1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes an abstract interface used to get information about a
10 // target machines register file.  This information is used for a variety of
11 // purposed, especially register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MachineValueType.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Printable.h"
30 #include <cassert>
31 #include <cstdint>
32 
33 namespace llvm {
34 
35 class BitVector;
36 class DIExpression;
37 class LiveRegMatrix;
38 class MachineFunction;
39 class MachineInstr;
40 class RegScavenger;
41 class VirtRegMap;
42 class LiveIntervals;
43 class LiveInterval;
44 
45 class TargetRegisterClass {
46 public:
47   using iterator = const MCPhysReg *;
48   using const_iterator = const MCPhysReg *;
49   using sc_iterator = const TargetRegisterClass* const *;
50 
51   // Instance variables filled by tablegen, do not use!
52   const MCRegisterClass *MC;
53   const uint32_t *SubClassMask;
54   const uint16_t *SuperRegIndices;
55   const LaneBitmask LaneMask;
56   /// Classes with a higher priority value are assigned first by register
57   /// allocators using a greedy heuristic. The value is in the range [0,31].
58   const uint8_t AllocationPriority;
59 
60   // Change allocation priority heuristic used by greedy.
61   const bool GlobalPriority;
62 
63   /// Configurable target specific flags.
64   const uint8_t TSFlags;
65   /// Whether the class supports two (or more) disjunct subregister indices.
66   const bool HasDisjunctSubRegs;
67   /// Whether a combination of subregisters can cover every register in the
68   /// class. See also the CoveredBySubRegs description in Target.td.
69   const bool CoveredBySubRegs;
70   const sc_iterator SuperClasses;
71   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
72 
73   /// Return the register class ID number.
74   unsigned getID() const { return MC->getID(); }
75 
76   /// begin/end - Return all of the registers in this class.
77   ///
78   iterator       begin() const { return MC->begin(); }
79   iterator         end() const { return MC->end(); }
80 
81   /// Return the number of registers in this class.
82   unsigned getNumRegs() const { return MC->getNumRegs(); }
83 
84   iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
85   getRegisters() const {
86     return make_range(MC->begin(), MC->end());
87   }
88 
89   /// Return the specified register in the class.
90   MCRegister getRegister(unsigned i) const {
91     return MC->getRegister(i);
92   }
93 
94   /// Return true if the specified register is included in this register class.
95   /// This does not include virtual registers.
96   bool contains(Register Reg) const {
97     /// FIXME: Historically this function has returned false when given vregs
98     ///        but it should probably only receive physical registers
99     if (!Reg.isPhysical())
100       return false;
101     return MC->contains(Reg.asMCReg());
102   }
103 
104   /// Return true if both registers are in this class.
105   bool contains(Register Reg1, Register Reg2) const {
106     /// FIXME: Historically this function has returned false when given a vregs
107     ///        but it should probably only receive physical registers
108     if (!Reg1.isPhysical() || !Reg2.isPhysical())
109       return false;
110     return MC->contains(Reg1.asMCReg(), Reg2.asMCReg());
111   }
112 
113   /// Return the cost of copying a value between two registers in this class.
114   /// A negative number means the register class is very expensive
115   /// to copy e.g. status flag register classes.
116   int getCopyCost() const { return MC->getCopyCost(); }
117 
118   /// Return true if this register class may be used to create virtual
119   /// registers.
120   bool isAllocatable() const { return MC->isAllocatable(); }
121 
122   /// Return true if the specified TargetRegisterClass
123   /// is a proper sub-class of this TargetRegisterClass.
124   bool hasSubClass(const TargetRegisterClass *RC) const {
125     return RC != this && hasSubClassEq(RC);
126   }
127 
128   /// Returns true if RC is a sub-class of or equal to this class.
129   bool hasSubClassEq(const TargetRegisterClass *RC) const {
130     unsigned ID = RC->getID();
131     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
132   }
133 
134   /// Return true if the specified TargetRegisterClass is a
135   /// proper super-class of this TargetRegisterClass.
136   bool hasSuperClass(const TargetRegisterClass *RC) const {
137     return RC->hasSubClass(this);
138   }
139 
140   /// Returns true if RC is a super-class of or equal to this class.
141   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
142     return RC->hasSubClassEq(this);
143   }
144 
145   /// Returns a bit vector of subclasses, including this one.
146   /// The vector is indexed by class IDs.
147   ///
148   /// To use it, consider the returned array as a chunk of memory that
149   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
150   /// contains a bitset of the ID of the subclasses in big-endian style.
151 
152   /// I.e., the representation of the memory from left to right at the
153   /// bit level looks like:
154   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
155   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
156   /// Where the number represents the class ID and XXX bits that
157   /// should be ignored.
158   ///
159   /// See the implementation of hasSubClassEq for an example of how it
160   /// can be used.
161   const uint32_t *getSubClassMask() const {
162     return SubClassMask;
163   }
164 
165   /// Returns a 0-terminated list of sub-register indices that project some
166   /// super-register class into this register class. The list has an entry for
167   /// each Idx such that:
168   ///
169   ///   There exists SuperRC where:
170   ///     For all Reg in SuperRC:
171   ///       this->contains(Reg:Idx)
172   const uint16_t *getSuperRegIndices() const {
173     return SuperRegIndices;
174   }
175 
176   /// Returns a NULL-terminated list of super-classes.  The
177   /// classes are ordered by ID which is also a topological ordering from large
178   /// to small classes.  The list does NOT include the current class.
179   sc_iterator getSuperClasses() const {
180     return SuperClasses;
181   }
182 
183   /// Return true if this TargetRegisterClass is a subset
184   /// class of at least one other TargetRegisterClass.
185   bool isASubClass() const {
186     return SuperClasses[0] != nullptr;
187   }
188 
189   /// Returns the preferred order for allocating registers from this register
190   /// class in MF. The raw order comes directly from the .td file and may
191   /// include reserved registers that are not allocatable.
192   /// Register allocators should also make sure to allocate
193   /// callee-saved registers only after all the volatiles are used. The
194   /// RegisterClassInfo class provides filtered allocation orders with
195   /// callee-saved registers moved to the end.
