1211     return 0;
1212   }
1213 
1214   /// This is used by the pre-regalloc scheduler to determine if two loads are
1215   /// loading from the same base address. It should only return true if the base
1216   /// pointers are the same and the only differences between the two addresses
1217   /// are the offset. It also returns the offsets by reference.
1218   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1219                                        int64_t &Offset1,
1220                                        int64_t &Offset2) const {
1221     return false;
1222   }
1223 
1224   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1225   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1226   /// On some targets if two loads are loading from
1227   /// addresses in the same cache line, it's better if they are scheduled
1228   /// together. This function takes two integers that represent the load offsets
1229   /// from the common base address. It returns true if it decides it's desirable
1230   /// to schedule the two loads together. "NumLoads" is the number of loads that
1231   /// have already been scheduled after Load1.
1232   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1233                                        int64_t Offset1, int64_t Offset2,
1234                                        unsigned NumLoads) const {
1235     return false;
1236   }
1237 
1238   /// Get the base operand and byte offset of an instruction that reads/writes
1239   /// memory.
1240   /// It returns false if MI does not read/write memory.
1241   /// It returns false if no base operand and offset was found.
1242   /// It is not guaranteed to always recognize base operand and offsets in all
1243   /// cases.
1244   virtual bool getMemOperandWithOffset(const MachineInstr &MI,
1245                                        const MachineOperand *&BaseOp,
1246                                        int64_t &Offset,
1247                                        const TargetRegisterInfo *TRI) const {
1248     return false;
1249   }
1250 
1251   /// Return true if the instruction contains a base register and offset. If
1252   /// true, the function also sets the operand position in the instruction
1253   /// for the base register and offset.
1254   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1255                                         unsigned &BasePos,
1256                                         unsigned &OffsetPos) const {
1257     return false;
1258   }
1259 
1260   /// If the instruction is an increment of a constant value, return the amount.
1261   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1262     return false;
1263   }
1264 
1265   /// Returns true if the two given memory operations should be scheduled
1266   /// adjacent. Note that you have to add:
1267   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1268   /// or
1269   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1270   /// to TargetPassConfig::createMachineScheduler() to have an effect.
1271   virtual bool shouldClusterMemOps(const MachineOperand &BaseOp1,
1272                                    const MachineOperand &BaseOp2,
1273                                    unsigned NumLoads) const {
1274     llvm_unreachable("target did not implement shouldClusterMemOps()");
1275   }
1276 
1277   /// Reverses the branch condition of the specified condition list,
1278   /// returning false on success and true if it cannot be reversed.
1279   virtual bool
1280   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1281     return true;
1282   }
1283 
1284   /// Insert a noop into the instruction stream at the specified point.
1285   virtual void insertNoop(MachineBasicBlock &MBB,
1286                           MachineBasicBlock::iterator MI) const;
1287 
1288   /// Return the noop instruction to use for a noop.
1289   virtual void getNoop(MCInst &NopInst) const;
1290 
1291   /// Return true for post-incremented instructions.
1292   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1293 
1294   /// Returns true if the instruction is already predicated.
1295   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1296 
1297   /// Returns true if the instruction is a
1298   /// terminator instruction that has not been predicated.
1299   virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1300 
1301   /// Returns true if MI is an unconditional tail call.
1302   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1303     return false;
1304   }
1305 
1306   /// Returns true if the tail call can be made conditional on BranchCond.
1307   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1308                                           const MachineInstr &TailCall) const {
1309     return false;
1310   }
1311 
1312   /// Replace the conditional branch in MBB with a conditional tail call.
1313   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1314                                          SmallVectorImpl<MachineOperand> &Cond,
1315                                          const MachineInstr &TailCall) const {
1316     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1317   }
1318 
1319   /// Convert the instruction into a predicated instruction.
1320   /// It returns true if the operation was successful.
