1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the abstract interface that implements execution support
10 // for LLVM.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
15 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16 
17 #include "llvm-c/ExecutionEngine.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ExecutionEngine/JITSymbol.h"
24 #include "llvm/ExecutionEngine/OrcV1Deprecation.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Object/Binary.h"
28 #include "llvm/Support/CBindingWrapping.h"
29 #include "llvm/Support/CodeGen.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/Mutex.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include <algorithm>
35 #include <cstdint>
36 #include <functional>
37 #include <map>
38 #include <memory>
39 #include <string>
40 #include <vector>
41 
42 namespace llvm {
43 
44 class Constant;
45 class Function;
46 struct GenericValue;
47 class GlobalValue;
48 class GlobalVariable;
49 class JITEventListener;
50 class MCJITMemoryManager;
51 class ObjectCache;
52 class RTDyldMemoryManager;
53 class Triple;
54 class Type;
55 
56 namespace object {
57 
58 class Archive;
59 class ObjectFile;
60 
61 } // end namespace object
62 
63 /// Helper class for helping synchronize access to the global address map
64 /// table.  Access to this class should be serialized under a mutex.
65 class ExecutionEngineState {
66 public:
67   using GlobalAddressMapTy = StringMap<uint64_t>;
68 
69 private:
70   /// GlobalAddressMap - A mapping between LLVM global symbol names values and
71   /// their actualized version...
72   GlobalAddressMapTy GlobalAddressMap;
73 
74   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
75   /// used to convert raw addresses into the LLVM global value that is emitted
76   /// at the address.  This map is not computed unless getGlobalValueAtAddress
77   /// is called at some point.
78   std::map<uint64_t, std::string> GlobalAddressReverseMap;
79 
80 public:
81   GlobalAddressMapTy &getGlobalAddressMap() {
82     return GlobalAddressMap;
83   }
84 
85   std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
86     return GlobalAddressReverseMap;
87   }
88 
89   /// Erase an entry from the mapping table.
90   ///
91   /// \returns The address that \p ToUnmap was happed to.
92   uint64_t RemoveMapping(StringRef Name);
93 };
94 
95 using FunctionCreator = std::function<void *(const std::string &)>;
96 
97 /// Abstract interface for implementation execution of LLVM modules,
98 /// designed to support both interpreter and just-in-time (JIT) compiler
99 /// implementations.
100 class ExecutionEngine {
101   /// The state object holding the global address mapping, which must be
102   /// accessed synchronously.
103   //
104   // FIXME: There is no particular need the entire map needs to be
105   // synchronized.  Wouldn't a reader-writer design be better here?
106   ExecutionEngineState EEState;
107 
108   /// The target data for the platform for which execution is being performed.
109   ///
110   /// Note: the DataLayout is LLVMContext specific because it has an
111   /// internal cache based on type pointers. It makes unsafe to reuse the
112   /// ExecutionEngine across context, we don't enforce this rule but undefined
113   /// behavior can occurs if the user tries to do it.
114   const DataLayout DL;
115 
116   /// Whether lazy JIT compilation is enabled.
117   bool CompilingLazily;
118 
119   /// Whether JIT compilation of external global variables is allowed.
120   bool GVCompilationDisabled;
121 
122   /// Whether the JIT should perform lookups of external symbols (e.g.,
123   /// using dlsym).
124   bool SymbolSearchingDisabled;
125 
126   /// Whether the JIT should verify IR modules during compilation.
127   bool VerifyModules;
128 
129   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
130 
131 protected:
132   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
133   /// optimize for the case where there is only one module.
134   SmallVector<std::unique_ptr<Module>, 1> Modules;
135 
136   /// getMemoryforGV - Allocate memory for a global variable.