196   ///
197   /// The MachineFunction argument can be used to tune the allocatable
198   /// registers based on the characteristics of the function, subtarget, or
199   /// other criteria.
200   ///
201   /// By default, this method returns all registers in the class.
202   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
203     return OrderFunc ? OrderFunc(MF) : ArrayRef(begin(), getNumRegs());
204   }
205 
206   /// Returns the combination of all lane masks of register in this class.
207   /// The lane masks of the registers are the combination of all lane masks
208   /// of their subregisters. Returns 1 if there are no subregisters.
209   LaneBitmask getLaneMask() const {
210     return LaneMask;
211   }
212 };
213 
214 /// Extra information, not in MCRegisterDesc, about registers.
215 /// These are used by codegen, not by MC.
216 struct TargetRegisterInfoDesc {
217   const uint8_t *CostPerUse; // Extra cost of instructions using register.
218   unsigned NumCosts; // Number of cost values associated with each register.
219   const bool
220       *InAllocatableClass; // Register belongs to an allocatable regclass.
221 };
222 
223 /// Each TargetRegisterClass has a per register weight, and weight
224 /// limit which must be less than the limits of its pressure sets.
225 struct RegClassWeight {
226   unsigned RegWeight;
227   unsigned WeightLimit;
228 };
229 
230 /// TargetRegisterInfo base class - We assume that the target defines a static
231 /// array of TargetRegisterDesc objects that represent all of the machine
232 /// registers that the target has.  As such, we simply have to track a pointer
233 /// to this array so that we can turn register number into a register
234 /// descriptor.
235 ///
236 class TargetRegisterInfo : public MCRegisterInfo {
237 public:
238   using regclass_iterator = const TargetRegisterClass * const *;
239   using vt_iterator = const MVT::SimpleValueType *;
240   struct RegClassInfo {
241     unsigned RegSize, SpillSize, SpillAlignment;
242     vt_iterator VTList;
243   };
244 private:
245   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
246   const char *const *SubRegIndexNames;        // Names of subreg indexes.
247   // Pointer to array of lane masks, one per sub-reg index.
248   const LaneBitmask *SubRegIndexLaneMasks;
249 
250   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
251   LaneBitmask CoveringLanes;
252   const RegClassInfo *const RCInfos;
253   unsigned HwMode;
254 
255 protected:
256   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
257                      regclass_iterator RCB,
258                      regclass_iterator RCE,
259                      const char *const *SRINames,
260                      const LaneBitmask *SRILaneMasks,
261                      LaneBitmask CoveringLanes,
262                      const RegClassInfo *const RCIs,
263                      unsigned Mode = 0);
264   virtual ~TargetRegisterInfo();
265 
266 public:
267   // Register numbers can represent physical registers, virtual registers, and
268   // sometimes stack slots. The unsigned values are divided into these ranges:
269   //
270   //   0           Not a register, can be used as a sentinel.
271   //   [1;2^30)    Physical registers assigned by TableGen.
272   //   [2^30;2^31) Stack slots. (Rarely used.)
273   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
274   //
275   // Further sentinels can be allocated from the small negative integers.
276   // DenseMapInfo<unsigned> uses -1u and -2u.
277 
278   /// Return the size in bits of a register from class RC.
279   unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
280     return getRegClassInfo(RC).RegSize;
281   }
282 
283   /// Return the size in bytes of the stack slot allocated to hold a spilled
284   /// copy of a register from class RC.
285   unsigned getSpillSize(const TargetRegisterClass &RC) const {
286     return getRegClassInfo(RC).SpillSize / 8;
287   }
288 
289   /// Return the minimum required alignment in bytes for a spill slot for
290   /// a register of this class.
291   Align getSpillAlign(const TargetRegisterClass &RC) const {
292     return Align(getRegClassInfo(RC).SpillAlignment / 8);
293   }
294 
295   /// Return true if the given TargetRegisterClass has the ValueType T.
296   bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
297     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
298       if (MVT(*I) == T)
299         return true;
300     return false;
301   }
302 
303   /// Return true if the given TargetRegisterClass is compatible with LLT T.
304   bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const {
305     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) {
306       MVT VT(*I);
307       if (VT == MVT::Untyped)
308         return true;
309 
310       if (LLT(VT) == T)
311         return true;
312     }
313     return false;
314   }
315 
316   /// Loop over all of the value types that can be represented by values
317   /// in the given register class.
318   vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
319     return getRegClassInfo(RC).VTList;
320   }
321 
322   vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
323     vt_iterator I = legalclasstypes_begin(RC);
324     while (*I != MVT::Other)
325       ++I;
326     return I;
327   }
328 
329   /// Returns the Register Class of a physical register of the given type,
330   /// picking the most sub register class of the right type that contains this
331   /// physreg.
332   const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg,
333                                                     MVT VT = MVT::Other) const;
334 
335   /// Returns the Register Class of a physical register of the given type,
336   /// picking the most sub register class of the right type that contains this
337   /// physreg. If there is no register class compatible with the given type,
338   /// returns nullptr.
339   const TargetRegisterClass *getMinimalPhysRegClassLLT(MCRegister Reg,
340                                                        LLT Ty = LLT()) const;
341 
342   /// Return the maximal subclass of the given register class that is
343   /// allocatable or NULL.
344   const TargetRegisterClass *
345     getAllocatableClass(const TargetRegisterClass *RC) const;
346 
347   /// Returns a bitset indexed by register number indicating if a register is
348   /// allocatable or not. If a register class is specified, returns the subset
349   /// for the class.
350   BitVector getAllocatableSet(const MachineFunction &MF,
351                               const TargetRegisterClass *RC = nullptr) const;
352 
353   /// Get a list of cost values for all registers that correspond to the index
354   /// returned by RegisterCostTableIndex.
355   ArrayRef<uint8_t> getRegisterCosts(const MachineFunction &MF) const {
356     unsigned Idx = getRegisterCostTableIndex(MF);
357     unsigned NumRegs = getNumRegs();
358     assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds");
359 
360     return ArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs);
361   }
362 
363   /// Return true if the register is in the allocation of any register class.
