1 //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Contains generic JIT-linker types.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
14 #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h"
22 #include "llvm/ExecutionEngine/JITLink/MemoryFlags.h"
23 #include "llvm/ExecutionEngine/JITSymbol.h"
24 #include "llvm/Support/Allocator.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Error.h"
27 #include "llvm/Support/FormatVariadic.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/MemoryBuffer.h"
30 
31 #include <map>
32 #include <string>
33 #include <system_error>
34 
35 namespace llvm {
36 namespace jitlink {
37 
38 class LinkGraph;
39 class Symbol;
40 class Section;
41 
42 /// Base class for errors originating in JIT linker, e.g. missing relocation
43 /// support.
44 class JITLinkError : public ErrorInfo<JITLinkError> {
45 public:
46   static char ID;
47 
48   JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
49 
50   void log(raw_ostream &OS) const override;
51   const std::string &getErrorMessage() const { return ErrMsg; }
52   std::error_code convertToErrorCode() const override;
53 
54 private:
55   std::string ErrMsg;
56 };
57 
58 /// Represents fixups and constraints in the LinkGraph.
59 class Edge {
60 public:
61   using Kind = uint8_t;
62 
63   enum GenericEdgeKind : Kind {
64     Invalid,                    // Invalid edge value.
65     FirstKeepAlive,             // Keeps target alive. Offset/addend zero.
66     KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
67     FirstRelocation             // First architecture specific relocation.
68   };
69 
70   using OffsetT = uint32_t;
71   using AddendT = int64_t;
72 
73   Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
74       : Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
75 
76   OffsetT getOffset() const { return Offset; }
77   void setOffset(OffsetT Offset) { this->Offset = Offset; }
78   Kind getKind() const { return K; }
79   void setKind(Kind K) { this->K = K; }
80   bool isRelocation() const { return K >= FirstRelocation; }
81   Kind getRelocation() const {
82     assert(isRelocation() && "Not a relocation edge");
83     return K - FirstRelocation;
84   }
85   bool isKeepAlive() const { return K >= FirstKeepAlive; }
86   Symbol &getTarget() const { return *Target; }
87   void setTarget(Symbol &Target) { this->Target = &Target; }
88   AddendT getAddend() const { return Addend; }
89   void setAddend(AddendT Addend) { this->Addend = Addend; }
90 
91 private:
92   Symbol *Target = nullptr;
93   OffsetT Offset = 0;
94   AddendT Addend = 0;
95   Kind K = 0;
96 };
97 
98 /// Returns the string name of the given generic edge kind, or "unknown"
99 /// otherwise. Useful for debugging.
100 const char *getGenericEdgeKindName(Edge::Kind K);
101 
102 /// Base class for Addressable entities (externals, absolutes, blocks).
103 class Addressable {
104   friend class LinkGraph;
105 
106 protected:
107   Addressable(orc::ExecutorAddr Address, bool IsDefined)
108       : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
109 
110   Addressable(orc::ExecutorAddr Address)
111       : Address(Address), IsDefined(false), IsAbsolute(true) {
112     assert(!(IsDefined && IsAbsolute) &&
113            "Block cannot be both defined and absolute");
114   }
115 
116 public:
117   Addressable(const Addressable &) = delete;
118   Addressable &operator=(const Addressable &) = default;
119   Addressable(Addressable &&) = delete;
120   Addressable &operator=(Addressable &&) = default;
121 
122   orc::ExecutorAddr getAddress() const { return Address; }
123   void setAddress(orc::ExecutorAddr Address) { this->Address = Address; }
124 
125   /// Returns true if this is a defined addressable, in which case you
126   /// can downcast this to a Block.
127   bool isDefined() const { return static_cast<bool>(IsDefined); }
128   bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
129 
130 private:
131   void setAbsolute(bool IsAbsolute) {
132     assert(!IsDefined && "Cannot change the Absolute flag on a defined block");
133     this->IsAbsolute = IsAbsolute;
134   }
135 
136   orc::ExecutorAddr Address;
137   uint64_t IsDefined : 1;
138   uint64_t IsAbsolute : 1;
139 
140 protected:
141   // bitfields for Block, allocated here to improve packing.
142   uint64_t ContentMutable : 1;
143   uint64_t P2Align : 5;
144   uint64_t AlignmentOffset : 56;
145 };
146 
147 using SectionOrdinal = unsigned;
148 
149 /// An Addressable with content and edges.
150 class Block : public Addressable {
151   friend class LinkGraph;
152 
153 private:
154   /// Create a zero-fill defined addressable.
155   Block(Section &Parent, orc::ExecutorAddrDiff Size, orc::ExecutorAddr Address,
156         uint64_t Alignment, uint64_t AlignmentOffset)
157       : Addressable(Address, true), Parent(&Parent), Size(Size) {
158     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
159     assert(AlignmentOffset < Alignment &&
160            "Alignment offset cannot exceed alignment");
161     assert(AlignmentOffset <= MaxAlignmentOffset &&
162            "Alignment offset exceeds maximum");
163     ContentMutable = false;
164     P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
165     this->AlignmentOffset = AlignmentOffset;
166   }
167 
168   /// Create a defined addressable for the given content.