137   virtual char *getMemoryForGV(const GlobalVariable *GV);
138 
139   static ExecutionEngine *(*MCJITCtor)(
140       std::unique_ptr<Module> M, std::string *ErrorStr,
141       std::shared_ptr<MCJITMemoryManager> MM,
142       std::shared_ptr<LegacyJITSymbolResolver> SR,
143       std::unique_ptr<TargetMachine> TM);
144 
145   static ExecutionEngine *(*OrcMCJITReplacementCtor)(
146       std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MM,
147       std::shared_ptr<LegacyJITSymbolResolver> SR,
148       std::unique_ptr<TargetMachine> TM);
149 
150   static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
151                                         std::string *ErrorStr);
152 
153   /// LazyFunctionCreator - If an unknown function is needed, this function
154   /// pointer is invoked to create it.  If this returns null, the JIT will
155   /// abort.
156   FunctionCreator LazyFunctionCreator;
157 
158   /// getMangledName - Get mangled name.
159   std::string getMangledName(const GlobalValue *GV);
160 
161   std::string ErrMsg;
162 
163 public:
164   /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
165   /// be held while changing the internal state of any of those classes.
166   sys::Mutex lock;
167 
168   //===--------------------------------------------------------------------===//
169   //  ExecutionEngine Startup
170   //===--------------------------------------------------------------------===//
171 
172   virtual ~ExecutionEngine();
173 
174   /// Add a Module to the list of modules that we can JIT from.
175   virtual void addModule(std::unique_ptr<Module> M) {
176     Modules.push_back(std::move(M));
177   }
178 
179   /// addObjectFile - Add an ObjectFile to the execution engine.
180   ///
181   /// This method is only supported by MCJIT.  MCJIT will immediately load the
182   /// object into memory and adds its symbols to the list used to resolve
183   /// external symbols while preparing other objects for execution.
184   ///
185   /// Objects added using this function will not be made executable until
186   /// needed by another object.
187   ///
188   /// MCJIT will take ownership of the ObjectFile.
189   virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
190   virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
191 
192   /// addArchive - Add an Archive to the execution engine.
193   ///
194   /// This method is only supported by MCJIT.  MCJIT will use the archive to
195   /// resolve external symbols in objects it is loading.  If a symbol is found
196   /// in the Archive the contained object file will be extracted (in memory)
197   /// and loaded for possible execution.
198   virtual void addArchive(object::OwningBinary<object::Archive> A);
199 
200   //===--------------------------------------------------------------------===//
201 
202   const DataLayout &getDataLayout() const { return DL; }
203 
204   /// removeModule - Removes a Module from the list of modules, but does not
205   /// free the module's memory. Returns true if M is found, in which case the
206   /// caller assumes responsibility for deleting the module.
207   //
208   // FIXME: This stealth ownership transfer is horrible. This will probably be
209   //        fixed by deleting ExecutionEngine.
210   virtual bool removeModule(Module *M);
211 
212   /// FindFunctionNamed - Search all of the active modules to find the function that
213   /// defines FnName.  This is very slow operation and shouldn't be used for
214   /// general code.
215   virtual Function *FindFunctionNamed(StringRef FnName);
216 
217   /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
218   /// that defines Name.  This is very slow operation and shouldn't be used for
219   /// general code.
220   virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
221 
222   /// runFunction - Execute the specified function with the specified arguments,
223   /// and return the result.
224   ///
225   /// For MCJIT execution engines, clients are encouraged to use the
226   /// "GetFunctionAddress" method (rather than runFunction) and cast the
227   /// returned uint64_t to the desired function pointer type. However, for
228   /// backwards compatibility MCJIT's implementation can execute 'main-like'
229   /// function (i.e. those returning void or int, and taking either no
230   /// arguments or (int, char*[])).
231   virtual GenericValue runFunction(Function *F,
232                                    ArrayRef<GenericValue> ArgValues) = 0;
233 
234   /// getPointerToNamedFunction - This method returns the address of the
235   /// specified function by using the dlsym function call.  As such it is only
236   /// useful for resolving library symbols, not code generated symbols.
237   ///
238   /// If AbortOnFailure is false and no function with the given name is
239   /// found, this function silently returns a null pointer. Otherwise,
240   /// it prints a message to stderr and aborts.
241   ///
242   /// This function is deprecated for the MCJIT execution engine.
243   virtual void *getPointerToNamedFunction(StringRef Name,
244                                           bool AbortOnFailure = true) = 0;
245 
246   /// mapSectionAddress - map a section to its target address space value.