364   bool isInAllocatableClass(MCRegister RegNo) const {
365     return InfoDesc->InAllocatableClass[RegNo];
366   }
367 
368   /// Return the human-readable symbolic target-specific
369   /// name for the specified SubRegIndex.
370   const char *getSubRegIndexName(unsigned SubIdx) const {
371     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
372            "This is not a subregister index");
373     return SubRegIndexNames[SubIdx-1];
374   }
375 
376   /// Return a bitmask representing the parts of a register that are covered by
377   /// SubIdx \see LaneBitmask.
378   ///
379   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
380   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
381     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
382     return SubRegIndexLaneMasks[SubIdx];
383   }
384 
385   /// Try to find one or more subregister indexes to cover \p LaneMask.
386   ///
387   /// If this is possible, returns true and appends the best matching set of
388   /// indexes to \p Indexes. If this is not possible, returns false.
389   bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI,
390                                 const TargetRegisterClass *RC,
391                                 LaneBitmask LaneMask,
392                                 SmallVectorImpl<unsigned> &Indexes) const;
393 
394   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
395   /// used to determine if sub-registers overlap - they can't be used to
396   /// determine if a set of sub-registers completely cover another
397   /// sub-register.
398   ///
399   /// The X86 general purpose registers have two lanes corresponding to the
400   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
401   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
402   /// sub_32bit sub-register.
403   ///
404   /// On the other hand, the ARM NEON lanes fully cover their registers: The
405   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
406   /// This is related to the CoveredBySubRegs property on register definitions.
407   ///
408   /// This function returns a bit mask of lanes that completely cover their
409   /// sub-registers. More precisely, given:
410   ///
411   ///   Covering = getCoveringLanes();
412   ///   MaskA = getSubRegIndexLaneMask(SubA);
413   ///   MaskB = getSubRegIndexLaneMask(SubB);
414   ///
415   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
416   /// SubB.
417   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
418 
419   /// Returns true if the two registers are equal or alias each other.
420   /// The registers may be virtual registers.
421   bool regsOverlap(Register RegA, Register RegB) const {
422     if (RegA == RegB)
423       return true;
424     if (RegA.isPhysical() && RegB.isPhysical())
425       return MCRegisterInfo::regsOverlap(RegA.asMCReg(), RegB.asMCReg());
426     return false;
427   }
428 
429   /// Returns true if Reg contains RegUnit.
430   bool hasRegUnit(MCRegister Reg, Register RegUnit) const {
431     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
432       if (Register(*Units) == RegUnit)
433         return true;
434     return false;
435   }
436 
437   /// Returns the original SrcReg unless it is the target of a copy-like
438   /// operation, in which case we chain backwards through all such operations
439   /// to the ultimate source register.  If a physical register is encountered,
440   /// we stop the search.
441   virtual Register lookThruCopyLike(Register SrcReg,
442                                     const MachineRegisterInfo *MRI) const;
443 
444   /// Find the original SrcReg unless it is the target of a copy-like operation,
445   /// in which case we chain backwards through all such operations to the
446   /// ultimate source register. If a physical register is encountered, we stop
447   /// the search.
448   /// Return the original SrcReg if all the definitions in the chain only have
449   /// one user and not a physical register.
450   virtual Register
451   lookThruSingleUseCopyChain(Register SrcReg,
452                              const MachineRegisterInfo *MRI) const;
453 
454   /// Return a null-terminated list of all of the callee-saved registers on
455   /// this target. The register should be in the order of desired callee-save
456   /// stack frame offset. The first register is closest to the incoming stack
457   /// pointer if stack grows down, and vice versa.
458   /// Notice: This function does not take into account disabled CSRs.
459   ///         In most cases you will want to use instead the function
460   ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
461   virtual const MCPhysReg*
462   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
463 
464   /// Return a mask of call-preserved registers for the given calling convention
465   /// on the current function. The mask should include all call-preserved
466   /// aliases. This is used by the register allocator to determine which
467   /// registers can be live across a call.
468   ///
469   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
470   /// A set bit indicates that all bits of the corresponding register are
471   /// preserved across the function call.  The bit mask is expected to be
472   /// sub-register complete, i.e. if A is preserved, so are all its
473   /// sub-registers.
474   ///
475   /// Bits are numbered from the LSB, so the bit for physical register Reg can
476   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
477   ///
478   /// A NULL pointer means that no register mask will be used, and call
479   /// instructions should use implicit-def operands to indicate call clobbered
480   /// registers.
481   ///
482   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
483                                                CallingConv::ID) const {
484     // The default mask clobbers everything.  All targets should override.
485     return nullptr;
486   }
487 
488   /// Return a register mask for the registers preserved by the unwinder,
489   /// or nullptr if no custom mask is needed.
490   virtual const uint32_t *
491   getCustomEHPadPreservedMask(const MachineFunction &MF) const {
492     return nullptr;
493   }
494 
495   /// Return a register mask that clobbers everything.
496   virtual const uint32_t *getNoPreservedMask() const {
497     llvm_unreachable("target does not provide no preserved mask");
498   }
499 
500   /// Return a list of all of the registers which are clobbered "inside" a call
501   /// to the given function. For example, these might be needed for PLT
502   /// sequences of long-branch veneers.
503   virtual ArrayRef<MCPhysReg>
504   getIntraCallClobberedRegs(const MachineFunction *MF) const {
505     return {};
506   }
507 
508   /// Return true if all bits that are set in mask \p mask0 are also set in
509   /// \p mask1.
510   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
511 
512   /// Return all the call-preserved register masks defined for this target.
513   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
514   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
515 
516   /// Returns a bitset indexed by physical register number indicating if a
517   /// register is a special register that has particular uses and should be
518   /// considered unavailable at all times, e.g. stack pointer, return address.
