1 //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Contains generic JIT-linker types.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
14 #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/FunctionExtras.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h"
21 #include "llvm/ExecutionEngine/JITSymbol.h"
22 #include "llvm/ExecutionEngine/Orc/Core.h"
23 #include "llvm/ExecutionEngine/Orc/Shared/ExecutorAddress.h"
24 #include "llvm/ExecutionEngine/Orc/Shared/ExecutorSymbolDef.h"
25 #include "llvm/ExecutionEngine/Orc/Shared/MemoryFlags.h"
26 #include "llvm/Support/Allocator.h"
27 #include "llvm/Support/BinaryStreamReader.h"
28 #include "llvm/Support/BinaryStreamWriter.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/Error.h"
31 #include "llvm/Support/FormatVariadic.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/MemoryBuffer.h"
34 #include "llvm/TargetParser/SubtargetFeature.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include <optional>
37 
38 #include <map>
39 #include <string>
40 #include <system_error>
41 
42 namespace llvm {
43 namespace jitlink {
44 
45 class LinkGraph;
46 class Symbol;
47 class Section;
48 
49 /// Base class for errors originating in JIT linker, e.g. missing relocation
50 /// support.
51 class JITLinkError : public ErrorInfo<JITLinkError> {
52 public:
53   static char ID;
54 
55   JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
56 
57   void log(raw_ostream &OS) const override;
58   const std::string &getErrorMessage() const { return ErrMsg; }
59   std::error_code convertToErrorCode() const override;
60 
61 private:
62   std::string ErrMsg;
63 };
64 
65 /// Represents fixups and constraints in the LinkGraph.
66 class Edge {
67 public:
68   using Kind = uint8_t;
69 
70   enum GenericEdgeKind : Kind {
71     Invalid,                    // Invalid edge value.
72     FirstKeepAlive,             // Keeps target alive. Offset/addend zero.
73     KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
74     FirstRelocation             // First architecture specific relocation.
75   };
76 
77   using OffsetT = uint32_t;
78   using AddendT = int64_t;
79 
80   Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
81       : Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
82 
83   OffsetT getOffset() const { return Offset; }
84   void setOffset(OffsetT Offset) { this->Offset = Offset; }
85   Kind getKind() const { return K; }
86   void setKind(Kind K) { this->K = K; }
87   bool isRelocation() const { return K >= FirstRelocation; }
88   Kind getRelocation() const {
89     assert(isRelocation() && "Not a relocation edge");
90     return K - FirstRelocation;
91   }
92   bool isKeepAlive() const { return K >= FirstKeepAlive; }
93   Symbol &getTarget() const { return *Target; }
94   void setTarget(Symbol &Target) { this->Target = &Target; }
95   AddendT getAddend() const { return Addend; }
96   void setAddend(AddendT Addend) { this->Addend = Addend; }
97 
98 private:
99   Symbol *Target = nullptr;
100   OffsetT Offset = 0;
101   AddendT Addend = 0;
102   Kind K = 0;
103 };
104 
105 /// Returns the string name of the given generic edge kind, or "unknown"
106 /// otherwise. Useful for debugging.
107 const char *getGenericEdgeKindName(Edge::Kind K);
108 
109 /// Base class for Addressable entities (externals, absolutes, blocks).
110 class Addressable {
111   friend class LinkGraph;
112 
113 protected:
114   Addressable(orc::ExecutorAddr Address, bool IsDefined)
115       : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
116 
117   Addressable(orc::ExecutorAddr Address)
118       : Address(Address), IsDefined(false), IsAbsolute(true) {
119     assert(!(IsDefined && IsAbsolute) &&
120            "Block cannot be both defined and absolute");
121   }
122 
123 public:
124   Addressable(const Addressable &) = delete;
125   Addressable &operator=(const Addressable &) = default;
126   Addressable(Addressable &&) = delete;
127   Addressable &operator=(Addressable &&) = default;
128 
129   orc::ExecutorAddr getAddress() const { return Address; }
130   void setAddress(orc::ExecutorAddr Address) { this->Address = Address; }
131 
132   /// Returns true if this is a defined addressable, in which case you
133   /// can downcast this to a Block.
134   bool isDefined() const { return static_cast<bool>(IsDefined); }
135   bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
136 
137 private:
138   void setAbsolute(bool IsAbsolute) {
139     assert(!IsDefined && "Cannot change the Absolute flag on a defined block");
140     this->IsAbsolute = IsAbsolute;
141   }
142 
143   orc::ExecutorAddr Address;
144   uint64_t IsDefined : 1;
145   uint64_t IsAbsolute : 1;
146 
147 protected:
148   // bitfields for Block, allocated here to improve packing.
149   uint64_t ContentMutable : 1;
150   uint64_t P2Align : 5;
151   uint64_t AlignmentOffset : 56;
152 };
153 
154 using SectionOrdinal = unsigned;
155 
156 /// An Addressable with content and edges.
157 class Block : public Addressable {
158   friend class LinkGraph;
159 
160 private:
161   /// Create a zero-fill defined addressable.
162   Block(Section &Parent, orc::ExecutorAddrDiff Size, orc::ExecutorAddr Address,
163         uint64_t Alignment, uint64_t AlignmentOffset)
164       : Addressable(Address, true), Parent(&Parent), Size(Size) {
165     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
166     assert(AlignmentOffset < Alignment &&
167            "Alignment offset cannot exceed alignment");
168     assert(AlignmentOffset <= MaxAlignmentOffset &&
169            "Alignment offset exceeds maximum");
170     ContentMutable = false;
171     P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
172     this->AlignmentOffset = AlignmentOffset;
173   }
174 
175   /// Create a defined addressable for the given content.
176   /// The Content is assumed to be non-writable, and will be copied when
177   /// mutations are required.
178   Block(Section &Parent, ArrayRef<char> Content, orc::ExecutorAddr Address,
179         uint64_t Alignment, uint64_t AlignmentOffset)
180       : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
181         Size(Content.size()) {
182     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
183     assert(AlignmentOffset < Alignment &&
184            "Alignment offset cannot exceed alignment");
185     assert(AlignmentOffset <= MaxAlignmentOffset &&
186            "Alignment offset exceeds maximum");
187     ContentMutable = false;
188     P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
189     this->AlignmentOffset = AlignmentOffset;
190   }
191 
192   /// Create a defined addressable for the given content.
193   /// The content is assumed to be writable, and the caller is responsible
194   /// for ensuring that it lives for the duration of the Block's lifetime.
195   /// The standard way to achieve this is to allocate it on the Graph's
196   /// allocator.
197   Block(Section &Parent, MutableArrayRef<char> Content,
198         orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset)
199       : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
200         Size(Content.size()) {
201     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
202     assert(AlignmentOffset < Alignment &&
203            "Alignment offset cannot exceed alignment");
204     assert(AlignmentOffset <= MaxAlignmentOffset &&
205            "Alignment offset exceeds maximum");
206     ContentMutable = true;
207     P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
208     this->AlignmentOffset = AlignmentOffset;
209   }
210 
211 public:
212   using EdgeVector = std::vector<Edge>;
213   using edge_iterator = EdgeVector::iterator;
214   using const_edge_iterator = EdgeVector::const_iterator;
215 
216   Block(const Block &) = delete;
217   Block &operator=(const Block &) = delete;
218   Block(Block &&) = delete;
219   Block &operator=(Block &&) = delete;
220 
221   /// Return the parent section for this block.
222   Section &getSection() const { return *Parent; }
223 
224   /// Returns true if this is a zero-fill block.
225   ///
226   /// If true, getSize is callable but getContent is not (the content is
227   /// defined to be a sequence of zero bytes of length Size).
228   bool isZeroFill() const { return !Data; }
229 
230   /// Returns the size of this defined addressable.
231   size_t getSize() const { return Size; }
232 
233   /// Returns the address range of this defined addressable.
234   orc::ExecutorAddrRange getRange() const {
235     return orc::ExecutorAddrRange(getAddress(), getSize());
236   }
237 
238   /// Get the content for this block. Block must not be a zero-fill block.
239   ArrayRef<char> getContent() const {
240     assert(Data && "Block does not contain content");
241     return ArrayRef<char>(Data, Size);
242   }
243 
244   /// Set the content for this block.
245   /// Caller is responsible for ensuring the underlying bytes are not
246   /// deallocated while pointed to by this block.
247   void setContent(ArrayRef<char> Content) {
248     assert(Content.data() && "Setting null content");
249     Data = Content.data();
250     Size = Content.size();
251     ContentMutable = false;
252   }
253 
254   /// Get mutable content for this block.
255   ///
256   /// If this Block's content is not already mutable this will trigger a copy
257   /// of the existing immutable content to a new, mutable buffer allocated using
258   /// LinkGraph::allocateContent.
259   MutableArrayRef<char> getMutableContent(LinkGraph &G);
260 
261   /// Get mutable content for this block.
262   ///
263   /// This block's content must already be mutable. It is a programmatic error
264   /// to call this on a block with immutable content -- consider using
265   /// getMutableContent instead.
266   MutableArrayRef<char> getAlreadyMutableContent() {
267     assert(Data && "Block does not contain content");
268     assert(ContentMutable && "Content is not mutable");
269     return MutableArrayRef<char>(const_cast<char *>(Data), Size);
270   }
271 
272   /// Set mutable content for this block.
273   ///
274   /// The caller is responsible for ensuring that the memory pointed to by
275   /// MutableContent is not deallocated while pointed to by this block.