247   /// Map the address of a JIT section as returned from the memory manager
248   /// to the address in the target process as the running code will see it.
249   /// This is the address which will be used for relocation resolution.
250   virtual void mapSectionAddress(const void *LocalAddress,
251                                  uint64_t TargetAddress) {
252     llvm_unreachable("Re-mapping of section addresses not supported with this "
253                      "EE!");
254   }
255 
256   /// generateCodeForModule - Run code generation for the specified module and
257   /// load it into memory.
258   ///
259   /// When this function has completed, all code and data for the specified
260   /// module, and any module on which this module depends, will be generated
261   /// and loaded into memory, but relocations will not yet have been applied
262   /// and all memory will be readable and writable but not executable.
263   ///
264   /// This function is primarily useful when generating code for an external
265   /// target, allowing the client an opportunity to remap section addresses
266   /// before relocations are applied.  Clients that intend to execute code
267   /// locally can use the getFunctionAddress call, which will generate code
268   /// and apply final preparations all in one step.
269   ///
270   /// This method has no effect for the interpeter.
271   virtual void generateCodeForModule(Module *M) {}
272 
273   /// finalizeObject - ensure the module is fully processed and is usable.
274   ///
275   /// It is the user-level function for completing the process of making the
276   /// object usable for execution.  It should be called after sections within an
277   /// object have been relocated using mapSectionAddress.  When this method is
278   /// called the MCJIT execution engine will reapply relocations for a loaded
279   /// object.  This method has no effect for the interpeter.
280   ///
281   /// Returns true on success, false on failure. Error messages can be retrieved
282   /// by calling getError();
283   virtual void finalizeObject() {}
284 
285   /// Returns true if an error has been recorded.
286   bool hasError() const { return !ErrMsg.empty(); }
287 
288   /// Clear the error message.
289   void clearErrorMessage() { ErrMsg.clear(); }
290 
291   /// Returns the most recent error message.
292   const std::string &getErrorMessage() const { return ErrMsg; }
293 
294   /// runStaticConstructorsDestructors - This method is used to execute all of
295   /// the static constructors or destructors for a program.
296   ///
297   /// \param isDtors - Run the destructors instead of constructors.
298   virtual void runStaticConstructorsDestructors(bool isDtors);
299 
300   /// This method is used to execute all of the static constructors or
301   /// destructors for a particular module.
302   ///
303   /// \param isDtors - Run the destructors instead of constructors.
304   void runStaticConstructorsDestructors(Module &module, bool isDtors);
305 
306 
307   /// runFunctionAsMain - This is a helper function which wraps runFunction to
308   /// handle the common task of starting up main with the specified argc, argv,
309   /// and envp parameters.
310   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
311                         const char * const * envp);
312 
313 
314   /// addGlobalMapping - Tell the execution engine that the specified global is
315   /// at the specified location.  This is used internally as functions are JIT'd
316   /// and as global variables are laid out in memory.  It can and should also be
317   /// used by clients of the EE that want to have an LLVM global overlay
318   /// existing data in memory. Values to be mapped should be named, and have
319   /// external or weak linkage. Mappings are automatically removed when their
320   /// GlobalValue is destroyed.
321   void addGlobalMapping(const GlobalValue *GV, void *Addr);
322   void addGlobalMapping(StringRef Name, uint64_t Addr);
323 
324   /// clearAllGlobalMappings - Clear all global mappings and start over again,
325   /// for use in dynamic compilation scenarios to move globals.
326   void clearAllGlobalMappings();
327 
328   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
329   /// particular module, because it has been removed from the JIT.
330   void clearGlobalMappingsFromModule(Module *M);
331 
332   /// updateGlobalMapping - Replace an existing mapping for GV with a new
333   /// address.  This updates both maps as required.  If "Addr" is null, the
334   /// entry for the global is removed from the mappings.  This returns the old
335   /// value of the pointer, or null if it was not in the map.
336   uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
337   uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
338 
339   /// getAddressToGlobalIfAvailable - This returns the address of the specified
340   /// global symbol.