519   /// A reserved register:
520   /// - is not allocatable
521   /// - is considered always live
522   /// - is ignored by liveness tracking
523   /// It is often necessary to reserve the super registers of a reserved
524   /// register as well, to avoid them getting allocated indirectly. You may use
525   /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
526   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
527 
528   /// Returns either a string explaining why the given register is reserved for
529   /// this function, or an empty optional if no explanation has been written.
530   /// The absence of an explanation does not mean that the register is not
531   /// reserved (meaning, you should check that PhysReg is in fact reserved
532   /// before calling this).
533   virtual std::optional<std::string>
534   explainReservedReg(const MachineFunction &MF, MCRegister PhysReg) const {
535     return {};
536   }
537 
538   /// Returns false if we can't guarantee that Physreg, specified as an IR asm
539   /// clobber constraint, will be preserved across the statement.
540   virtual bool isAsmClobberable(const MachineFunction &MF,
541                                 MCRegister PhysReg) const {
542     return true;
543   }
544 
545   /// Returns true if PhysReg cannot be written to in inline asm statements.
546   virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF,
547                                       unsigned PhysReg) const {
548     return false;
549   }
550 
551   /// Returns true if PhysReg is unallocatable and constant throughout the
552   /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
553   virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; }
554 
555   /// Returns true if the register class is considered divergent.
556   virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
557     return false;
558   }
559 
560   /// Physical registers that may be modified within a function but are
561   /// guaranteed to be restored before any uses. This is useful for targets that
562   /// have call sequences where a GOT register may be updated by the caller
563   /// prior to a call and is guaranteed to be restored (also by the caller)
564   /// after the call.
565   virtual bool isCallerPreservedPhysReg(MCRegister PhysReg,
566                                         const MachineFunction &MF) const {
567     return false;
568   }
569 
570   /// This is a wrapper around getCallPreservedMask().
571   /// Return true if the register is preserved after the call.
572   virtual bool isCalleeSavedPhysReg(MCRegister PhysReg,
573                                     const MachineFunction &MF) const;
574 
575   /// Returns true if PhysReg can be used as an argument to a function.
576   virtual bool isArgumentRegister(const MachineFunction &MF,
577                                   MCRegister PhysReg) const {
578     return false;
579   }
580 
581   /// Returns true if PhysReg is a fixed register.
582   virtual bool isFixedRegister(const MachineFunction &MF,
583                                MCRegister PhysReg) const {
584     return false;
585   }
586 
587   /// Returns true if PhysReg is a general purpose register.
588   virtual bool isGeneralPurposeRegister(const MachineFunction &MF,
589                                         MCRegister PhysReg) const {
590     return false;
591   }
592 
593   /// Prior to adding the live-out mask to a stackmap or patchpoint
594   /// instruction, provide the target the opportunity to adjust it (mainly to
595   /// remove pseudo-registers that should be ignored).
596   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
597 
598   /// Return a super-register of the specified register
599   /// Reg so its sub-register of index SubIdx is Reg.
600   MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx,
601                                  const TargetRegisterClass *RC) const {
602     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
603   }
604 
605   /// Return a subclass of the specified register
606   /// class A so that each register in it has a sub-register of the
607   /// specified sub-register index which is in the specified register class B.
608   ///
609   /// TableGen will synthesize missing A sub-classes.
610   virtual const TargetRegisterClass *
611   getMatchingSuperRegClass(const TargetRegisterClass *A,
612                            const TargetRegisterClass *B, unsigned Idx) const;
613 
614   // For a copy-like instruction that defines a register of class DefRC with
615   // subreg index DefSubReg, reading from another source with class SrcRC and
616   // subregister SrcSubReg return true if this is a preferable copy
617   // instruction or an earlier use should be used.
618   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
619                                     unsigned DefSubReg,
620                                     const TargetRegisterClass *SrcRC,
621                                     unsigned SrcSubReg) const;
622 
623   /// Returns the largest legal sub-class of RC that
624   /// supports the sub-register index Idx.
625   /// If no such sub-class exists, return NULL.
626   /// If all registers in RC already have an Idx sub-register, return RC.
627   ///
628   /// TableGen generates a version of this function that is good enough in most
629   /// cases.  Targets can override if they have constraints that TableGen
630   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
631   /// supported by the full GR32 register class in 64-bit mode, but only by the
632   /// GR32_ABCD regiister class in 32-bit mode.
633   ///
634   /// TableGen will synthesize missing RC sub-classes.
635   virtual const TargetRegisterClass *
636   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
637     assert(Idx == 0 && "Target has no sub-registers");
638     return RC;
639   }
640 
641   /// Return a register class that can be used for a subregister copy from/into
642   /// \p SuperRC at \p SubRegIdx.
643   virtual const TargetRegisterClass *
644   getSubRegisterClass(const TargetRegisterClass *SuperRC,
645                       unsigned SubRegIdx) const {
646     return nullptr;
647   }
648 
649   /// Return the subregister index you get from composing
650   /// two subregister indices.
651   ///
652   /// The special null sub-register index composes as the identity.
653   ///
654   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
655   /// returns c. Note that composeSubRegIndices does not tell you about illegal
656   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
657   /// b, composeSubRegIndices doesn't tell you.
658   ///
659   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
660   /// ssub_0:S0 - ssub_3:S3 subregs.
661   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
662   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
663     if (!a) return b;
664     if (!b) return a;
665     return composeSubRegIndicesImpl(a, b);
666   }
667 
668   /// Transforms a LaneMask computed for one subregister to the lanemask that
669   /// would have been computed when composing the subsubregisters with IdxA
670   /// first. @sa composeSubRegIndices()
671   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
672                                          LaneBitmask Mask) const {
673     if (!IdxA)
674       return Mask;
675     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
676   }
677 
678   /// Transform a lanemask given for a virtual register to the corresponding
679   /// lanemask before using subregister with index \p IdxA.
680   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
681   /// valie lane mask (no invalid bits set) the following holds:
682   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
683   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
684   /// => X1 == Mask
685   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
686                                                 LaneBitmask LaneMask) const {
687     if (!IdxA)
688       return LaneMask;
689     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
690   }
691 
692   /// Debugging helper: dump register in human readable form to dbgs() stream.