276   void setMutableContent(MutableArrayRef<char> MutableContent) {
277     assert(MutableContent.data() && "Setting null content");
278     Data = MutableContent.data();
279     Size = MutableContent.size();
280     ContentMutable = true;
281   }
282 
283   /// Returns true if this block's content is mutable.
284   ///
285   /// This is primarily useful for asserting that a block is already in a
286   /// mutable state prior to modifying the content. E.g. when applying
287   /// fixups we expect the block to already be mutable as it should have been
288   /// copied to working memory.
289   bool isContentMutable() const { return ContentMutable; }
290 
291   /// Get the alignment for this content.
292   uint64_t getAlignment() const { return 1ull << P2Align; }
293 
294   /// Set the alignment for this content.
295   void setAlignment(uint64_t Alignment) {
296     assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
297     P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
298   }
299 
300   /// Get the alignment offset for this content.
301   uint64_t getAlignmentOffset() const { return AlignmentOffset; }
302 
303   /// Set the alignment offset for this content.
304   void setAlignmentOffset(uint64_t AlignmentOffset) {
305     assert(AlignmentOffset < (1ull << P2Align) &&
306            "Alignment offset can't exceed alignment");
307     this->AlignmentOffset = AlignmentOffset;
308   }
309 
310   /// Add an edge to this block.
311   void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
312                Edge::AddendT Addend) {
313     assert((K == Edge::KeepAlive || !isZeroFill()) &&
314            "Adding edge to zero-fill block?");
315     Edges.push_back(Edge(K, Offset, Target, Addend));
316   }
317 
318   /// Add an edge by copying an existing one. This is typically used when
319   /// moving edges between blocks.
320   void addEdge(const Edge &E) { Edges.push_back(E); }
321 
322   /// Return the list of edges attached to this content.
323   iterator_range<edge_iterator> edges() {
324     return make_range(Edges.begin(), Edges.end());
325   }
326 
327   /// Returns the list of edges attached to this content.
328   iterator_range<const_edge_iterator> edges() const {
329     return make_range(Edges.begin(), Edges.end());
330   }
331 
332   /// Return the size of the edges list.
333   size_t edges_size() const { return Edges.size(); }
334 
335   /// Returns true if the list of edges is empty.
336   bool edges_empty() const { return Edges.empty(); }
337 
338   /// Remove the edge pointed to by the given iterator.
339   /// Returns an iterator to the new next element.
340   edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); }
341 
342   /// Returns the address of the fixup for the given edge, which is equal to
343   /// this block's address plus the edge's offset.
344   orc::ExecutorAddr getFixupAddress(const Edge &E) const {
345     return getAddress() + E.getOffset();
346   }
347 
348 private:
349   static constexpr uint64_t MaxAlignmentOffset = (1ULL << 56) - 1;
350 
351   void setSection(Section &Parent) { this->Parent = &Parent; }
352 
353   Section *Parent;
354   const char *Data = nullptr;
355   size_t Size = 0;
356   std::vector<Edge> Edges;
357 };
358 
359 // Align an address to conform with block alignment requirements.
360 inline uint64_t alignToBlock(uint64_t Addr, const Block &B) {
361   uint64_t Delta = (B.getAlignmentOffset() - Addr) % B.getAlignment();
362   return Addr + Delta;
363 }
364 
365 // Align a orc::ExecutorAddr to conform with block alignment requirements.
366 inline orc::ExecutorAddr alignToBlock(orc::ExecutorAddr Addr, const Block &B) {
367   return orc::ExecutorAddr(alignToBlock(Addr.getValue(), B));
368 }
369 
370 // Returns true if the given blocks contains exactly one valid c-string.
371 // Zero-fill blocks of size 1 count as valid empty strings. Content blocks
372 // must end with a zero, and contain no zeros before the end.
373 bool isCStringBlock(Block &B);
374 
375 /// Describes symbol linkage. This can be used to resolve definition clashes.
376 enum class Linkage : uint8_t {
377   Strong,
378   Weak,
379 };
380 
381 /// Holds target-specific properties for a symbol.
382 using TargetFlagsType = uint8_t;
383 
384 /// For errors and debugging output.
385 const char *getLinkageName(Linkage L);
386 
387 /// Defines the scope in which this symbol should be visible:
388 ///   Default -- Visible in the public interface of the linkage unit.
389 ///   Hidden -- Visible within the linkage unit, but not exported from it.
390 ///   Local -- Visible only within the LinkGraph.
391 enum class Scope : uint8_t {
392   Default,
393   Hidden,
394   Local
395 };
396 
397 /// For debugging output.
398 const char *getScopeName(Scope S);
399 
400 raw_ostream &operator<<(raw_ostream &OS, const Block &B);
401 
402 /// Symbol representation.
403 ///
404 /// Symbols represent locations within Addressable objects.
405 /// They can be either Named or Anonymous.
406 /// Anonymous symbols have neither linkage nor visibility, and must point at
407 /// ContentBlocks.
408 /// Named symbols may be in one of four states:
409 ///   - Null: Default initialized. Assignable, but otherwise unusable.
410 ///   - Defined: Has both linkage and visibility and points to a ContentBlock
411 ///   - Common: Has both linkage and visibility, points to a null Addressable.
412 ///   - External: Has neither linkage nor visibility, points to an external
413 ///     Addressable.
414 ///
415 class Symbol {
416   friend class LinkGraph;
417 
418 private:
419   Symbol(Addressable &Base, orc::ExecutorAddrDiff Offset, StringRef Name,
420          orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive,
421          bool IsCallable)
422       : Name(Name), Base(&Base), Offset(Offset), WeakRef(0), Size(Size) {
423     assert(Offset <= MaxOffset && "Offset out of range");
424     setLinkage(L);
425     setScope(S);
426     setLive(IsLive);
427     setCallable(IsCallable);
428     setTargetFlags(TargetFlagsType{});
429   }
430 
431   static Symbol &constructExternal(BumpPtrAllocator &Allocator,
432                                    Addressable &Base, StringRef Name,
433                                    orc::ExecutorAddrDiff Size, Linkage L,
434                                    bool WeaklyReferenced) {
435     assert(!Base.isDefined() &&
436            "Cannot create external symbol from defined block");
437     assert(!Name.empty() && "External symbol name cannot be empty");
438     auto *Sym = Allocator.Allocate<Symbol>();
439     new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false);
440     Sym->setWeaklyReferenced(WeaklyReferenced);
441     return *Sym;
442   }
443 
444   static Symbol &constructAbsolute(BumpPtrAllocator &Allocator,
445                                    Addressable &Base, StringRef Name,
446                                    orc::ExecutorAddrDiff Size, Linkage L,
447                                    Scope S, bool IsLive) {
448     assert(!Base.isDefined() &&
449            "Cannot create absolute symbol from a defined block");
450     auto *Sym = Allocator.Allocate<Symbol>();
451     new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
452     return *Sym;
453   }
454 
455   static Symbol &constructAnonDef(BumpPtrAllocator &Allocator, Block &Base,
456                                   orc::ExecutorAddrDiff Offset,
457                                   orc::ExecutorAddrDiff Size, bool IsCallable,
458                                   bool IsLive) {
459     assert((Offset + Size) <= Base.getSize() &&
460            "Symbol extends past end of block");
461     auto *Sym = Allocator.Allocate<Symbol>();
462     new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
463                      Scope::Local, IsLive, IsCallable);
464     return *Sym;
465   }
466 
467   static Symbol &constructNamedDef(BumpPtrAllocator &Allocator, Block &Base,
468                                    orc::ExecutorAddrDiff Offset, StringRef Name,
469                                    orc::ExecutorAddrDiff Size, Linkage L,
470                                    Scope S, bool IsLive, bool IsCallable) {
471     assert((Offset + Size) <= Base.getSize() &&
472            "Symbol extends past end of block");
473     assert(!Name.empty() && "Name cannot be empty");
474     auto *Sym = Allocator.Allocate<Symbol>();
475     new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
476     return *Sym;
477   }
478 
479 public:
480   /// Create a null Symbol. This allows Symbols to be default initialized for
481   /// use in containers (e.g. as map values). Null symbols are only useful for
482   /// assigning to.
483   Symbol() = default;
484 
485   // Symbols are not movable or copyable.
486   Symbol(const Symbol &) = delete;
487   Symbol &operator=(const Symbol &) = delete;
488   Symbol(Symbol &&) = delete;
489   Symbol &operator=(Symbol &&) = delete;
490 
491   /// Returns true if this symbol has a name.
492   bool hasName() const { return !Name.empty(); }
493 
494   /// Returns the name of this symbol (empty if the symbol is anonymous).
495   StringRef getName() const {
496     assert((!Name.empty() || getScope() == Scope::Local) &&
497            "Anonymous symbol has non-local scope");
498     return Name;
499   }
500 
501   /// Rename this symbol. The client is responsible for updating scope and
502   /// linkage if this name-change requires it.
503   void setName(StringRef Name) { this->Name = Name; }
504 
505   /// Returns true if this Symbol has content (potentially) defined within this
506   /// object file (i.e. is anything but an external or absolute symbol).
507   bool isDefined() const {
508     assert(Base && "Attempt to access null symbol");
509     return Base->isDefined();
510   }
511 
512   /// Returns true if this symbol is live (i.e. should be treated as a root for
513   /// dead stripping).
514   bool isLive() const {
515     assert(Base && "Attempting to access null symbol");
516     return IsLive;
517   }
518 
519   /// Set this symbol's live bit.
520   void setLive(bool IsLive) { this->IsLive = IsLive; }
521 
522   /// Returns true is this symbol is callable.
523   bool isCallable() const { return IsCallable; }
524 
525   /// Set this symbol's callable bit.