1321   virtual bool PredicateInstruction(MachineInstr &MI,
1322                                     ArrayRef<MachineOperand> Pred) const;
1323 
1324   /// Returns true if the first specified predicate
1325   /// subsumes the second, e.g. GE subsumes GT.
1326   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1327                                  ArrayRef<MachineOperand> Pred2) const {
1328     return false;
1329   }
1330 
1331   /// If the specified instruction defines any predicate
1332   /// or condition code register(s) used for predication, returns true as well
1333   /// as the definition predicate(s) by reference.
1334   virtual bool DefinesPredicate(MachineInstr &MI,
1335                                 std::vector<MachineOperand> &Pred) const {
1336     return false;
1337   }
1338 
1339   /// Return true if the specified instruction can be predicated.
1340   /// By default, this returns true for every instruction with a
1341   /// PredicateOperand.
1342   virtual bool isPredicable(const MachineInstr &MI) const {
1343     return MI.getDesc().isPredicable();
1344   }
1345 
1346   /// Return true if it's safe to move a machine
1347   /// instruction that defines the specified register class.
1348   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1349     return true;
1350   }
1351 
1352   /// Test if the given instruction should be considered a scheduling boundary.
1353   /// This primarily includes labels and terminators.
1354   virtual bool isSchedulingBoundary(const MachineInstr &MI,
1355                                     const MachineBasicBlock *MBB,
1356                                     const MachineFunction &MF) const;
1357 
1358   /// Measure the specified inline asm to determine an approximation of its
1359   /// length.
1360   virtual unsigned getInlineAsmLength(
1361     const char *Str, const MCAsmInfo &MAI,
1362     const TargetSubtargetInfo *STI = nullptr) const;
1363 
1364   /// Allocate and return a hazard recognizer to use for this target when
1365   /// scheduling the machine instructions before register allocation.
1366   virtual ScheduleHazardRecognizer *
1367   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1368                                const ScheduleDAG *DAG) const;
1369 
1370   /// Allocate and return a hazard recognizer to use for this target when
1371   /// scheduling the machine instructions before register allocation.
1372   virtual ScheduleHazardRecognizer *
1373   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1374                                  const ScheduleDAGMI *DAG) const;
1375 
1376   /// Allocate and return a hazard recognizer to use for this target when
1377   /// scheduling the machine instructions after register allocation.
1378   virtual ScheduleHazardRecognizer *
1379   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1380                                      const ScheduleDAG *DAG) const;
1381 
1382   /// Allocate and return a hazard recognizer to use for by non-scheduling
1383   /// passes.
1384   virtual ScheduleHazardRecognizer *
1385   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1386     return nullptr;
1387   }
1388 
1389   /// Provide a global flag for disabling the PreRA hazard recognizer that
1390   /// targets may choose to honor.
1391   bool usePreRAHazardRecognizer() const;
1392 
1393   /// For a comparison instruction, return the source registers
1394   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1395   /// compares against in CmpValue. Return true if the comparison instruction
1396   /// can be analyzed.
1397   virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1398                               unsigned &SrcReg2, int &Mask, int &Value) const {
1399     return false;
1400   }
1401 
1402   /// See if the comparison instruction can be converted
1403   /// into something more efficient. E.g., on ARM most instructions can set the
1404   /// flags register, obviating the need for a separate CMP.
1405   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1406                                     unsigned SrcReg2, int Mask, int Value,
1407                                     const MachineRegisterInfo *MRI) const {
1408     return false;
1409   }
1410   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1411 
1412   /// Try to remove the load by folding it to a register operand at the use.
1413   /// We fold the load instructions if and only if the
1414   /// def and use are in the same BB. We only look at one load and see
1415   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1416   /// defined by the load we are trying to fold. DefMI returns the machine
1417   /// instruction that defines FoldAsLoadDefReg, and the function returns
1418   /// the machine instruction generated due to folding.
1419   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1420                                           const MachineRegisterInfo *MRI,
1421                                           unsigned &FoldAsLoadDefReg,
1422                                           MachineInstr *&DefMI) const {
1423     return nullptr;
1424   }
1425 
1426   /// 'Reg' is known to be defined by a move immediate instruction,
1427   /// try to fold the immediate into the use instruction.