693   static void dumpReg(Register Reg, unsigned SubRegIndex = 0,
694                       const TargetRegisterInfo *TRI = nullptr);
695 
696   /// Return target defined base register class for a physical register.
697   /// This is the register class with the lowest BaseClassOrder containing the
698   /// register.
699   /// Will be nullptr if the register is not in any base register class.
700   virtual const TargetRegisterClass *getPhysRegBaseClass(MCRegister Reg) const {
701     return nullptr;
702   }
703 
704 protected:
705   /// Overridden by TableGen in targets that have sub-registers.
706   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
707     llvm_unreachable("Target has no sub-registers");
708   }
709 
710   /// Overridden by TableGen in targets that have sub-registers.
711   virtual LaneBitmask
712   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
713     llvm_unreachable("Target has no sub-registers");
714   }
715 
716   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
717                                                             LaneBitmask) const {
718     llvm_unreachable("Target has no sub-registers");
719   }
720 
721   /// Return the register cost table index. This implementation is sufficient
722   /// for most architectures and can be overriden by targets in case there are
723   /// multiple cost values associated with each register.
724   virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const {
725     return 0;
726   }
727 
728 public:
729   /// Find a common super-register class if it exists.
730   ///
731   /// Find a register class, SuperRC and two sub-register indices, PreA and
732   /// PreB, such that:
733   ///
734   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
735   ///
736   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
737   ///
738   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
739   ///
740   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
741   /// requirements, and there is no register class with a smaller spill size
742   /// that satisfies the requirements.
743   ///
744   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
745   ///
746   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
747   /// that case, the returned register class will be a sub-class of the
748   /// corresponding argument register class.
749   ///
750   /// The function returns NULL if no register class can be found.
751   const TargetRegisterClass*
752   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
753                          const TargetRegisterClass *RCB, unsigned SubB,
754                          unsigned &PreA, unsigned &PreB) const;
755 
756   //===--------------------------------------------------------------------===//
757   // Register Class Information
758   //
759 protected:
760   const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
761     return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
762   }
763 
764 public:
765   /// Register class iterators
766   regclass_iterator regclass_begin() const { return RegClassBegin; }
767   regclass_iterator regclass_end() const { return RegClassEnd; }
768   iterator_range<regclass_iterator> regclasses() const {
769     return make_range(regclass_begin(), regclass_end());
770   }
771 
772   unsigned getNumRegClasses() const {
773     return (unsigned)(regclass_end()-regclass_begin());
774   }
775 
776   /// Returns the register class associated with the enumeration value.
777   /// See class MCOperandInfo.
778   const TargetRegisterClass *getRegClass(unsigned i) const {
779     assert(i < getNumRegClasses() && "Register Class ID out of range");
780     return RegClassBegin[i];
781   }
782 
783   /// Returns the name of the register class.
784   const char *getRegClassName(const TargetRegisterClass *Class) const {
785     return MCRegisterInfo::getRegClassName(Class->MC);
786   }
787 
788   /// Find the largest common subclass of A and B.
789   /// Return NULL if there is no common subclass.
790   const TargetRegisterClass *
791   getCommonSubClass(const TargetRegisterClass *A,
792                     const TargetRegisterClass *B) const;
793 
794   /// Returns a TargetRegisterClass used for pointer values.
795   /// If a target supports multiple different pointer register classes,
796   /// kind specifies which one is indicated.
797   virtual const TargetRegisterClass *
798   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
799     llvm_unreachable("Target didn't implement getPointerRegClass!");
800   }
801 
802   /// Returns a legal register class to copy a register in the specified class
803   /// to or from. If it is possible to copy the register directly without using
804   /// a cross register class copy, return the specified RC. Returns NULL if it
805   /// is not possible to copy between two registers of the specified class.
806   virtual const TargetRegisterClass *
807   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
808     return RC;
809   }
810 
811   /// Returns the largest super class of RC that is legal to use in the current
812   /// sub-target and has the same spill size.
813   /// The returned register class can be used to create virtual registers which
814   /// means that all its registers can be copied and spilled.
815   virtual const TargetRegisterClass *
816   getLargestLegalSuperClass(const TargetRegisterClass *RC,
817                             const MachineFunction &) const {
818     /// The default implementation is very conservative and doesn't allow the
819     /// register allocator to inflate register classes.
820     return RC;
821   }
822 
823   /// Return the register pressure "high water mark" for the specific register
824   /// class. The scheduler is in high register pressure mode (for the specific
825   /// register class) if it goes over the limit.
826   ///
827   /// Note: this is the old register pressure model that relies on a manually
828   /// specified representative register class per value type.
829   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
830                                        MachineFunction &MF) const {
831     return 0;
832   }
833 
834   /// Return a heuristic for the machine scheduler to compare the profitability
835   /// of increasing one register pressure set versus another.  The scheduler
836   /// will prefer increasing the register pressure of the set which returns
837   /// the largest value for this function.
838   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
839                                           unsigned PSetID) const {
840     return PSetID;
841   }
842 
843   /// Get the weight in units of pressure for this register class.
844   virtual const RegClassWeight &getRegClassWeight(
845     const TargetRegisterClass *RC) const = 0;
846 
847   /// Returns size in bits of a phys/virtual/generic register.
848   unsigned getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const;
849 
850   /// Get the weight in units of pressure for this register unit.
851   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
852 
853   /// Get the number of dimensions of register pressure.
854   virtual unsigned getNumRegPressureSets() const = 0;
855 
856   /// Get the name of this register unit pressure set.
857   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
858 
859   /// Get the register unit pressure limit for this dimension.
860   /// This limit must be adjusted dynamically for reserved registers.
861   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
862                                           unsigned Idx) const = 0;
863 
864   /// Get the dimensions of register pressure impacted by this register class.
865   /// Returns a -1 terminated array of pressure set IDs.
866   virtual const int *getRegClassPressureSets(
867     const TargetRegisterClass *RC) const = 0;
868 
869   /// Get the dimensions of register pressure impacted by this register unit.