526   void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
527 
528   /// Returns true if the underlying addressable is an unresolved external.
529   bool isExternal() const {
530     assert(Base && "Attempt to access null symbol");
531     return !Base->isDefined() && !Base->isAbsolute();
532   }
533 
534   /// Returns true if the underlying addressable is an absolute symbol.
535   bool isAbsolute() const {
536     assert(Base && "Attempt to access null symbol");
537     return Base->isAbsolute();
538   }
539 
540   /// Return the addressable that this symbol points to.
541   Addressable &getAddressable() {
542     assert(Base && "Cannot get underlying addressable for null symbol");
543     return *Base;
544   }
545 
546   /// Return the addressable that this symbol points to.
547   const Addressable &getAddressable() const {
548     assert(Base && "Cannot get underlying addressable for null symbol");
549     return *Base;
550   }
551 
552   /// Return the Block for this Symbol (Symbol must be defined).
553   Block &getBlock() {
554     assert(Base && "Cannot get block for null symbol");
555     assert(Base->isDefined() && "Not a defined symbol");
556     return static_cast<Block &>(*Base);
557   }
558 
559   /// Return the Block for this Symbol (Symbol must be defined).
560   const Block &getBlock() const {
561     assert(Base && "Cannot get block for null symbol");
562     assert(Base->isDefined() && "Not a defined symbol");
563     return static_cast<const Block &>(*Base);
564   }
565 
566   /// Returns the offset for this symbol within the underlying addressable.
567   orc::ExecutorAddrDiff getOffset() const { return Offset; }
568 
569   void setOffset(orc::ExecutorAddrDiff NewOffset) {
570     assert(NewOffset < getBlock().getSize() && "Offset out of range");
571     Offset = NewOffset;
572   }
573 
574   /// Returns the address of this symbol.
575   orc::ExecutorAddr getAddress() const { return Base->getAddress() + Offset; }
576 
577   /// Returns the size of this symbol.
578   orc::ExecutorAddrDiff getSize() const { return Size; }
579 
580   /// Set the size of this symbol.
581   void setSize(orc::ExecutorAddrDiff Size) {
582     assert(Base && "Cannot set size for null Symbol");
583     assert((Size == 0 || Base->isDefined()) &&
584            "Non-zero size can only be set for defined symbols");
585     assert((Offset + Size <= static_cast<const Block &>(*Base).getSize()) &&
586            "Symbol size cannot extend past the end of its containing block");
587     this->Size = Size;
588   }
589 
590   /// Returns the address range of this symbol.
591   orc::ExecutorAddrRange getRange() const {
592     return orc::ExecutorAddrRange(getAddress(), getSize());
593   }
594 
595   /// Returns true if this symbol is backed by a zero-fill block.
596   /// This method may only be called on defined symbols.
597   bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
598 
599   /// Returns the content in the underlying block covered by this symbol.
600   /// This method may only be called on defined non-zero-fill symbols.
601   ArrayRef<char> getSymbolContent() const {
602     return getBlock().getContent().slice(Offset, Size);
603   }
604 
605   /// Get the linkage for this Symbol.
606   Linkage getLinkage() const { return static_cast<Linkage>(L); }
607 
608   /// Set the linkage for this Symbol.
609   void setLinkage(Linkage L) {
610     assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) &&
611            "Linkage can only be applied to defined named symbols");
612     this->L = static_cast<uint8_t>(L);
613   }
614 
615   /// Get the visibility for this Symbol.
616   Scope getScope() const { return static_cast<Scope>(S); }
617 
618   /// Set the visibility for this Symbol.
619   void setScope(Scope S) {
620     assert((!Name.empty() || S == Scope::Local) &&
621            "Can not set anonymous symbol to non-local scope");
622     assert((S != Scope::Local || Base->isDefined() || Base->isAbsolute()) &&
623            "Invalid visibility for symbol type");
624     this->S = static_cast<uint8_t>(S);
625   }
626 
627   /// Get the target flags of this Symbol.
628   TargetFlagsType getTargetFlags() const { return TargetFlags; }
629 
630   /// Set the target flags for this Symbol.
631   void setTargetFlags(TargetFlagsType Flags) {
632     assert(Flags <= 1 && "Add more bits to store more than single flag");
633     TargetFlags = Flags;
634   }
635 
636   /// Returns true if this is a weakly referenced external symbol.
637   /// This method may only be called on external symbols.
638   bool isWeaklyReferenced() const {
639     assert(isExternal() && "isWeaklyReferenced called on non-external");
640     return WeakRef;
641   }
642 
643   /// Set the WeaklyReferenced value for this symbol.
644   /// This method may only be called on external symbols.
645   void setWeaklyReferenced(bool WeakRef) {
646     assert(isExternal() && "setWeaklyReferenced called on non-external");
647     this->WeakRef = WeakRef;
648   }
649 
650 private:
651   void makeExternal(Addressable &A) {
652     assert(!A.isDefined() && !A.isAbsolute() &&
653            "Attempting to make external with defined or absolute block");
654     Base = &A;
655     Offset = 0;
656     setScope(Scope::Default);
657     IsLive = 0;
658     // note: Size, Linkage and IsCallable fields left unchanged.
659   }
660 
661   void makeAbsolute(Addressable &A) {
662     assert(!A.isDefined() && A.isAbsolute() &&
663            "Attempting to make absolute with defined or external block");
664     Base = &A;
665     Offset = 0;
666   }
667 
668   void setBlock(Block &B) { Base = &B; }
669 
670   static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
671 
672   // FIXME: A char* or SymbolStringPtr may pack better.
673   StringRef Name;
674   Addressable *Base = nullptr;
675   uint64_t Offset : 57;
676   uint64_t L : 1;
677   uint64_t S : 2;
678   uint64_t IsLive : 1;
679   uint64_t IsCallable : 1;
680   uint64_t WeakRef : 1;
681   uint64_t TargetFlags : 1;
682   size_t Size = 0;
683 };
684 
685 raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
686 
687 void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
688                StringRef EdgeKindName);
689 
690 /// Represents an object file section.
691 class Section {
692   friend class LinkGraph;
693 
694 private:
695   Section(StringRef Name, orc::MemProt Prot, SectionOrdinal SecOrdinal)
696       : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
697 
698   using SymbolSet = DenseSet<Symbol *>;
699   using BlockSet = DenseSet<Block *>;
700 
701 public:
702   using symbol_iterator = SymbolSet::iterator;
703   using const_symbol_iterator = SymbolSet::const_iterator;
704 
705   using block_iterator = BlockSet::iterator;
706   using const_block_iterator = BlockSet::const_iterator;
707 
708   ~Section();
709 
710   // Sections are not movable or copyable.
711   Section(const Section &) = delete;
712   Section &operator=(const Section &) = delete;
713   Section(Section &&) = delete;
714   Section &operator=(Section &&) = delete;
715 
716   /// Returns the name of this section.
717   StringRef getName() const { return Name; }
718 
719   /// Returns the protection flags for this section.
720   orc::MemProt getMemProt() const { return Prot; }
721 
722   /// Set the protection flags for this section.
723   void setMemProt(orc::MemProt Prot) { this->Prot = Prot; }
724 
725   /// Get the memory lifetime policy for this section.
726   orc::MemLifetime getMemLifetime() const { return ML; }
727 
728   /// Set the memory lifetime policy for this section.
729   void setMemLifetime(orc::MemLifetime ML) { this->ML = ML; }
730 
731   /// Returns the ordinal for this section.
732   SectionOrdinal getOrdinal() const { return SecOrdinal; }
733 
734   /// Returns true if this section is empty (contains no blocks or symbols).
735   bool empty() const { return Blocks.empty(); }
736 
737   /// Returns an iterator over the blocks defined in this section.
738   iterator_range<block_iterator> blocks() {
739     return make_range(Blocks.begin(), Blocks.end());
740   }
741 
742   /// Returns an iterator over the blocks defined in this section.
743   iterator_range<const_block_iterator> blocks() const {
744     return make_range(Blocks.begin(), Blocks.end());
745   }
746 
747   /// Returns the number of blocks in this section.
748   BlockSet::size_type blocks_size() const { return Blocks.size(); }
749 
750   /// Returns an iterator over the symbols defined in this section.
751   iterator_range<symbol_iterator> symbols() {
752     return make_range(Symbols.begin(), Symbols.end());
753   }
754 
755   /// Returns an iterator over the symbols defined in this section.
756   iterator_range<const_symbol_iterator> symbols() const {
757     return make_range(Symbols.begin(), Symbols.end());
758   }
759 
760   /// Return the number of symbols in this section.
761   SymbolSet::size_type symbols_size() const { return Symbols.size(); }
762 
763 private:
764   void addSymbol(Symbol &Sym) {
765     assert(!Symbols.count(&Sym) && "Symbol is already in this section");
766     Symbols.insert(&Sym);
767   }
768 
769   void removeSymbol(Symbol &Sym) {
770     assert(Symbols.count(&Sym) && "symbol is not in this section");
771     Symbols.erase(&Sym);
772   }
773 
774   void addBlock(Block &B) {
775     assert(!Blocks.count(&B) && "Block is already in this section");
776     Blocks.insert(&B);
777   }
778 
779   void removeBlock(Block &B) {
780     assert(Blocks.count(&B) && "Block is not in this section");
781     Blocks.erase(&B);
782   }
783 
784   void transferContentTo(Section &DstSection) {
785     if (&DstSection == this)
786       return;
787     for (auto *S : Symbols)
788       DstSection.addSymbol(*S);
789     for (auto *B : Blocks)
790       DstSection.addBlock(*B);
791     Symbols.clear();
792     Blocks.clear();
793   }
794 
795   StringRef Name;
796   orc::MemProt Prot;
797   orc::MemLifetime ML = orc::MemLifetime::Standard;
798   SectionOrdinal SecOrdinal = 0;
799   BlockSet Blocks;
800   SymbolSet Symbols;
801 };
802 
803 /// Represents a section address range via a pair of Block pointers
804 /// to the first and last Blocks in the section.