1428   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1429   /// then the caller may assume that DefMI has been erased from its parent
1430   /// block. The caller may assume that it will not be erased by this
1431   /// function otherwise.
1432   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1433                              unsigned Reg, MachineRegisterInfo *MRI) const {
1434     return false;
1435   }
1436 
1437   /// Return the number of u-operations the given machine
1438   /// instruction will be decoded to on the target cpu. The itinerary's
1439   /// IssueWidth is the number of microops that can be dispatched each
1440   /// cycle. An instruction with zero microops takes no dispatch resources.
1441   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1442                                   const MachineInstr &MI) const;
1443 
1444   /// Return true for pseudo instructions that don't consume any
1445   /// machine resources in their current form. These are common cases that the
1446   /// scheduler should consider free, rather than conservatively handling them
1447   /// as instructions with no itinerary.
1448   bool isZeroCost(unsigned Opcode) const {
1449     return Opcode <= TargetOpcode::COPY;
1450   }
1451 
1452   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1453                                 SDNode *DefNode, unsigned DefIdx,
1454                                 SDNode *UseNode, unsigned UseIdx) const;
1455 
1456   /// Compute and return the use operand latency of a given pair of def and use.
1457   /// In most cases, the static scheduling itinerary was enough to determine the
1458   /// operand latency. But it may not be possible for instructions with variable
1459   /// number of defs / uses.
1460   ///
1461   /// This is a raw interface to the itinerary that may be directly overridden
1462   /// by a target. Use computeOperandLatency to get the best estimate of
1463   /// latency.
1464   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1465                                 const MachineInstr &DefMI, unsigned DefIdx,
1466                                 const MachineInstr &UseMI,
1467                                 unsigned UseIdx) const;
1468 
1469   /// Compute the instruction latency of a given instruction.
1470   /// If the instruction has higher cost when predicated, it's returned via
1471   /// PredCost.
1472   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1473                                    const MachineInstr &MI,
1474                                    unsigned *PredCost = nullptr) const;
1475 
1476   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1477 
1478   virtual int getInstrLatency(const InstrItineraryData *ItinData,
1479                               SDNode *Node) const;
1480 
1481   /// Return the default expected latency for a def based on its opcode.
1482   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1483                              const MachineInstr &DefMI) const;
1484 
1485   int computeDefOperandLatency(const InstrItineraryData *ItinData,
1486                                const MachineInstr &DefMI) const;
1487 
1488   /// Return true if this opcode has high latency to its result.
1489   virtual bool isHighLatencyDef(int opc) const { return false; }
1490 
1491   /// Compute operand latency between a def of 'Reg'
1492   /// and a use in the current loop. Return true if the target considered
1493   /// it 'high'. This is used by optimization passes such as machine LICM to
1494   /// determine whether it makes sense to hoist an instruction out even in a
1495   /// high register pressure situation.
1496   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1497                                      const MachineRegisterInfo *MRI,
1498                                      const MachineInstr &DefMI, unsigned DefIdx,
1499                                      const MachineInstr &UseMI,
1500                                      unsigned UseIdx) const {
1501     return false;
1502   }
1503 
1504   /// Compute operand latency of a def of 'Reg'. Return true
1505   /// if the target considered it 'low'.
1506   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1507                                 const MachineInstr &DefMI,
1508                                 unsigned DefIdx) const;
1509 
1510   /// Perform target-specific instruction verification.
1511   virtual bool verifyInstruction(const MachineInstr &MI,
1512                                  StringRef &ErrInfo) const {
1513     return true;
1514   }
1515 
1516   /// Return the current execution domain and bit mask of
1517   /// possible domains for instruction.