870   /// Returns a -1 terminated array of pressure set IDs.
871   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
872 
873   /// Get a list of 'hint' registers that the register allocator should try
874   /// first when allocating a physical register for the virtual register
875   /// VirtReg. These registers are effectively moved to the front of the
876   /// allocation order. If true is returned, regalloc will try to only use
877   /// hints to the greatest extent possible even if it means spilling.
878   ///
879   /// The Order argument is the allocation order for VirtReg's register class
880   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
881   /// come from Order, and they must not be reserved.
882   ///
883   /// The default implementation of this function will only add target
884   /// independent register allocation hints. Targets that override this
885   /// function should typically call this default implementation as well and
886   /// expect to see generic copy hints added.
887   virtual bool
888   getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order,
889                         SmallVectorImpl<MCPhysReg> &Hints,
890                         const MachineFunction &MF,
891                         const VirtRegMap *VRM = nullptr,
892                         const LiveRegMatrix *Matrix = nullptr) const;
893 
894   /// A callback to allow target a chance to update register allocation hints
895   /// when a register is "changed" (e.g. coalesced) to another register.
896   /// e.g. On ARM, some virtual registers should target register pairs,
897   /// if one of pair is coalesced to another register, the allocation hint of
898   /// the other half of the pair should be changed to point to the new register.
899   virtual void updateRegAllocHint(Register Reg, Register NewReg,
900                                   MachineFunction &MF) const {
901     // Do nothing.
902   }
903 
904   /// Allow the target to reverse allocation order of local live ranges. This
905   /// will generally allocate shorter local live ranges first. For targets with
906   /// many registers, this could reduce regalloc compile time by a large
907   /// factor. It is disabled by default for three reasons:
908   /// (1) Top-down allocation is simpler and easier to debug for targets that
909   /// don't benefit from reversing the order.
910   /// (2) Bottom-up allocation could result in poor evicition decisions on some
911   /// targets affecting the performance of compiled code.
912   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
913   virtual bool reverseLocalAssignment() const { return false; }
914 
915   /// Allow the target to override the cost of using a callee-saved register for
916   /// the first time. Default value of 0 means we will use a callee-saved
917   /// register if it is available.
918   virtual unsigned getCSRFirstUseCost() const { return 0; }
919 
920   /// Returns true if the target requires (and can make use of) the register
921   /// scavenger.
922   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
923     return false;
924   }
925 
926   /// Returns true if the target wants to use frame pointer based accesses to
927   /// spill to the scavenger emergency spill slot.
928   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
929     return true;
930   }
931 
932   /// Returns true if the target requires post PEI scavenging of registers for
933   /// materializing frame index constants.
934   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
935     return false;
936   }
937 
938   /// Returns true if the target requires using the RegScavenger directly for
939   /// frame elimination despite using requiresFrameIndexScavenging.
940   virtual bool requiresFrameIndexReplacementScavenging(
941       const MachineFunction &MF) const {
942     return false;
943   }
944 
945   /// Returns true if the target wants the LocalStackAllocation pass to be run
946   /// and virtual base registers used for more efficient stack access.
947   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
948     return false;
949   }
950 
951   /// Return true if target has reserved a spill slot in the stack frame of
952   /// the given function for the specified register. e.g. On x86, if the frame
953   /// register is required, the first fixed stack object is reserved as its
954   /// spill slot. This tells PEI not to create a new stack frame
955   /// object for the given register. It should be called only after
956   /// determineCalleeSaves().
957   virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg,
958                                     int &FrameIdx) const {
959     return false;
960   }
961 
962   /// Returns true if the live-ins should be tracked after register allocation.
963   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
964     return true;
965   }
966 
967   /// True if the stack can be realigned for the target.
968   virtual bool canRealignStack(const MachineFunction &MF) const;
969 
970   /// True if storage within the function requires the stack pointer to be
971   /// aligned more than the normal calling convention calls for.
972   virtual bool shouldRealignStack(const MachineFunction &MF) const;
973 
974   /// True if stack realignment is required and still possible.
975   bool hasStackRealignment(const MachineFunction &MF) const {
976     return shouldRealignStack(MF) && canRealignStack(MF);
977   }
978 
979   /// Get the offset from the referenced frame index in the instruction,
980   /// if there is one.
981   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
982                                            int Idx) const {
983     return 0;
984   }
985 
986   /// Returns true if the instruction's frame index reference would be better
987   /// served by a base register other than FP or SP.
988   /// Used by LocalStackFrameAllocation to determine which frame index
989   /// references it should create new base registers for.
990   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
991     return false;
992   }
993 
994   /// Insert defining instruction(s) for a pointer to FrameIdx before
995   /// insertion point I. Return materialized frame pointer.
996   virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB,
997                                                 int FrameIdx,
998                                                 int64_t Offset) const {
999     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
1000                      "target");
1001   }
1002 
1003   /// Resolve a frame index operand of an instruction
1004   /// to reference the indicated base register plus offset instead.
1005   virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1006                                  int64_t Offset) const {
1007     llvm_unreachable("resolveFrameIndex does not exist on this target");
1008   }
1009 
1010   /// Determine whether a given base register plus offset immediate is
1011   /// encodable to resolve a frame index.
1012   virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg,
1013                                   int64_t Offset) const {
1014     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
1015   }
1016 
1017   /// Gets the DWARF expression opcodes for \p Offset.
1018   virtual void getOffsetOpcodes(const StackOffset &Offset,
1019                                 SmallVectorImpl<uint64_t> &Ops) const;
1020 
1021   /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr.
1022   DIExpression *
1023   prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags,
1024                           const StackOffset &Offset) const;
1025 
1026   /// Spill the register so it can be used by the register scavenger.
1027   /// Return true if the register was spilled, false otherwise.
1028   /// If this function does not spill the register, the scavenger
1029   /// will instead spill it to the emergency spill slot.