805 class SectionRange {
806 public:
807   SectionRange() = default;
808   SectionRange(const Section &Sec) {
809     if (Sec.blocks().empty())
810       return;
811     First = Last = *Sec.blocks().begin();
812     for (auto *B : Sec.blocks()) {
813       if (B->getAddress() < First->getAddress())
814         First = B;
815       if (B->getAddress() > Last->getAddress())
816         Last = B;
817     }
818   }
819   Block *getFirstBlock() const {
820     assert((!Last || First) && "First can not be null if end is non-null");
821     return First;
822   }
823   Block *getLastBlock() const {
824     assert((First || !Last) && "Last can not be null if start is non-null");
825     return Last;
826   }
827   bool empty() const {
828     assert((First || !Last) && "Last can not be null if start is non-null");
829     return !First;
830   }
831   orc::ExecutorAddr getStart() const {
832     return First ? First->getAddress() : orc::ExecutorAddr();
833   }
834   orc::ExecutorAddr getEnd() const {
835     return Last ? Last->getAddress() + Last->getSize() : orc::ExecutorAddr();
836   }
837   orc::ExecutorAddrDiff getSize() const { return getEnd() - getStart(); }
838 
839   orc::ExecutorAddrRange getRange() const {
840     return orc::ExecutorAddrRange(getStart(), getEnd());
841   }
842 
843 private:
844   Block *First = nullptr;
845   Block *Last = nullptr;
846 };
847 
848 class LinkGraph {
849 private:
850   using SectionMap = DenseMap<StringRef, std::unique_ptr<Section>>;
851   using ExternalSymbolMap = StringMap<Symbol *>;
852   using AbsoluteSymbolSet = DenseSet<Symbol *>;
853   using BlockSet = DenseSet<Block *>;
854 
855   template <typename... ArgTs>
856   Addressable &createAddressable(ArgTs &&... Args) {
857     Addressable *A =
858         reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
859     new (A) Addressable(std::forward<ArgTs>(Args)...);
860     return *A;
861   }
862 
863   void destroyAddressable(Addressable &A) {
864     A.~Addressable();
865     Allocator.Deallocate(&A);
866   }
867 
868   template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
869     Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
870     new (B) Block(std::forward<ArgTs>(Args)...);
871     B->getSection().addBlock(*B);
872     return *B;
873   }
874 
875   void destroyBlock(Block &B) {
876     B.~Block();
877     Allocator.Deallocate(&B);
878   }
879 
880   void destroySymbol(Symbol &S) {
881     S.~Symbol();
882     Allocator.Deallocate(&S);
883   }
884 
885   static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
886     return S.blocks();
887   }
888 
889   static iterator_range<Section::const_block_iterator>
890   getSectionConstBlocks(const Section &S) {
891     return S.blocks();
892   }
893 
894   static iterator_range<Section::symbol_iterator>
895   getSectionSymbols(Section &S) {
896     return S.symbols();
897   }
898 
899   static iterator_range<Section::const_symbol_iterator>
900   getSectionConstSymbols(const Section &S) {
901     return S.symbols();
902   }
903 
904   struct GetExternalSymbolMapEntryValue {
905     Symbol *operator()(ExternalSymbolMap::value_type &KV) const {
906       return KV.second;
907     }
908   };
909 
910   struct GetSectionMapEntryValue {
911     Section &operator()(SectionMap::value_type &KV) const { return *KV.second; }
912   };
913 
914   struct GetSectionMapEntryConstValue {
915     const Section &operator()(const SectionMap::value_type &KV) const {
916       return *KV.second;
917     }
918   };
919 
920 public:
921   using external_symbol_iterator =
922       mapped_iterator<ExternalSymbolMap::iterator,
923                       GetExternalSymbolMapEntryValue>;
924   using absolute_symbol_iterator = AbsoluteSymbolSet::iterator;
925 
926   using section_iterator =
927       mapped_iterator<SectionMap::iterator, GetSectionMapEntryValue>;
928   using const_section_iterator =
929       mapped_iterator<SectionMap::const_iterator, GetSectionMapEntryConstValue>;
930 
931   template <typename OuterItrT, typename InnerItrT, typename T,
932             iterator_range<InnerItrT> getInnerRange(
933                 typename OuterItrT::reference)>
934   class nested_collection_iterator
935       : public iterator_facade_base<
936             nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
937             std::forward_iterator_tag, T> {
938   public:
939     nested_collection_iterator() = default;
940 
941     nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
942         : OuterI(OuterI), OuterE(OuterE),
943           InnerI(getInnerBegin(OuterI, OuterE)) {
944       moveToNonEmptyInnerOrEnd();
945     }
946 
947     bool operator==(const nested_collection_iterator &RHS) const {
948       return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
949     }
950 
951     T operator*() const {
952       assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
953       return *InnerI;
954     }
955 
956     nested_collection_iterator operator++() {
957       ++InnerI;
958       moveToNonEmptyInnerOrEnd();
959       return *this;
960     }
961 
962   private:
963     static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
964       return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
965     }
966 
967     void moveToNonEmptyInnerOrEnd() {
968       while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
969         ++OuterI;
970         InnerI = getInnerBegin(OuterI, OuterE);
971       }
972     }
973 
974     OuterItrT OuterI, OuterE;
975     InnerItrT InnerI;
976   };
977 
978   using defined_symbol_iterator =
979       nested_collection_iterator<section_iterator, Section::symbol_iterator,
980                                  Symbol *, getSectionSymbols>;
981 
982   using const_defined_symbol_iterator =
983       nested_collection_iterator<const_section_iterator,
984                                  Section::const_symbol_iterator, const Symbol *,
985                                  getSectionConstSymbols>;
986 
987   using block_iterator =
988       nested_collection_iterator<section_iterator, Section::block_iterator,
989                                  Block *, getSectionBlocks>;
990 
991   using const_block_iterator =
992       nested_collection_iterator<const_section_iterator,
993                                  Section::const_block_iterator, const Block *,
994                                  getSectionConstBlocks>;
995 
996   using GetEdgeKindNameFunction = const char *(*)(Edge::Kind);
997 
998   LinkGraph(std::string Name, const Triple &TT, SubtargetFeatures Features,
999             unsigned PointerSize, llvm::endianness Endianness,
1000             GetEdgeKindNameFunction GetEdgeKindName)
1001       : Name(std::move(Name)), TT(TT), Features(std::move(Features)),
1002         PointerSize(PointerSize), Endianness(Endianness),
1003         GetEdgeKindName(std::move(GetEdgeKindName)) {}
1004 
1005   LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize,
1006             llvm::endianness Endianness,
1007             GetEdgeKindNameFunction GetEdgeKindName)
1008       : LinkGraph(std::move(Name), TT, SubtargetFeatures(), PointerSize,
1009                   Endianness, GetEdgeKindName) {}
1010 
1011   LinkGraph(const LinkGraph &) = delete;
1012   LinkGraph &operator=(const LinkGraph &) = delete;
1013   LinkGraph(LinkGraph &&) = delete;
1014   LinkGraph &operator=(LinkGraph &&) = delete;
1015 
1016   /// Returns the name of this graph (usually the name of the original
1017   /// underlying MemoryBuffer).
1018   const std::string &getName() const { return Name; }
1019 
1020   /// Returns the target triple for this Graph.
1021   const Triple &getTargetTriple() const { return TT; }
1022 
1023   /// Return the subtarget features for this Graph.
1024   const SubtargetFeatures &getFeatures() const { return Features; }
1025 
1026   /// Returns the pointer size for use in this graph.
1027   unsigned getPointerSize() const { return PointerSize; }
1028 
1029   /// Returns the endianness of content in this graph.
1030   llvm::endianness getEndianness() const { return Endianness; }
1031 
1032   const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); }
1033 
1034   /// Allocate a mutable buffer of the given size using the LinkGraph's
1035   /// allocator.
1036   MutableArrayRef<char> allocateBuffer(size_t Size) {
1037     return {Allocator.Allocate<char>(Size), Size};
1038   }
1039 
1040   /// Allocate a copy of the given string using the LinkGraph's allocator.
1041   /// This can be useful when renaming symbols or adding new content to the
1042   /// graph.
1043   MutableArrayRef<char> allocateContent(ArrayRef<char> Source) {
1044     auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size());
1045     llvm::copy(Source, AllocatedBuffer);
1046     return MutableArrayRef<char>(AllocatedBuffer, Source.size());
1047   }
1048 
1049   /// Allocate a copy of the given string using the LinkGraph's allocator.
1050   /// This can be useful when renaming symbols or adding new content to the
1051   /// graph.
1052   ///
1053   /// Note: This Twine-based overload requires an extra string copy and an
1054   /// extra heap allocation for large strings. The ArrayRef<char> overload
1055   /// should be preferred where possible.
1056   MutableArrayRef<char> allocateContent(Twine Source) {
1057     SmallString<256> TmpBuffer;
1058     auto SourceStr = Source.toStringRef(TmpBuffer);
1059     auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size());
1060     llvm::copy(SourceStr, AllocatedBuffer);
1061     return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size());
1062   }
1063 
1064   /// Allocate a copy of the given string using the LinkGraph's allocator.