341   uint64_t getAddressToGlobalIfAvailable(StringRef S);
342 
343   /// getPointerToGlobalIfAvailable - This returns the address of the specified
344   /// global value if it is has already been codegen'd, otherwise it returns
345   /// null.
346   void *getPointerToGlobalIfAvailable(StringRef S);
347   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
348 
349   /// getPointerToGlobal - This returns the address of the specified global
350   /// value. This may involve code generation if it's a function.
351   ///
352   /// This function is deprecated for the MCJIT execution engine.  Use
353   /// getGlobalValueAddress instead.
354   void *getPointerToGlobal(const GlobalValue *GV);
355 
356   /// getPointerToFunction - The different EE's represent function bodies in
357   /// different ways.  They should each implement this to say what a function
358   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
359   /// remove its global mapping and free any machine code.  Be sure no threads
360   /// are running inside F when that happens.
361   ///
362   /// This function is deprecated for the MCJIT execution engine.  Use
363   /// getFunctionAddress instead.
364   virtual void *getPointerToFunction(Function *F) = 0;
365 
366   /// getPointerToFunctionOrStub - If the specified function has been
367   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
368   /// a stub to implement lazy compilation if available.  See
369   /// getPointerToFunction for the requirements on destroying F.
370   ///
371   /// This function is deprecated for the MCJIT execution engine.  Use
372   /// getFunctionAddress instead.
373   virtual void *getPointerToFunctionOrStub(Function *F) {
374     // Default implementation, just codegen the function.
375     return getPointerToFunction(F);
376   }
377 
378   /// getGlobalValueAddress - Return the address of the specified global
379   /// value. This may involve code generation.
380   ///
381   /// This function should not be called with the interpreter engine.
382   virtual uint64_t getGlobalValueAddress(const std::string &Name) {
383     // Default implementation for the interpreter.  MCJIT will override this.
384     // JIT and interpreter clients should use getPointerToGlobal instead.
385     return 0;
386   }
387 
388   /// getFunctionAddress - Return the address of the specified function.
389   /// This may involve code generation.
390   virtual uint64_t getFunctionAddress(const std::string &Name) {
391     // Default implementation for the interpreter.  MCJIT will override this.
392     // Interpreter clients should use getPointerToFunction instead.
393     return 0;
394   }
395 
396   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
397   /// at the specified address.
398   ///
399   const GlobalValue *getGlobalValueAtAddress(void *Addr);
400 
401   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
402   /// Ptr is the address of the memory at which to store Val, cast to
403   /// GenericValue *.  It is not a pointer to a GenericValue containing the
404   /// address at which to store Val.
405   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
406                           Type *Ty);
407 
408   void InitializeMemory(const Constant *Init, void *Addr);
409 
410   /// getOrEmitGlobalVariable - Return the address of the specified global
411   /// variable, possibly emitting it to memory if needed.  This is used by the
412   /// Emitter.
413   ///
414   /// This function is deprecated for the MCJIT execution engine.  Use
415   /// getGlobalValueAddress instead.
416   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
417     return getPointerToGlobal((const GlobalValue *)GV);
418   }
419 
420   /// Registers a listener to be called back on various events within
421   /// the JIT.  See JITEventListener.h for more details.  Does not
422   /// take ownership of the argument.  The argument may be NULL, in
423   /// which case these functions do nothing.
424   virtual void RegisterJITEventListener(JITEventListener *) {}
425   virtual void UnregisterJITEventListener(JITEventListener *) {}
426 
427   /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
428   /// not changed.  Supported by MCJIT but not the interpreter.
429   virtual void setObjectCache(ObjectCache *) {
430     llvm_unreachable("No support for an object cache");
431   }
432 
433   /// setProcessAllSections (MCJIT Only): By default, only sections that are
434   /// "required for execution" are passed to the RTDyldMemoryManager, and other
435   /// sections are discarded. Passing 'true' to this method will cause
436   /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
437   /// of whether they are "required to execute" in the usual sense.
438   ///
439   /// Rationale: Some MCJIT clients want to be able to inspect metadata
440   /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
441   /// performance. Passing these sections to the memory manager allows the
442   /// client to make policy about the relevant sections, rather than having
443   /// MCJIT do it.