1030   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
1031                                      MachineBasicBlock::iterator I,
1032                                      MachineBasicBlock::iterator &UseMI,
1033                                      const TargetRegisterClass *RC,
1034                                      Register Reg) const {
1035     return false;
1036   }
1037 
1038   /// Process frame indices in reverse block order. This changes the behavior of
1039   /// the RegScavenger passed to eliminateFrameIndex. If this is true targets
1040   /// should scavengeRegisterBackwards in eliminateFrameIndex. New targets
1041   /// should prefer reverse scavenging behavior.
1042   virtual bool supportsBackwardScavenger() const { return false; }
1043 
1044   /// This method must be overriden to eliminate abstract frame indices from
1045   /// instructions which may use them. The instruction referenced by the
1046   /// iterator contains an MO_FrameIndex operand which must be eliminated by
1047   /// this method. This method may modify or replace the specified instruction,
1048   /// as long as it keeps the iterator pointing at the finished product.
1049   /// SPAdj is the SP adjustment due to call frame setup instruction.
1050   /// FIOperandNum is the FI operand number.
1051   /// Returns true if the current instruction was removed and the iterator
1052   /// is not longer valid
1053   virtual bool eliminateFrameIndex(MachineBasicBlock::iterator MI,
1054                                    int SPAdj, unsigned FIOperandNum,
1055                                    RegScavenger *RS = nullptr) const = 0;
1056 
1057   /// Return the assembly name for \p Reg.
1058   virtual StringRef getRegAsmName(MCRegister Reg) const {
1059     // FIXME: We are assuming that the assembly name is equal to the TableGen
1060     // name converted to lower case
1061     //
1062     // The TableGen name is the name of the definition for this register in the
1063     // target's tablegen files.  For example, the TableGen name of
1064     // def EAX : Register <...>; is "EAX"
1065     return StringRef(getName(Reg));
1066   }
1067 
1068   //===--------------------------------------------------------------------===//
1069   /// Subtarget Hooks
1070 
1071   /// SrcRC and DstRC will be morphed into NewRC if this returns true.
1072   virtual bool shouldCoalesce(MachineInstr *MI,
1073                               const TargetRegisterClass *SrcRC,
1074                               unsigned SubReg,
1075                               const TargetRegisterClass *DstRC,
1076                               unsigned DstSubReg,
1077                               const TargetRegisterClass *NewRC,
1078                               LiveIntervals &LIS) const
1079   { return true; }
1080 
1081   /// Region split has a high compile time cost especially for large live range.
1082   /// This method is used to decide whether or not \p VirtReg should
1083   /// go through this expensive splitting heuristic.
1084   virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF,
1085                                            const LiveInterval &VirtReg) const;
1086 
1087   /// Last chance recoloring has a high compile time cost especially for
1088   /// targets with a lot of registers.
1089   /// This method is used to decide whether or not \p VirtReg should
1090   /// go through this expensive heuristic.
1091   /// When this target hook is hit, by returning false, there is a high
1092   /// chance that the register allocation will fail altogether (usually with
1093   /// "ran out of registers").
1094   /// That said, this error usually points to another problem in the
1095   /// optimization pipeline.
1096   virtual bool
1097   shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF,
1098                                           const LiveInterval &VirtReg) const {
1099     return true;
1100   }
1101 
1102   /// Deferred spilling delays the spill insertion of a virtual register
1103   /// after every other allocation. By deferring the spilling, it is
1104   /// sometimes possible to eliminate that spilling altogether because
1105   /// something else could have been eliminated, thus leaving some space
1106   /// for the virtual register.
1107   /// However, this comes with a compile time impact because it adds one
1108   /// more stage to the greedy register allocator.
1109   /// This method is used to decide whether \p VirtReg should use the deferred
1110   /// spilling stage instead of being spilled right away.
1111   virtual bool
1112   shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF,
1113                                       const LiveInterval &VirtReg) const {
1114     return false;
1115   }
1116 
1117   /// When prioritizing live ranges in register allocation, if this hook returns
1118   /// true then the AllocationPriority of the register class will be treated as
1119   /// more important than whether the range is local to a basic block or global.
1120   virtual bool
1121   regClassPriorityTrumpsGlobalness(const MachineFunction &MF) const {
1122     return false;
1123   }
1124 
1125   //===--------------------------------------------------------------------===//
1126   /// Debug information queries.
1127 
1128   /// getFrameRegister - This method should return the register used as a base
1129   /// for values allocated in the current stack frame.
1130   virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
1131 
1132   /// Mark a register and all its aliases as reserved in the given set.
1133   void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const;
1134 
1135   /// Returns true if for every register in the set all super registers are part
1136   /// of the set as well.
1137   bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
1138       ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
1139 
1140   virtual const TargetRegisterClass *
1141   getConstrainedRegClassForOperand(const MachineOperand &MO,
1142                                    const MachineRegisterInfo &MRI) const {
1143     return nullptr;
1144   }
1145 
1146   /// Returns the physical register number of sub-register "Index"
1147   /// for physical register RegNo. Return zero if the sub-register does not
1148   /// exist.
1149   inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const {
1150     return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx);
1151   }
1152 
1153   /// Some targets have non-allocatable registers that aren't technically part
1154   /// of the explicit callee saved register list, but should be handled as such
1155   /// in certain cases.
1156   virtual bool isNonallocatableRegisterCalleeSave(MCRegister Reg) const {
1157     return false;
1158   }
1159 };
1160 
1161 //===----------------------------------------------------------------------===//
1162 //                           SuperRegClassIterator
1163 //===----------------------------------------------------------------------===//
1164 //
1165 // Iterate over the possible super-registers for a given register class. The
1166 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
1167 // possible classes of super-registers.
1168 //
1169 // Each bit mask will have at least one set bit, and each set bit in Mask
1170 // corresponds to a SuperRC such that:
1171 //
1172 //   For all Reg in SuperRC: Reg:Idx is in RC.
1173 //
1174 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
1175 // also satisfies the above requirement, assuming Reg:0 == Reg.