1065   ///
1066   /// The allocated string will be terminated with a null character, and the
1067   /// returned MutableArrayRef will include this null character in the last
1068   /// position.
1069   MutableArrayRef<char> allocateCString(StringRef Source) {
1070     char *AllocatedBuffer = Allocator.Allocate<char>(Source.size() + 1);
1071     llvm::copy(Source, AllocatedBuffer);
1072     AllocatedBuffer[Source.size()] = '\0';
1073     return MutableArrayRef<char>(AllocatedBuffer, Source.size() + 1);
1074   }
1075 
1076   /// Allocate a copy of the given string using the LinkGraph's allocator.
1077   ///
1078   /// The allocated string will be terminated with a null character, and the
1079   /// returned MutableArrayRef will include this null character in the last
1080   /// position.
1081   ///
1082   /// Note: This Twine-based overload requires an extra string copy and an
1083   /// extra heap allocation for large strings. The ArrayRef<char> overload
1084   /// should be preferred where possible.
1085   MutableArrayRef<char> allocateCString(Twine Source) {
1086     SmallString<256> TmpBuffer;
1087     auto SourceStr = Source.toStringRef(TmpBuffer);
1088     auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size() + 1);
1089     llvm::copy(SourceStr, AllocatedBuffer);
1090     AllocatedBuffer[SourceStr.size()] = '\0';
1091     return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size() + 1);
1092   }
1093 
1094   /// Create a section with the given name, protection flags, and alignment.
1095   Section &createSection(StringRef Name, orc::MemProt Prot) {
1096     assert(!Sections.count(Name) && "Duplicate section name");
1097     std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
1098     return *Sections.insert(std::make_pair(Name, std::move(Sec))).first->second;
1099   }
1100 
1101   /// Create a content block.
1102   Block &createContentBlock(Section &Parent, ArrayRef<char> Content,
1103                             orc::ExecutorAddr Address, uint64_t Alignment,
1104                             uint64_t AlignmentOffset) {
1105     return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1106   }
1107 
1108   /// Create a content block with initially mutable data.
1109   Block &createMutableContentBlock(Section &Parent,
1110                                    MutableArrayRef<char> MutableContent,
1111                                    orc::ExecutorAddr Address,
1112                                    uint64_t Alignment,
1113                                    uint64_t AlignmentOffset) {
1114     return createBlock(Parent, MutableContent, Address, Alignment,
1115                        AlignmentOffset);
1116   }
1117 
1118   /// Create a content block with initially mutable data of the given size.
1119   /// Content will be allocated via the LinkGraph's allocateBuffer method.
1120   /// By default the memory will be zero-initialized. Passing false for
1121   /// ZeroInitialize will prevent this.
1122   Block &createMutableContentBlock(Section &Parent, size_t ContentSize,
1123                                    orc::ExecutorAddr Address,
1124                                    uint64_t Alignment, uint64_t AlignmentOffset,
1125                                    bool ZeroInitialize = true) {
1126     auto Content = allocateBuffer(ContentSize);
1127     if (ZeroInitialize)
1128       memset(Content.data(), 0, Content.size());
1129     return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1130   }
1131 
1132   /// Create a zero-fill block.
1133   Block &createZeroFillBlock(Section &Parent, orc::ExecutorAddrDiff Size,
1134                              orc::ExecutorAddr Address, uint64_t Alignment,
1135                              uint64_t AlignmentOffset) {
1136     return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
1137   }
1138 
1139   /// Returns a BinaryStreamReader for the given block.
1140   BinaryStreamReader getBlockContentReader(Block &B) {
1141     ArrayRef<uint8_t> C(
1142         reinterpret_cast<const uint8_t *>(B.getContent().data()), B.getSize());
1143     return BinaryStreamReader(C, getEndianness());
1144   }
1145 
1146   /// Returns a BinaryStreamWriter for the given block.
1147   /// This will call getMutableContent to obtain mutable content for the block.
1148   BinaryStreamWriter getBlockContentWriter(Block &B) {
1149     MutableArrayRef<uint8_t> C(
1150         reinterpret_cast<uint8_t *>(B.getMutableContent(*this).data()),
1151         B.getSize());
1152     return BinaryStreamWriter(C, getEndianness());
1153   }
1154 
1155   /// Cache type for the splitBlock function.
1156   using SplitBlockCache = std::optional<SmallVector<Symbol *, 8>>;
1157 
1158   /// Splits block B at the given index which must be greater than zero.
1159   /// If SplitIndex == B.getSize() then this function is a no-op and returns B.
1160   /// If SplitIndex < B.getSize() then this function returns a new block
1161   /// covering the range [ 0, SplitIndex ), and B is modified to cover the range
1162   /// [ SplitIndex, B.size() ).
1163   ///
1164   /// The optional Cache parameter can be used to speed up repeated calls to
1165   /// splitBlock for a single block. If the value is None the cache will be
1166   /// treated as uninitialized and splitBlock will populate it. Otherwise it
1167   /// is assumed to contain the list of Symbols pointing at B, sorted in
1168   /// descending order of offset.
1169   ///
1170   /// Notes:
1171   ///
1172   /// 1. splitBlock must be used with care. Splitting a block may cause
1173   ///    incoming edges to become invalid if the edge target subexpression
1174   ///    points outside the bounds of the newly split target block (E.g. an
1175   ///    edge 'S + 10 : Pointer64' where S points to a newly split block
1176   ///    whose size is less than 10). No attempt is made to detect invalidation
1177   ///    of incoming edges, as in general this requires context that the
1178   ///    LinkGraph does not have. Clients are responsible for ensuring that
1179   ///    splitBlock is not used in a way that invalidates edges.
1180   ///
1181   /// 2. The newly introduced block will have a new ordinal which will be
1182   ///    higher than any other ordinals in the section. Clients are responsible
1183   ///    for re-assigning block ordinals to restore a compatible order if
1184   ///    needed.
1185   ///
1186   /// 3. The cache is not automatically updated if new symbols are introduced
1187   ///    between calls to splitBlock. Any newly introduced symbols may be
1188   ///    added to the cache manually (descending offset order must be
1189   ///    preserved), or the cache can be set to None and rebuilt by
1190   ///    splitBlock on the next call.
1191   Block &splitBlock(Block &B, size_t SplitIndex,
1192                     SplitBlockCache *Cache = nullptr);
1193 
1194   /// Add an external symbol.
1195   /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
1196   /// size is not known, you should substitute '0'.
1197   /// The IsWeaklyReferenced argument determines whether the symbol must be
1198   /// present during lookup: Externals that are strongly referenced must be
1199   /// found or an error will be emitted. Externals that are weakly referenced
1200   /// are permitted to be undefined, in which case they are assigned an address
1201   /// of 0.
1202   Symbol &addExternalSymbol(StringRef Name, orc::ExecutorAddrDiff Size,
1203                             bool IsWeaklyReferenced) {
1204     assert(!ExternalSymbols.contains(Name) && "Duplicate external symbol");
1205     auto &Sym = Symbol::constructExternal(
1206         Allocator, createAddressable(orc::ExecutorAddr(), false), Name, Size,
1207         Linkage::Strong, IsWeaklyReferenced);
1208     ExternalSymbols.insert({Sym.getName(), &Sym});
1209     return Sym;
1210   }
1211 
1212   /// Add an absolute symbol.
1213   Symbol &addAbsoluteSymbol(StringRef Name, orc::ExecutorAddr Address,
1214                             orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1215                             bool IsLive) {
1216     assert((S == Scope::Local || llvm::count_if(AbsoluteSymbols,
1217                                                [&](const Symbol *Sym) {
1218                                                  return Sym->getName() == Name;
1219                                                }) == 0) &&
1220                                     "Duplicate absolute symbol");
1221     auto &Sym = Symbol::constructAbsolute(Allocator, createAddressable(Address),
1222                                           Name, Size, L, S, IsLive);
1223     AbsoluteSymbols.insert(&Sym);
1224     return Sym;
1225   }
1226 
1227   /// Add an anonymous symbol.
1228   Symbol &addAnonymousSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1229                              orc::ExecutorAddrDiff Size, bool IsCallable,
1230                              bool IsLive) {
1231     auto &Sym = Symbol::constructAnonDef(Allocator, Content, Offset, Size,
1232                                          IsCallable, IsLive);
1233     Content.getSection().addSymbol(Sym);
1234     return Sym;
1235   }
1236 
1237   /// Add a named symbol.
1238   Symbol &addDefinedSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1239                            StringRef Name, orc::ExecutorAddrDiff Size,
1240                            Linkage L, Scope S, bool IsCallable, bool IsLive) {
1241     assert((S == Scope::Local || llvm::count_if(defined_symbols(),
1242                                                 [&](const Symbol *Sym) {
1243                                                   return Sym->getName() == Name;
1244                                                 }) == 0) &&
1245            "Duplicate defined symbol");
1246     auto &Sym = Symbol::constructNamedDef(Allocator, Content, Offset, Name,
1247                                           Size, L, S, IsLive, IsCallable);
1248     Content.getSection().addSymbol(Sym);
1249     return Sym;
1250   }
1251 
1252   iterator_range<section_iterator> sections() {
1253     return make_range(
1254         section_iterator(Sections.begin(), GetSectionMapEntryValue()),
1255         section_iterator(Sections.end(), GetSectionMapEntryValue()));
1256   }
1257 
1258   iterator_range<const_section_iterator> sections() const {
1259     return make_range(
1260         const_section_iterator(Sections.begin(),
1261                                GetSectionMapEntryConstValue()),
1262         const_section_iterator(Sections.end(), GetSectionMapEntryConstValue()));
1263   }
1264 
1265   size_t sections_size() const { return Sections.size(); }
1266 
1267   /// Returns the section with the given name if it exists, otherwise returns
1268   /// null.