1518   ///
1519   /// Some micro-architectures have multiple execution domains, and multiple
1520   /// opcodes that perform the same operation in different domains.  For
1521   /// example, the x86 architecture provides the por, orps, and orpd
1522   /// instructions that all do the same thing.  There is a latency penalty if a
1523   /// register is written in one domain and read in another.
1524   ///
1525   /// This function returns a pair (domain, mask) containing the execution
1526   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1527   /// function can be used to change the opcode to one of the domains in the
1528   /// bit mask.  Instructions whose execution domain can't be changed should
1529   /// return a 0 mask.
1530   ///
1531   /// The execution domain numbers don't have any special meaning except domain
1532   /// 0 is used for instructions that are not associated with any interesting
1533   /// execution domain.
1534   ///
1535   virtual std::pair<uint16_t, uint16_t>
1536   getExecutionDomain(const MachineInstr &MI) const {
1537     return std::make_pair(0, 0);
1538   }
1539 
1540   /// Change the opcode of MI to execute in Domain.
1541   ///
1542   /// The bit (1 << Domain) must be set in the mask returned from
1543   /// getExecutionDomain(MI).
1544   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1545 
1546   /// Returns the preferred minimum clearance
1547   /// before an instruction with an unwanted partial register update.
1548   ///
1549   /// Some instructions only write part of a register, and implicitly need to
1550   /// read the other parts of the register.  This may cause unwanted stalls
1551   /// preventing otherwise unrelated instructions from executing in parallel in
1552   /// an out-of-order CPU.
1553   ///
1554   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1555   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1556   /// the instruction needs to wait for the old value of the register to become
1557   /// available:
1558   ///
1559   ///   addps %xmm1, %xmm0
1560   ///   movaps %xmm0, (%rax)
1561   ///   cvtsi2ss %rbx, %xmm0
1562   ///
1563   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1564   /// instruction before it can issue, even though the high bits of %xmm0
1565   /// probably aren't needed.
1566   ///
1567   /// This hook returns the preferred clearance before MI, measured in
1568   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1569   /// instructions before MI.  It should only return a positive value for
1570   /// unwanted dependencies.  If the old bits of the defined register have
1571   /// useful values, or if MI is determined to otherwise read the dependency,
1572   /// the hook should return 0.
1573   ///
1574   /// The unwanted dependency may be handled by:
1575   ///
1576   /// 1. Allocating the same register for an MI def and use.  That makes the
1577   ///    unwanted dependency identical to a required dependency.
1578   ///
1579   /// 2. Allocating a register for the def that has no defs in the previous N
1580   ///    instructions.
1581   ///
1582   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1583   ///    allows the target to insert a dependency breaking instruction.
1584   ///
1585   virtual unsigned
1586   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1587                                const TargetRegisterInfo *TRI) const {
1588     // The default implementation returns 0 for no partial register dependency.
1589     return 0;
1590   }
1591 
1592   /// Return the minimum clearance before an instruction that reads an
1593   /// unused register.
1594   ///
1595   /// For example, AVX instructions may copy part of a register operand into
1596   /// the unused high bits of the destination register.
1597   ///
1598   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1599   ///
1600   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1601   /// false dependence on any previous write to %xmm0.
1602   ///
1603   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1604   /// does not take an operand index. Instead sets \p OpNum to the index of the
1605   /// unused register.
1606   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
1607                                         const TargetRegisterInfo *TRI) const {
1608     // The default implementation returns 0 for no undef register dependency.
1609     return 0;
1610   }
1611 
1612   /// Insert a dependency-breaking instruction
1613   /// before MI to eliminate an unwanted dependency on OpNum.
1614   ///
1615   /// If it wasn't possible to avoid a def in the last N instructions before MI
1616   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1617   /// unwanted dependency.
1618   ///
1619   /// On x86, an xorps instruction can be used as a dependency breaker:
1620   ///
1621   ///   addps %xmm1, %xmm0
1622   ///   movaps %xmm0, (%rax)
1623   ///   xorps %xmm0, %xmm0
1624   ///   cvtsi2ss %rbx, %xmm0
1625   ///
1626   /// An <imp-kill> operand should be added to MI if an instruction was
1627   /// inserted.  This ties the instructions together in the post-ra scheduler.