444   virtual void setProcessAllSections(bool ProcessAllSections) {
445     llvm_unreachable("No support for ProcessAllSections option");
446   }
447 
448   /// Return the target machine (if available).
449   virtual TargetMachine *getTargetMachine() { return nullptr; }
450 
451   /// DisableLazyCompilation - When lazy compilation is off (the default), the
452   /// JIT will eagerly compile every function reachable from the argument to
453   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
454   /// compile the one function and emit stubs to compile the rest when they're
455   /// first called.  If lazy compilation is turned off again while some lazy
456   /// stubs are still around, and one of those stubs is called, the program will
457   /// abort.
458   ///
459   /// In order to safely compile lazily in a threaded program, the user must
460   /// ensure that 1) only one thread at a time can call any particular lazy
461   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
462   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
463   /// lazy stub.  See http://llvm.org/PR5184 for details.
464   void DisableLazyCompilation(bool Disabled = true) {
465     CompilingLazily = !Disabled;
466   }
467   bool isCompilingLazily() const {
468     return CompilingLazily;
469   }
470 
471   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
472   /// allocate space and populate a GlobalVariable that is not internal to
473   /// the module.
474   void DisableGVCompilation(bool Disabled = true) {
475     GVCompilationDisabled = Disabled;
476   }
477   bool isGVCompilationDisabled() const {
478     return GVCompilationDisabled;
479   }
480 
481   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
482   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
483   /// resolve symbols in a custom way.
484   void DisableSymbolSearching(bool Disabled = true) {
485     SymbolSearchingDisabled = Disabled;
486   }
487   bool isSymbolSearchingDisabled() const {
488     return SymbolSearchingDisabled;
489   }
490 
491   /// Enable/Disable IR module verification.
492   ///
493   /// Note: Module verification is enabled by default in Debug builds, and
494   /// disabled by default in Release. Use this method to override the default.
495   void setVerifyModules(bool Verify) {
496     VerifyModules = Verify;
497   }
498   bool getVerifyModules() const {
499     return VerifyModules;
500   }
501 
502   /// InstallLazyFunctionCreator - If an unknown function is needed, the
503   /// specified function pointer is invoked to create it.  If it returns null,
504   /// the JIT will abort.
505   void InstallLazyFunctionCreator(FunctionCreator C) {
506     LazyFunctionCreator = std::move(C);
507   }
508 
509 protected:
510   ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
511   explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
512   explicit ExecutionEngine(std::unique_ptr<Module> M);
513 
514   void emitGlobals();
515 
516   void emitGlobalVariable(const GlobalVariable *GV);
517 
518   GenericValue getConstantValue(const Constant *C);
519   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
520                            Type *Ty);
521 
522 private:
523   void Init(std::unique_ptr<Module> M);
524 };
525 
526 namespace EngineKind {
527 
528   // These are actually bitmasks that get or-ed together.
529   enum Kind {
530     JIT         = 0x1,
531     Interpreter = 0x2
532   };
533   const static Kind Either = (Kind)(JIT | Interpreter);
534 
535 } // end namespace EngineKind
536 
537 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
538 /// chaining the various set* methods, and terminating it with a .create()
539 /// call.
540 class EngineBuilder {
541 private:
542   std::unique_ptr<Module> M;
543   EngineKind::Kind WhichEngine;
544   std::string *ErrorStr;
545   CodeGenOpt::Level OptLevel;
546   std::shared_ptr<MCJITMemoryManager> MemMgr;
547   std::shared_ptr<LegacyJITSymbolResolver> Resolver;
548   TargetOptions Options;
549   Optional<Reloc::Model> RelocModel;
550   Optional<CodeModel::Model> CMModel;
551   std::string MArch;
552   std::string MCPU;
553   SmallVector<std::string, 4> MAttrs;
554   bool VerifyModules;
555   bool UseOrcMCJITReplacement;
556   bool EmulatedTLS = true;
557 
558 public:
559   /// Default constructor for EngineBuilder.
560   EngineBuilder();
561 
562   /// Constructor for EngineBuilder.
563   EngineBuilder(std::unique_ptr<Module> M);
564 
565   // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
566   ~EngineBuilder();
567 
568   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
569   /// or whichever engine works.  This option defaults to EngineKind::Either.