1269   Section *findSectionByName(StringRef Name) {
1270     auto I = Sections.find(Name);
1271     if (I == Sections.end())
1272       return nullptr;
1273     return I->second.get();
1274   }
1275 
1276   iterator_range<block_iterator> blocks() {
1277     auto Secs = sections();
1278     return make_range(block_iterator(Secs.begin(), Secs.end()),
1279                       block_iterator(Secs.end(), Secs.end()));
1280   }
1281 
1282   iterator_range<const_block_iterator> blocks() const {
1283     auto Secs = sections();
1284     return make_range(const_block_iterator(Secs.begin(), Secs.end()),
1285                       const_block_iterator(Secs.end(), Secs.end()));
1286   }
1287 
1288   iterator_range<external_symbol_iterator> external_symbols() {
1289     return make_range(
1290         external_symbol_iterator(ExternalSymbols.begin(),
1291                                  GetExternalSymbolMapEntryValue()),
1292         external_symbol_iterator(ExternalSymbols.end(),
1293                                  GetExternalSymbolMapEntryValue()));
1294   }
1295 
1296   iterator_range<absolute_symbol_iterator> absolute_symbols() {
1297     return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1298   }
1299 
1300   iterator_range<defined_symbol_iterator> defined_symbols() {
1301     auto Secs = sections();
1302     return make_range(defined_symbol_iterator(Secs.begin(), Secs.end()),
1303                       defined_symbol_iterator(Secs.end(), Secs.end()));
1304   }
1305 
1306   iterator_range<const_defined_symbol_iterator> defined_symbols() const {
1307     auto Secs = sections();
1308     return make_range(const_defined_symbol_iterator(Secs.begin(), Secs.end()),
1309                       const_defined_symbol_iterator(Secs.end(), Secs.end()));
1310   }
1311 
1312   /// Make the given symbol external (must not already be external).
1313   ///
1314   /// Symbol size, linkage and callability will be left unchanged. Symbol scope
1315   /// will be set to Default, and offset will be reset to 0.
1316   void makeExternal(Symbol &Sym) {
1317     assert(!Sym.isExternal() && "Symbol is already external");
1318     if (Sym.isAbsolute()) {
1319       assert(AbsoluteSymbols.count(&Sym) &&
1320              "Sym is not in the absolute symbols set");
1321       assert(Sym.getOffset() == 0 && "Absolute not at offset 0");
1322       AbsoluteSymbols.erase(&Sym);
1323       auto &A = Sym.getAddressable();
1324       A.setAbsolute(false);
1325       A.setAddress(orc::ExecutorAddr());
1326     } else {
1327       assert(Sym.isDefined() && "Sym is not a defined symbol");
1328       Section &Sec = Sym.getBlock().getSection();
1329       Sec.removeSymbol(Sym);
1330       Sym.makeExternal(createAddressable(orc::ExecutorAddr(), false));
1331     }
1332     ExternalSymbols.insert({Sym.getName(), &Sym});
1333   }
1334 
1335   /// Make the given symbol an absolute with the given address (must not already
1336   /// be absolute).
1337   ///
1338   /// The symbol's size, linkage, and callability, and liveness will be left
1339   /// unchanged, and its offset will be reset to 0.
1340   ///
1341   /// If the symbol was external then its scope will be set to local, otherwise
1342   /// it will be left unchanged.
1343   void makeAbsolute(Symbol &Sym, orc::ExecutorAddr Address) {
1344     assert(!Sym.isAbsolute() && "Symbol is already absolute");
1345     if (Sym.isExternal()) {
1346       assert(ExternalSymbols.contains(Sym.getName()) &&
1347              "Sym is not in the absolute symbols set");
1348       assert(Sym.getOffset() == 0 && "External is not at offset 0");
1349       ExternalSymbols.erase(Sym.getName());
1350       auto &A = Sym.getAddressable();
1351       A.setAbsolute(true);
1352       A.setAddress(Address);
1353       Sym.setScope(Scope::Local);
1354     } else {
1355       assert(Sym.isDefined() && "Sym is not a defined symbol");
1356       Section &Sec = Sym.getBlock().getSection();
1357       Sec.removeSymbol(Sym);
1358       Sym.makeAbsolute(createAddressable(Address));
1359     }
1360     AbsoluteSymbols.insert(&Sym);
1361   }
1362 
1363   /// Turn an absolute or external symbol into a defined one by attaching it to
1364   /// a block. Symbol must not already be defined.
1365   void makeDefined(Symbol &Sym, Block &Content, orc::ExecutorAddrDiff Offset,
1366                    orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1367                    bool IsLive) {
1368     assert(!Sym.isDefined() && "Sym is already a defined symbol");
1369     if (Sym.isAbsolute()) {
1370       assert(AbsoluteSymbols.count(&Sym) &&
1371              "Symbol is not in the absolutes set");
1372       AbsoluteSymbols.erase(&Sym);
1373     } else {
1374       assert(ExternalSymbols.contains(Sym.getName()) &&
1375              "Symbol is not in the externals set");
1376       ExternalSymbols.erase(Sym.getName());
1377     }
1378     Addressable &OldBase = *Sym.Base;
1379     Sym.setBlock(Content);
1380     Sym.setOffset(Offset);
1381     Sym.setSize(Size);
1382     Sym.setLinkage(L);
1383     Sym.setScope(S);
1384     Sym.setLive(IsLive);
1385     Content.getSection().addSymbol(Sym);
1386     destroyAddressable(OldBase);
1387   }
1388 
1389   /// Transfer a defined symbol from one block to another.
1390   ///
1391   /// The symbol's offset within DestBlock is set to NewOffset.
1392   ///
1393   /// If ExplicitNewSize is given as None then the size of the symbol will be
1394   /// checked and auto-truncated to at most the size of the remainder (from the
1395   /// given offset) of the size of the new block.
1396   ///
1397   /// All other symbol attributes are unchanged.
1398   void
1399   transferDefinedSymbol(Symbol &Sym, Block &DestBlock,
1400                         orc::ExecutorAddrDiff NewOffset,
1401                         std::optional<orc::ExecutorAddrDiff> ExplicitNewSize) {
1402     auto &OldSection = Sym.getBlock().getSection();
1403     Sym.setBlock(DestBlock);
1404     Sym.setOffset(NewOffset);
1405     if (ExplicitNewSize)
1406       Sym.setSize(*ExplicitNewSize);
1407     else {
1408       auto RemainingBlockSize = DestBlock.getSize() - NewOffset;
1409       if (Sym.getSize() > RemainingBlockSize)
1410         Sym.setSize(RemainingBlockSize);
1411     }
1412     if (&DestBlock.getSection() != &OldSection) {
1413       OldSection.removeSymbol(Sym);
1414       DestBlock.getSection().addSymbol(Sym);
1415     }
1416   }
1417 
1418   /// Transfers the given Block and all Symbols pointing to it to the given
1419   /// Section.
1420   ///
1421   /// No attempt is made to check compatibility of the source and destination
1422   /// sections. Blocks may be moved between sections with incompatible
1423   /// permissions (e.g. from data to text). The client is responsible for
1424   /// ensuring that this is safe.
1425   void transferBlock(Block &B, Section &NewSection) {
1426     auto &OldSection = B.getSection();
1427     if (&OldSection == &NewSection)
1428       return;
1429     SmallVector<Symbol *> AttachedSymbols;
1430     for (auto *S : OldSection.symbols())
1431       if (&S->getBlock() == &B)
1432         AttachedSymbols.push_back(S);
1433     for (auto *S : AttachedSymbols) {
1434       OldSection.removeSymbol(*S);
1435       NewSection.addSymbol(*S);
1436     }
1437     OldSection.removeBlock(B);
1438     NewSection.addBlock(B);
1439   }
1440 
1441   /// Move all blocks and symbols from the source section to the destination
1442   /// section.
1443   ///
1444   /// If PreserveSrcSection is true (or SrcSection and DstSection are the same)
1445   /// then SrcSection is preserved, otherwise it is removed (the default).
1446   void mergeSections(Section &DstSection, Section &SrcSection,
1447                      bool PreserveSrcSection = false) {
1448     if (&DstSection == &SrcSection)
1449       return;
1450     for (auto *B : SrcSection.blocks())
1451       B->setSection(DstSection);
1452     SrcSection.transferContentTo(DstSection);
1453     if (!PreserveSrcSection)
1454       removeSection(SrcSection);
1455   }
1456 
1457   /// Removes an external symbol. Also removes the underlying Addressable.
1458   void removeExternalSymbol(Symbol &Sym) {
1459     assert(!Sym.isDefined() && !Sym.isAbsolute() &&
1460            "Sym is not an external symbol");
1461     assert(ExternalSymbols.contains(Sym.getName()) &&
1462            "Symbol is not in the externals set");
1463     ExternalSymbols.erase(Sym.getName());
1464     Addressable &Base = *Sym.Base;
1465     assert(llvm::none_of(external_symbols(),
1466                          [&](Symbol *AS) { return AS->Base == &Base; }) &&
1467            "Base addressable still in use");
1468     destroySymbol(Sym);
1469     destroyAddressable(Base);
1470   }
1471 
1472   /// Remove an absolute symbol. Also removes the underlying Addressable.