1628   ///
1629   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1630                                          const TargetRegisterInfo *TRI) const {}
1631 
1632   /// Create machine specific model for scheduling.
1633   virtual DFAPacketizer *
1634   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1635     return nullptr;
1636   }
1637 
1638   /// Sometimes, it is possible for the target
1639   /// to tell, even without aliasing information, that two MIs access different
1640   /// memory addresses. This function returns true if two MIs access different
1641   /// memory addresses and false otherwise.
1642   ///
1643   /// Assumes any physical registers used to compute addresses have the same
1644   /// value for both instructions. (This is the most useful assumption for
1645   /// post-RA scheduling.)
1646   ///
1647   /// See also MachineInstr::mayAlias, which is implemented on top of this
1648   /// function.
1649   virtual bool
1650   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1651                                   const MachineInstr &MIb) const {
1652     assert(MIa.mayLoadOrStore() &&
1653            "MIa must load from or modify a memory location");
1654     assert(MIb.mayLoadOrStore() &&
1655            "MIb must load from or modify a memory location");
1656     return false;
1657   }
1658 
1659   /// Return the value to use for the MachineCSE's LookAheadLimit,
1660   /// which is a heuristic used for CSE'ing phys reg defs.
1661   virtual unsigned getMachineCSELookAheadLimit() const {
1662     // The default lookahead is small to prevent unprofitable quadratic
1663     // behavior.
1664     return 5;
1665   }
1666 
1667   /// Return an array that contains the ids of the target indices (used for the
1668   /// TargetIndex machine operand) and their names.
1669   ///
1670   /// MIR Serialization is able to serialize only the target indices that are
1671   /// defined by this method.
1672   virtual ArrayRef<std::pair<int, const char *>>
1673   getSerializableTargetIndices() const {
1674     return None;
1675   }
1676 
1677   /// Decompose the machine operand's target flags into two values - the direct
1678   /// target flag value and any of bit flags that are applied.
1679   virtual std::pair<unsigned, unsigned>
1680   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1681     return std::make_pair(0u, 0u);
1682   }
1683 
1684   /// Return an array that contains the direct target flag values and their
1685   /// names.
1686   ///
1687   /// MIR Serialization is able to serialize only the target flags that are
1688   /// defined by this method.
1689   virtual ArrayRef<std::pair<unsigned, const char *>>
1690   getSerializableDirectMachineOperandTargetFlags() const {
1691     return None;
1692   }
1693 
1694   /// Return an array that contains the bitmask target flag values and their
1695   /// names.
1696   ///
1697   /// MIR Serialization is able to serialize only the target flags that are
1698   /// defined by this method.
1699   virtual ArrayRef<std::pair<unsigned, const char *>>
1700   getSerializableBitmaskMachineOperandTargetFlags() const {
1701     return None;
1702   }
1703 
1704   /// Return an array that contains the MMO target flag values and their
1705   /// names.
1706   ///
1707   /// MIR Serialization is able to serialize only the MMO target flags that are
1708   /// defined by this method.
1709   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1710   getSerializableMachineMemOperandTargetFlags() const {
1711     return None;
1712   }
1713 
1714   /// Determines whether \p Inst is a tail call instruction. Override this
1715   /// method on targets that do not properly set MCID::Return and MCID::Call on
1716   /// tail call instructions."
1717   virtual bool isTailCall(const MachineInstr &Inst) const {
1718     return Inst.isReturn() && Inst.isCall();
1719   }
1720 
1721   /// True if the instruction is bound to the top of its basic block and no
1722   /// other instructions shall be inserted before it. This can be implemented
1723   /// to prevent register allocator to insert spills before such instructions.
1724   virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1725     return false;
1726   }
1727 
1728   /// During PHI eleimination lets target to make necessary checks and
1729   /// insert the copy to the PHI destination register in a target specific
1730   /// manner.