570   EngineBuilder &setEngineKind(EngineKind::Kind w) {
571     WhichEngine = w;
572     return *this;
573   }
574 
575   /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
576   /// clients to customize their memory allocation policies for the MCJIT. This
577   /// is only appropriate for the MCJIT; setting this and configuring the builder
578   /// to create anything other than MCJIT will cause a runtime error. If create()
579   /// is called and is successful, the created engine takes ownership of the
580   /// memory manager. This option defaults to NULL.
581   EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
582 
583   EngineBuilder&
584   setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
585 
586   EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
587 
588   /// setErrorStr - Set the error string to write to on error.  This option
589   /// defaults to NULL.
590   EngineBuilder &setErrorStr(std::string *e) {
591     ErrorStr = e;
592     return *this;
593   }
594 
595   /// setOptLevel - Set the optimization level for the JIT.  This option
596   /// defaults to CodeGenOpt::Default.
597   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
598     OptLevel = l;
599     return *this;
600   }
601 
602   /// setTargetOptions - Set the target options that the ExecutionEngine
603   /// target is using. Defaults to TargetOptions().
604   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
605     Options = Opts;
606     return *this;
607   }
608 
609   /// setRelocationModel - Set the relocation model that the ExecutionEngine
610   /// target is using. Defaults to target specific default "Reloc::Default".
611   EngineBuilder &setRelocationModel(Reloc::Model RM) {
612     RelocModel = RM;
613     return *this;
614   }
615 
616   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
617   /// data is using. Defaults to target specific default
618   /// "CodeModel::JITDefault".
619   EngineBuilder &setCodeModel(CodeModel::Model M) {
620     CMModel = M;
621     return *this;
622   }
623 
624   /// setMArch - Override the architecture set by the Module's triple.
625   EngineBuilder &setMArch(StringRef march) {
626     MArch.assign(march.begin(), march.end());
627     return *this;
628   }
629 
630   /// setMCPU - Target a specific cpu type.
631   EngineBuilder &setMCPU(StringRef mcpu) {
632     MCPU.assign(mcpu.begin(), mcpu.end());
633     return *this;
634   }
635 
636   /// setVerifyModules - Set whether the JIT implementation should verify
637   /// IR modules during compilation.
638   EngineBuilder &setVerifyModules(bool Verify) {
639     VerifyModules = Verify;
640     return *this;
641   }
642 
643   /// setMAttrs - Set cpu-specific attributes.
644   template<typename StringSequence>
645   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
646     MAttrs.clear();
647     MAttrs.append(mattrs.begin(), mattrs.end());
648     return *this;
649   }
650 
651   // Use OrcMCJITReplacement instead of MCJIT. Off by default.
652   LLVM_ATTRIBUTE_DEPRECATED(
653       inline void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement),
654       "ORCv1 utilities (including OrcMCJITReplacement) are deprecated. Please "
655       "use ORCv2/LLJIT instead (see docs/ORCv2.rst)");
656 
657   void setUseOrcMCJITReplacement(ORCv1DeprecationAcknowledgement,
658                                  bool UseOrcMCJITReplacement) {
659     this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
660   }
661 
662   void setEmulatedTLS(bool EmulatedTLS) {
663     this->EmulatedTLS = EmulatedTLS;
664   }
665 
666   TargetMachine *selectTarget();
667 
668   /// selectTarget - Pick a target either via -march or by guessing the native
669   /// arch.  Add any CPU features specified via -mcpu or -mattr.
670   TargetMachine *selectTarget(const Triple &TargetTriple,
671                               StringRef MArch,
672                               StringRef MCPU,
673                               const SmallVectorImpl<std::string>& MAttrs);
674 
675   ExecutionEngine *create() {
676     return create(selectTarget());
677   }
678 
679   ExecutionEngine *create(TargetMachine *TM);
680 };
681 
682 void EngineBuilder::setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
683   this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
684 }
685 
686 // Create wrappers for C Binding types (see CBindingWrapping.h).
687 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
688 
689 } // end namespace llvm
690 
691 #endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
692