1473   void removeAbsoluteSymbol(Symbol &Sym) {
1474     assert(!Sym.isDefined() && Sym.isAbsolute() &&
1475            "Sym is not an absolute symbol");
1476     assert(AbsoluteSymbols.count(&Sym) &&
1477            "Symbol is not in the absolute symbols set");
1478     AbsoluteSymbols.erase(&Sym);
1479     Addressable &Base = *Sym.Base;
1480     assert(llvm::none_of(external_symbols(),
1481                          [&](Symbol *AS) { return AS->Base == &Base; }) &&
1482            "Base addressable still in use");
1483     destroySymbol(Sym);
1484     destroyAddressable(Base);
1485   }
1486 
1487   /// Removes defined symbols. Does not remove the underlying block.
1488   void removeDefinedSymbol(Symbol &Sym) {
1489     assert(Sym.isDefined() && "Sym is not a defined symbol");
1490     Sym.getBlock().getSection().removeSymbol(Sym);
1491     destroySymbol(Sym);
1492   }
1493 
1494   /// Remove a block. The block reference is defunct after calling this
1495   /// function and should no longer be used.
1496   void removeBlock(Block &B) {
1497     assert(llvm::none_of(B.getSection().symbols(),
1498                          [&](const Symbol *Sym) {
1499                            return &Sym->getBlock() == &B;
1500                          }) &&
1501            "Block still has symbols attached");
1502     B.getSection().removeBlock(B);
1503     destroyBlock(B);
1504   }
1505 
1506   /// Remove a section. The section reference is defunct after calling this
1507   /// function and should no longer be used.
1508   void removeSection(Section &Sec) {
1509     assert(Sections.count(Sec.getName()) && "Section not found");
1510     assert(Sections.find(Sec.getName())->second.get() == &Sec &&
1511            "Section map entry invalid");
1512     Sections.erase(Sec.getName());
1513   }
1514 
1515   /// Accessor for the AllocActions object for this graph. This can be used to
1516   /// register allocation action calls prior to finalization.
1517   ///
1518   /// Accessing this object after finalization will result in undefined
1519   /// behavior.
1520   orc::shared::AllocActions &allocActions() { return AAs; }
1521 
1522   /// Dump the graph.
1523   void dump(raw_ostream &OS);
1524 
1525 private:
1526   // Put the BumpPtrAllocator first so that we don't free any of the underlying
1527   // memory until the Symbol/Addressable destructors have been run.
1528   BumpPtrAllocator Allocator;
1529 
1530   std::string Name;
1531   Triple TT;
1532   SubtargetFeatures Features;
1533   unsigned PointerSize;
1534   llvm::endianness Endianness;
1535   GetEdgeKindNameFunction GetEdgeKindName = nullptr;
1536   DenseMap<StringRef, std::unique_ptr<Section>> Sections;
1537   ExternalSymbolMap ExternalSymbols;
1538   AbsoluteSymbolSet AbsoluteSymbols;
1539   orc::shared::AllocActions AAs;
1540 };
1541 
1542 inline MutableArrayRef<char> Block::getMutableContent(LinkGraph &G) {
1543   if (!ContentMutable)
1544     setMutableContent(G.allocateContent({Data, Size}));
1545   return MutableArrayRef<char>(const_cast<char *>(Data), Size);
1546 }
1547 
1548 /// Enables easy lookup of blocks by addresses.
1549 class BlockAddressMap {
1550 public:
1551   using AddrToBlockMap = std::map<orc::ExecutorAddr, Block *>;
1552   using const_iterator = AddrToBlockMap::const_iterator;
1553 
1554   /// A block predicate that always adds all blocks.
1555   static bool includeAllBlocks(const Block &B) { return true; }
1556 
1557   /// A block predicate that always includes blocks with non-null addresses.
1558   static bool includeNonNull(const Block &B) { return !!B.getAddress(); }
1559 
1560   BlockAddressMap() = default;
1561 
1562   /// Add a block to the map. Returns an error if the block overlaps with any
1563   /// existing block.
1564   template <typename PredFn = decltype(includeAllBlocks)>
1565   Error addBlock(Block &B, PredFn Pred = includeAllBlocks) {
1566     if (!Pred(B))
1567       return Error::success();
1568 
1569     auto I = AddrToBlock.upper_bound(B.getAddress());
1570 
1571     // If we're not at the end of the map, check for overlap with the next
1572     // element.
1573     if (I != AddrToBlock.end()) {
1574       if (B.getAddress() + B.getSize() > I->second->getAddress())
1575         return overlapError(B, *I->second);
1576     }
1577 
1578     // If we're not at the start of the map, check for overlap with the previous
1579     // element.
1580     if (I != AddrToBlock.begin()) {
1581       auto &PrevBlock = *std::prev(I)->second;
1582       if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
1583         return overlapError(B, PrevBlock);
1584     }
1585 
1586     AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
1587     return Error::success();
1588   }
1589 
1590   /// Add a block to the map without checking for overlap with existing blocks.
1591   /// The client is responsible for ensuring that the block added does not
1592   /// overlap with any existing block.
1593   void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
1594 
1595   /// Add a range of blocks to the map. Returns an error if any block in the
1596   /// range overlaps with any other block in the range, or with any existing
1597   /// block in the map.
1598   template <typename BlockPtrRange,
1599             typename PredFn = decltype(includeAllBlocks)>
1600   Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
1601     for (auto *B : Blocks)
1602       if (auto Err = addBlock(*B, Pred))
1603         return Err;
1604     return Error::success();
1605   }
1606 
1607   /// Add a range of blocks to the map without checking for overlap with
1608   /// existing blocks. The client is responsible for ensuring that the block
1609   /// added does not overlap with any existing block.
1610   template <typename BlockPtrRange>
1611   void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
1612     for (auto *B : Blocks)
1613       addBlockWithoutChecking(*B);
1614   }
1615 
1616   /// Iterates over (Address, Block*) pairs in ascending order of address.
1617   const_iterator begin() const { return AddrToBlock.begin(); }
1618   const_iterator end() const { return AddrToBlock.end(); }
1619 
1620   /// Returns the block starting at the given address, or nullptr if no such
1621   /// block exists.
1622   Block *getBlockAt(orc::ExecutorAddr Addr) const {
1623     auto I = AddrToBlock.find(Addr);
1624     if (I == AddrToBlock.end())
1625       return nullptr;
1626     return I->second;
1627   }
1628 
1629   /// Returns the block covering the given address, or nullptr if no such block
1630   /// exists.
1631   Block *getBlockCovering(orc::ExecutorAddr Addr) const {
1632     auto I = AddrToBlock.upper_bound(Addr);
1633     if (I == AddrToBlock.begin())
1634       return nullptr;
1635     auto *B = std::prev(I)->second;
1636     if (Addr < B->getAddress() + B->getSize())
1637       return B;
1638     return nullptr;
1639   }
1640 
1641 private:
1642   Error overlapError(Block &NewBlock, Block &ExistingBlock) {
1643     auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
1644     auto ExistingBlockEnd =
1645         ExistingBlock.getAddress() + ExistingBlock.getSize();
1646     return make_error<JITLinkError>(
1647         "Block at " +
1648         formatv("{0:x16} -- {1:x16}", NewBlock.getAddress().getValue(),
1649                 NewBlockEnd.getValue()) +
1650         " overlaps " +
1651         formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress().getValue(),
1652                 ExistingBlockEnd.getValue()));
1653   }
1654 
1655   AddrToBlockMap AddrToBlock;
1656 };
1657 
1658 /// A map of addresses to Symbols.
1659 class SymbolAddressMap {
1660 public:
1661   using SymbolVector = SmallVector<Symbol *, 1>;
1662 
1663   /// Add a symbol to the SymbolAddressMap.
1664   void addSymbol(Symbol &Sym) {
1665     AddrToSymbols[Sym.getAddress()].push_back(&Sym);
1666   }
1667 
1668   /// Add all symbols in a given range to the SymbolAddressMap.
1669   template <typename SymbolPtrCollection>
1670   void addSymbols(SymbolPtrCollection &&Symbols) {
1671     for (auto *Sym : Symbols)
1672       addSymbol(*Sym);
1673   }
1674 
1675   /// Returns the list of symbols that start at the given address, or nullptr if
1676   /// no such symbols exist.
1677   const SymbolVector *getSymbolsAt(orc::ExecutorAddr Addr) const {
1678     auto I = AddrToSymbols.find(Addr);
1679     if (I == AddrToSymbols.end())
1680       return nullptr;
1681     return &I->second;
1682   }
1683 
1684 private:
1685   std::map<orc::ExecutorAddr, SymbolVector> AddrToSymbols;
1686 };
1687 
1688 /// A function for mutating LinkGraphs.
1689 using LinkGraphPassFunction = unique_function<Error(LinkGraph &)>;
1690 
1691 /// A list of LinkGraph passes.
1692 using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
1693 
1694 /// An LinkGraph pass configuration, consisting of a list of pre-prune,
1695 /// post-prune, and post-fixup passes.
1696 struct PassConfiguration {
1697 
1698   /// Pre-prune passes.
1699   ///
1700   /// These passes are called on the graph after it is built, and before any
1701   /// symbols have been pruned. Graph nodes still have their original vmaddrs.
1702   ///
1703   /// Notable use cases: Marking symbols live or should-discard.
1704   LinkGraphPassList PrePrunePasses;
1705 
1706   /// Post-prune passes.
1707   ///
1708   /// These passes are called on the graph after dead stripping, but before
1709   /// memory is allocated or nodes assigned their final addresses.
1710   ///
1711   /// Notable use cases: Building GOT, stub, and TLV symbols.