1731   virtual MachineInstr *createPHIDestinationCopy(
1732       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
1733       const DebugLoc &DL, Register Src, Register Dst) const {
1734     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1735         .addReg(Src);
1736   }
1737 
1738   /// During PHI eleimination lets target to make necessary checks and
1739   /// insert the copy to the PHI destination register in a target specific
1740   /// manner.
1741   virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
1742                                             MachineBasicBlock::iterator InsPt,
1743                                             const DebugLoc &DL, Register Src,
1744                                             unsigned SrcSubReg,
1745                                             Register Dst) const {
1746     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1747         .addReg(Src, 0, SrcSubReg);
1748   }
1749 
1750   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1751   /// information for a set of outlining candidates.
1752   virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1753       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1754     llvm_unreachable(
1755         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1756   }
1757 
1758   /// Returns how or if \p MI should be outlined.
1759   virtual outliner::InstrType
1760   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1761     llvm_unreachable(
1762         "Target didn't implement TargetInstrInfo::getOutliningType!");
1763   }
1764 
1765   /// Optional target hook that returns true if \p MBB is safe to outline from,
1766   /// and returns any target-specific information in \p Flags.
1767   virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1768                                       unsigned &Flags) const {
1769     return true;
1770   }
1771 
1772   /// Insert a custom frame for outlined functions.
1773   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1774                                   const outliner::OutlinedFunction &OF) const {
1775     llvm_unreachable(
1776         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1777   }
1778 
1779   /// Insert a call to an outlined function into the program.
1780   /// Returns an iterator to the spot where we inserted the call. This must be
1781   /// implemented by the target.
1782   virtual MachineBasicBlock::iterator
1783   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1784                      MachineBasicBlock::iterator &It, MachineFunction &MF,
1785                      const outliner::Candidate &C) const {
1786     llvm_unreachable(
1787         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1788   }
1789 
1790   /// Return true if the function can safely be outlined from.
1791   /// A function \p MF is considered safe for outlining if an outlined function
1792   /// produced from instructions in F will produce a program which produces the
1793   /// same output for any set of given inputs.
1794   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1795                                            bool OutlineFromLinkOnceODRs) const {
1796     llvm_unreachable("Target didn't implement "
1797                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1798   }
1799 
1800   /// Return true if the function should be outlined from by default.
1801   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
1802     return false;
1803   }
1804 
1805   /// Produce the expression describing the \p MI loading a value into
1806   /// the physical register \p Reg. This hook should only be used with
1807   /// \p MIs belonging to VReg-less functions.
1808   virtual Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI,
1809                                                          Register Reg) const;
1810 
1811   /// Return MIR formatter to format/parse MIR operands.  Target can override
1812   /// this virtual function and return target specific MIR formatter.
1813   virtual const MIRFormatter *getMIRFormatter() const {
1814     if (!Formatter.get())
1815       Formatter = std::make_unique<MIRFormatter>();
1816     return Formatter.get();
1817   }
1818 
1819 private:
1820   mutable std::unique_ptr<MIRFormatter> Formatter;
1821   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1822   unsigned CatchRetOpcode;
1823   unsigned ReturnOpcode;
1824 };
1825 
1826 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1827 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1828   using RegInfo = DenseMapInfo<unsigned>;
1829 
1830   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1831     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1832                                           RegInfo::getEmptyKey());
1833   }
1834 
1835   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1836     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1837                                           RegInfo::getTombstoneKey());
1838   }
1839 
1840   /// Reuse getHashValue implementation from
1841   /// std::pair<unsigned, unsigned>.
1842   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1843     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
1844     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1845   }
1846 
1847   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1848                       const TargetInstrInfo::RegSubRegPair &RHS) {
1849     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1850            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1851   }
1852 };
1853 
1854 } // end namespace llvm
1855 
1856 #endif // LLVM_TARGET_TARGETINSTRINFO_H
1857