169   /// The Content is assumed to be non-writable, and will be copied when
170   /// mutations are required.
171   Block(Section &Parent, ArrayRef<char> Content, orc::ExecutorAddr Address,
172         uint64_t Alignment, uint64_t AlignmentOffset)
173       : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
174         Size(Content.size()) {
175     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
176     assert(AlignmentOffset < Alignment &&
177            "Alignment offset cannot exceed alignment");
178     assert(AlignmentOffset <= MaxAlignmentOffset &&
179            "Alignment offset exceeds maximum");
180     ContentMutable = false;
181     P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
182     this->AlignmentOffset = AlignmentOffset;
183   }
184 
185   /// Create a defined addressable for the given content.
186   /// The content is assumed to be writable, and the caller is responsible
187   /// for ensuring that it lives for the duration of the Block's lifetime.
188   /// The standard way to achieve this is to allocate it on the Graph's
189   /// allocator.
190   Block(Section &Parent, MutableArrayRef<char> Content,
191         orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset)
192       : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
193         Size(Content.size()) {
194     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
195     assert(AlignmentOffset < Alignment &&
196            "Alignment offset cannot exceed alignment");
197     assert(AlignmentOffset <= MaxAlignmentOffset &&
198            "Alignment offset exceeds maximum");
199     ContentMutable = true;
200     P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
201     this->AlignmentOffset = AlignmentOffset;
202   }
203 
204 public:
205   using EdgeVector = std::vector<Edge>;
206   using edge_iterator = EdgeVector::iterator;
207   using const_edge_iterator = EdgeVector::const_iterator;
208 
209   Block(const Block &) = delete;
210   Block &operator=(const Block &) = delete;
211   Block(Block &&) = delete;
212   Block &operator=(Block &&) = delete;
213 
214   /// Return the parent section for this block.
215   Section &getSection() const { return *Parent; }
216 
217   /// Returns true if this is a zero-fill block.
218   ///
219   /// If true, getSize is callable but getContent is not (the content is
220   /// defined to be a sequence of zero bytes of length Size).
221   bool isZeroFill() const { return !Data; }
222 
223   /// Returns the size of this defined addressable.
224   size_t getSize() const { return Size; }
225 
226   /// Returns the address range of this defined addressable.
227   orc::ExecutorAddrRange getRange() const {
228     return orc::ExecutorAddrRange(getAddress(), getSize());
229   }
230 
231   /// Get the content for this block. Block must not be a zero-fill block.
232   ArrayRef<char> getContent() const {
233     assert(Data && "Block does not contain content");
234     return ArrayRef<char>(Data, Size);
235   }
236 
237   /// Set the content for this block.
238   /// Caller is responsible for ensuring the underlying bytes are not
239   /// deallocated while pointed to by this block.
240   void setContent(ArrayRef<char> Content) {
241     assert(Content.data() && "Setting null content");
242     Data = Content.data();
243     Size = Content.size();
244     ContentMutable = false;
245   }
246 
247   /// Get mutable content for this block.
248   ///
249   /// If this Block's content is not already mutable this will trigger a copy
250   /// of the existing immutable content to a new, mutable buffer allocated using
251   /// LinkGraph::allocateContent.
252   MutableArrayRef<char> getMutableContent(LinkGraph &G);
253 
254   /// Get mutable content for this block.
255   ///
256   /// This block's content must already be mutable. It is a programmatic error
257   /// to call this on a block with immutable content -- consider using
258   /// getMutableContent instead.
259   MutableArrayRef<char> getAlreadyMutableContent() {
260     assert(Data && "Block does not contain content");
261     assert(ContentMutable && "Content is not mutable");
262     return MutableArrayRef<char>(const_cast<char *>(Data), Size);
263   }
264 
265   /// Set mutable content for this block.
266   ///
267   /// The caller is responsible for ensuring that the memory pointed to by
268   /// MutableContent is not deallocated while pointed to by this block.
269   void setMutableContent(MutableArrayRef<char> MutableContent) {
270     assert(MutableContent.data() && "Setting null content");
271     Data = MutableContent.data();
272     Size = MutableContent.size();
273     ContentMutable = true;
274   }
275 
276   /// Returns true if this block's content is mutable.
277   ///
278   /// This is primarily useful for asserting that a block is already in a
279   /// mutable state prior to modifying the content. E.g. when applying
280   /// fixups we expect the block to already be mutable as it should have been
281   /// copied to working memory.
282   bool isContentMutable() const { return ContentMutable; }
283 
284   /// Get the alignment for this content.
285   uint64_t getAlignment() const { return 1ull << P2Align; }
286 
287   /// Set the alignment for this content.
288   void setAlignment(uint64_t Alignment) {
289     assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
290     P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
291   }
292 
293   /// Get the alignment offset for this content.