1712   LinkGraphPassList PostPrunePasses;
1713 
1714   /// Post-allocation passes.
1715   ///
1716   /// These passes are called on the graph after memory has been allocated and
1717   /// defined nodes have been assigned their final addresses, but before the
1718   /// context has been notified of these addresses. At this point externals
1719   /// have not been resolved, and symbol content has not yet been copied into
1720   /// working memory.
1721   ///
1722   /// Notable use cases: Setting up data structures associated with addresses
1723   /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the
1724   /// JIT runtime) -- using a PostAllocationPass for this ensures that the
1725   /// data structures are in-place before any query for resolved symbols
1726   /// can complete.
1727   LinkGraphPassList PostAllocationPasses;
1728 
1729   /// Pre-fixup passes.
1730   ///
1731   /// These passes are called on the graph after memory has been allocated,
1732   /// content copied into working memory, and all nodes (including externals)
1733   /// have been assigned their final addresses, but before any fixups have been
1734   /// applied.
1735   ///
1736   /// Notable use cases: Late link-time optimizations like GOT and stub
1737   /// elimination.
1738   LinkGraphPassList PreFixupPasses;
1739 
1740   /// Post-fixup passes.
1741   ///
1742   /// These passes are called on the graph after block contents has been copied
1743   /// to working memory, and fixups applied. Blocks have been updated to point
1744   /// to their fixed up content.
1745   ///
1746   /// Notable use cases: Testing and validation.
1747   LinkGraphPassList PostFixupPasses;
1748 };
1749 
1750 /// Flags for symbol lookup.
1751 ///
1752 /// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
1753 ///        the two types once we have an OrcSupport library.
1754 enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
1755 
1756 raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF);
1757 
1758 /// A map of symbol names to resolved addresses.
1759 using AsyncLookupResult = DenseMap<StringRef, orc::ExecutorSymbolDef>;
1760 
1761 /// A function object to call with a resolved symbol map (See AsyncLookupResult)
1762 /// or an error if resolution failed.
1763 class JITLinkAsyncLookupContinuation {
1764 public:
1765   virtual ~JITLinkAsyncLookupContinuation() = default;
1766   virtual void run(Expected<AsyncLookupResult> LR) = 0;
1767 
1768 private:
1769   virtual void anchor();
1770 };
1771 
1772 /// Create a lookup continuation from a function object.
1773 template <typename Continuation>
1774 std::unique_ptr<JITLinkAsyncLookupContinuation>
1775 createLookupContinuation(Continuation Cont) {
1776 
1777   class Impl final : public JITLinkAsyncLookupContinuation {
1778   public:
1779     Impl(Continuation C) : C(std::move(C)) {}
1780     void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
1781 
1782   private:
1783     Continuation C;
1784   };
1785 
1786   return std::make_unique<Impl>(std::move(Cont));
1787 }
1788 
1789 /// Holds context for a single jitLink invocation.
1790 class JITLinkContext {
1791 public:
1792   using LookupMap = DenseMap<StringRef, SymbolLookupFlags>;
1793 
1794   /// Create a JITLinkContext.
1795   JITLinkContext(const JITLinkDylib *JD) : JD(JD) {}
1796 
1797   /// Destroy a JITLinkContext.
1798   virtual ~JITLinkContext();
1799 
1800   /// Return the JITLinkDylib that this link is targeting, if any.
1801   const JITLinkDylib *getJITLinkDylib() const { return JD; }
1802 
1803   /// Return the MemoryManager to be used for this link.
1804   virtual JITLinkMemoryManager &getMemoryManager() = 0;
1805 
1806   /// Notify this context that linking failed.
1807   /// Called by JITLink if linking cannot be completed.
1808   virtual void notifyFailed(Error Err) = 0;
1809 
1810   /// Called by JITLink to resolve external symbols. This method is passed a
1811   /// lookup continutation which it must call with a result to continue the
1812   /// linking process.
1813   virtual void lookup(const LookupMap &Symbols,
1814                       std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
1815 
1816   /// Called by JITLink once all defined symbols in the graph have been assigned
1817   /// their final memory locations in the target process. At this point the
1818   /// LinkGraph can be inspected to build a symbol table, however the block
1819   /// content will not generally have been copied to the target location yet.
1820   ///
1821   /// If the client detects an error in the LinkGraph state (e.g. unexpected or
1822   /// missing symbols) they may return an error here. The error will be
1823   /// propagated to notifyFailed and the linker will bail out.
1824   virtual Error notifyResolved(LinkGraph &G) = 0;
1825 
1826   /// Called by JITLink to notify the context that the object has been
1827   /// finalized (i.e. emitted to memory and memory permissions set). If all of
1828   /// this objects dependencies have also been finalized then the code is ready
1829   /// to run.
1830   virtual void notifyFinalized(JITLinkMemoryManager::FinalizedAlloc Alloc) = 0;
1831 
1832   /// Called by JITLink prior to linking to determine whether default passes for
1833   /// the target should be added. The default implementation returns true.
1834   /// If subclasses override this method to return false for any target then
1835   /// they are required to fully configure the pass pipeline for that target.
1836   virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
1837 
1838   /// Returns the mark-live pass to be used for this link. If no pass is
1839   /// returned (the default) then the target-specific linker implementation will
1840   /// choose a conservative default (usually marking all symbols live).
1841   /// This function is only called if shouldAddDefaultTargetPasses returns true,
1842   /// otherwise the JITContext is responsible for adding a mark-live pass in
1843   /// modifyPassConfig.
1844   virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
1845 
1846   /// Called by JITLink to modify the pass pipeline prior to linking.
1847   /// The default version performs no modification.
1848   virtual Error modifyPassConfig(LinkGraph &G, PassConfiguration &Config);
1849 
1850 private:
1851   const JITLinkDylib *JD = nullptr;
1852 };
1853 
1854 /// Marks all symbols in a graph live. This can be used as a default,
1855 /// conservative mark-live implementation.
1856 Error markAllSymbolsLive(LinkGraph &G);
1857 
1858 /// Create an out of range error for the given edge in the given block.
1859 Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B,
1860                                 const Edge &E);
1861 
1862 Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N,
1863                          const Edge &E);
1864 
1865 /// Creates a new pointer block in the given section and returns an
1866 /// Anonymous symbol pointing to it.
1867 ///
1868 /// The pointer block will have the following default values:
1869 ///   alignment: PointerSize
1870 ///   alignment-offset: 0
1871 ///   address: highest allowable
1872 using AnonymousPointerCreator = unique_function<Expected<Symbol &>(
1873     LinkGraph &G, Section &PointerSection, Symbol *InitialTarget,
1874     uint64_t InitialAddend)>;
1875 
1876 /// Get target-specific AnonymousPointerCreator
1877 AnonymousPointerCreator getAnonymousPointerCreator(const Triple &TT);
1878 
1879 /// Create a jump stub that jumps via the pointer at the given symbol and
1880 /// an anonymous symbol pointing to it. Return the anonymous symbol.
1881 ///
1882 /// The stub block will be created by createPointerJumpStubBlock.
1883 using PointerJumpStubCreator = unique_function<Expected<Symbol &>(
1884     LinkGraph &G, Section &StubSection, Symbol &PointerSymbol)>;
1885 
1886 /// Get target-specific PointerJumpStubCreator
1887 PointerJumpStubCreator getPointerJumpStubCreator(const Triple &TT);
1888 
1889 /// Base case for edge-visitors where the visitor-list is empty.
1890 inline void visitEdge(LinkGraph &G, Block *B, Edge &E) {}
1891 
1892 /// Applies the first visitor in the list to the given edge. If the visitor's
1893 /// visitEdge method returns true then we return immediately, otherwise we
1894 /// apply the next visitor.
1895 template <typename VisitorT, typename... VisitorTs>
1896 void visitEdge(LinkGraph &G, Block *B, Edge &E, VisitorT &&V,
1897                VisitorTs &&...Vs) {
1898   if (!V.visitEdge(G, B, E))
1899     visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1900 }
1901 
1902 /// For each edge in the given graph, apply a list of visitors to the edge,
1903 /// stopping when the first visitor's visitEdge method returns true.
1904 ///
1905 /// Only visits edges that were in the graph at call time: if any visitor
1906 /// adds new edges those will not be visited. Visitors are not allowed to
1907 /// remove edges (though they can change their kind, target, and addend).
1908 template <typename... VisitorTs>
1909 void visitExistingEdges(LinkGraph &G, VisitorTs &&...Vs) {
1910   // We may add new blocks during this process, but we don't want to iterate
1911   // over them, so build a worklist.
1912   std::vector<Block *> Worklist(G.blocks().begin(), G.blocks().end());
1913 
1914   for (auto *B : Worklist)
1915     for (auto &E : B->edges())
1916       visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1917 }
1918 
1919 /// Create a LinkGraph from the given object buffer.
1920 ///
1921 /// Note: The graph does not take ownership of the underlying buffer, nor copy
1922 /// its contents. The caller is responsible for ensuring that the object buffer
1923 /// outlives the graph.
1924 Expected<std::unique_ptr<LinkGraph>>
1925 createLinkGraphFromObject(MemoryBufferRef ObjectBuffer);
1926 
1927 /// Create a \c LinkGraph defining the given absolute symbols.
1928 std::unique_ptr<LinkGraph> absoluteSymbolsLinkGraph(const Triple &TT,
1929                                                     orc::SymbolMap Symbols);
1930 
1931 /// Link the given graph.
1932 void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx);
1933 
1934 } // end namespace jitlink
1935 } // end namespace llvm
1936 
1937 #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
1938