1176 //
1177 class SuperRegClassIterator {
1178   const unsigned RCMaskWords;
1179   unsigned SubReg = 0;
1180   const uint16_t *Idx;
1181   const uint32_t *Mask;
1182 
1183 public:
1184   /// Create a SuperRegClassIterator that visits all the super-register classes
1185   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1186   SuperRegClassIterator(const TargetRegisterClass *RC,
1187                         const TargetRegisterInfo *TRI,
1188                         bool IncludeSelf = false)
1189     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1190       Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1191     if (!IncludeSelf)
1192       ++*this;
1193   }
1194 
1195   /// Returns true if this iterator is still pointing at a valid entry.
1196   bool isValid() const { return Idx; }
1197 
1198   /// Returns the current sub-register index.
1199   unsigned getSubReg() const { return SubReg; }
1200 
1201   /// Returns the bit mask of register classes that getSubReg() projects into
1202   /// RC.
1203   /// See TargetRegisterClass::getSubClassMask() for how to use it.
1204   const uint32_t *getMask() const { return Mask; }
1205 
1206   /// Advance iterator to the next entry.
1207   void operator++() {
1208     assert(isValid() && "Cannot move iterator past end.");
1209     Mask += RCMaskWords;
1210     SubReg = *Idx++;
1211     if (!SubReg)
1212       Idx = nullptr;
1213   }
1214 };
1215 
1216 //===----------------------------------------------------------------------===//
1217 //                           BitMaskClassIterator
1218 //===----------------------------------------------------------------------===//
1219 /// This class encapuslates the logic to iterate over bitmask returned by
1220 /// the various RegClass related APIs.
1221 /// E.g., this class can be used to iterate over the subclasses provided by
1222 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1223 class BitMaskClassIterator {
1224   /// Total number of register classes.
1225   const unsigned NumRegClasses;
1226   /// Base index of CurrentChunk.
1227   /// In other words, the number of bit we read to get at the
1228   /// beginning of that chunck.
1229   unsigned Base = 0;
1230   /// Adjust base index of CurrentChunk.
1231   /// Base index + how many bit we read within CurrentChunk.
1232   unsigned Idx = 0;
1233   /// Current register class ID.
1234   unsigned ID = 0;
1235   /// Mask we are iterating over.
1236   const uint32_t *Mask;
1237   /// Current chunk of the Mask we are traversing.
1238   uint32_t CurrentChunk;
1239 
1240   /// Move ID to the next set bit.
1241   void moveToNextID() {
1242     // If the current chunk of memory is empty, move to the next one,
1243     // while making sure we do not go pass the number of register
1244     // classes.
1245     while (!CurrentChunk) {
1246       // Move to the next chunk.
1247       Base += 32;
1248       if (Base >= NumRegClasses) {
1249         ID = NumRegClasses;
1250         return;
1251       }
1252       CurrentChunk = *++Mask;
1253       Idx = Base;
1254     }
1255     // Otherwise look for the first bit set from the right
1256     // (representation of the class ID is big endian).
1257     // See getSubClassMask for more details on the representation.
1258     unsigned Offset = countTrailingZeros(CurrentChunk);
1259     // Add the Offset to the adjusted base number of this chunk: Idx.
1260     // This is the ID of the register class.
1261     ID = Idx + Offset;
1262 
1263     // Consume the zeros, if any, and the bit we just read
1264     // so that we are at the right spot for the next call.
1265     // Do not do Offset + 1 because Offset may be 31 and 32
1266     // will be UB for the shift, though in that case we could
1267     // have make the chunk being equal to 0, but that would
1268     // have introduced a if statement.
1269     moveNBits(Offset);
1270     moveNBits(1);
1271   }
1272 
1273   /// Move \p NumBits Bits forward in CurrentChunk.
1274   void moveNBits(unsigned NumBits) {
1275     assert(NumBits < 32 && "Undefined behavior spotted!");
1276     // Consume the bit we read for the next call.
1277     CurrentChunk >>= NumBits;
1278     // Adjust the base for the chunk.
1279     Idx += NumBits;
1280   }
1281 
1282 public:
1283   /// Create a BitMaskClassIterator that visits all the register classes
1284   /// represented by \p Mask.
1285   ///
1286   /// \pre \p Mask != nullptr
1287   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1288       : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1289     // Move to the first ID.
1290     moveToNextID();
1291   }
1292 
1293   /// Returns true if this iterator is still pointing at a valid entry.
1294   bool isValid() const { return getID() != NumRegClasses; }
1295 
1296   /// Returns the current register class ID.
1297   unsigned getID() const { return ID; }
1298 
1299   /// Advance iterator to the next entry.
1300   void operator++() {
1301     assert(isValid() && "Cannot move iterator past end.");
1302     moveToNextID();
1303   }
1304 };
1305 
1306 // This is useful when building IndexedMaps keyed on virtual registers
1307 struct VirtReg2IndexFunctor {
1308   using argument_type = Register;
1309   unsigned operator()(Register Reg) const {
1310     return Register::virtReg2Index(Reg);
1311   }
1312 };
1313 
1314 /// Prints virtual and physical registers with or without a TRI instance.
1315 ///
1316 /// The format is:
1317 ///   %noreg          - NoRegister
1318 ///   %5              - a virtual register.
1319 ///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
1320 ///   %eax            - a physical register
1321 ///   %physreg17      - a physical register when no TRI instance given.
1322 ///
1323 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1324 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr,
1325                    unsigned SubIdx = 0,
1326                    const MachineRegisterInfo *MRI = nullptr);
1327 
1328 /// Create Printable object to print register units on a \ref raw_ostream.
1329 ///
1330 /// Register units are named after their root registers:
1331 ///
1332 ///   al      - Single root.
1333 ///   fp0~st7 - Dual roots.
1334 ///
1335 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1336 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1337 
1338 /// Create Printable object to print virtual registers and physical
1339 /// registers on a \ref raw_ostream.
1340 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1341 
1342 /// Create Printable object to print register classes or register banks
1343 /// on a \ref raw_ostream.
1344 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
1345                               const TargetRegisterInfo *TRI);
1346 
1347 } // end namespace llvm
1348 
1349 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H
1350