294   uint64_t getAlignmentOffset() const { return AlignmentOffset; }
295 
296   /// Set the alignment offset for this content.
297   void setAlignmentOffset(uint64_t AlignmentOffset) {
298     assert(AlignmentOffset < (1ull << P2Align) &&
299            "Alignment offset can't exceed alignment");
300     this->AlignmentOffset = AlignmentOffset;
301   }
302 
303   /// Add an edge to this block.
304   void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
305                Edge::AddendT Addend) {
306     assert(!isZeroFill() && "Adding edge to zero-fill block?");
307     Edges.push_back(Edge(K, Offset, Target, Addend));
308   }
309 
310   /// Add an edge by copying an existing one. This is typically used when
311   /// moving edges between blocks.
312   void addEdge(const Edge &E) { Edges.push_back(E); }
313 
314   /// Return the list of edges attached to this content.
315   iterator_range<edge_iterator> edges() {
316     return make_range(Edges.begin(), Edges.end());
317   }
318 
319   /// Returns the list of edges attached to this content.
320   iterator_range<const_edge_iterator> edges() const {
321     return make_range(Edges.begin(), Edges.end());
322   }
323 
324   /// Return the size of the edges list.
325   size_t edges_size() const { return Edges.size(); }
326 
327   /// Returns true if the list of edges is empty.
328   bool edges_empty() const { return Edges.empty(); }
329 
330   /// Remove the edge pointed to by the given iterator.
331   /// Returns an iterator to the new next element.
332   edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); }
333 
334   /// Returns the address of the fixup for the given edge, which is equal to
335   /// this block's address plus the edge's offset.
336   orc::ExecutorAddr getFixupAddress(const Edge &E) const {
337     return getAddress() + E.getOffset();
338   }
339 
340 private:
341   static constexpr uint64_t MaxAlignmentOffset = (1ULL << 56) - 1;
342 
343   void setSection(Section &Parent) { this->Parent = &Parent; }
344 
345   Section *Parent;
346   const char *Data = nullptr;
347   size_t Size = 0;
348   std::vector<Edge> Edges;
349 };
350 
351 // Align an address to conform with block alignment requirements.
352 inline uint64_t alignToBlock(uint64_t Addr, Block &B) {
353   uint64_t Delta = (B.getAlignmentOffset() - Addr) % B.getAlignment();
354   return Addr + Delta;
355 }
356 
357 // Align a orc::ExecutorAddr to conform with block alignment requirements.
358 inline orc::ExecutorAddr alignToBlock(orc::ExecutorAddr Addr, Block &B) {
359   return orc::ExecutorAddr(alignToBlock(Addr.getValue(), B));
360 }
361 
362 /// Describes symbol linkage. This can be used to make resolve definition
363 /// clashes.
364 enum class Linkage : uint8_t {
365   Strong,
366   Weak,
367 };
368 
369 /// For errors and debugging output.
370 const char *getLinkageName(Linkage L);
371 
372 /// Defines the scope in which this symbol should be visible:
373 ///   Default -- Visible in the public interface of the linkage unit.
374 ///   Hidden -- Visible within the linkage unit, but not exported from it.
375 ///   Local -- Visible only within the LinkGraph.
376 enum class Scope : uint8_t {
377   Default,
378   Hidden,
379   Local
380 };
381 
382 /// For debugging output.
383 const char *getScopeName(Scope S);
384 
385 raw_ostream &operator<<(raw_ostream &OS, const Block &B);
386 
387 /// Symbol representation.
388 ///
389 /// Symbols represent locations within Addressable objects.
390 /// They can be either Named or Anonymous.
391 /// Anonymous symbols have neither linkage nor visibility, and must point at
392 /// ContentBlocks.
393 /// Named symbols may be in one of four states:
394 ///   - Null: Default initialized. Assignable, but otherwise unusable.
395 ///   - Defined: Has both linkage and visibility and points to a ContentBlock
396 ///   - Common: Has both linkage and visibility, points to a null Addressable.
397 ///   - External: Has neither linkage nor visibility, points to an external
398 ///     Addressable.
399 ///
400 class Symbol {
401   friend class LinkGraph;
402 
403 private:
404   Symbol(Addressable &Base, orc::ExecutorAddrDiff Offset, StringRef Name,
405          orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive,
406          bool IsCallable)
407       : Name(Name), Base(&Base), Offset(Offset), Size(Size) {
408     assert(Offset <= MaxOffset && "Offset out of range");
409     setLinkage(L);
410     setScope(S);
411     setLive(IsLive);
412     setCallable(IsCallable);
413   }
414 
415   static Symbol &constructCommon(void *SymStorage, Block &Base, StringRef Name,
416                                  orc::ExecutorAddrDiff Size, Scope S,
417                                  bool IsLive) {
418     assert(SymStorage && "Storage cannot be null");
419     assert(!Name.empty() && "Common symbol name cannot be empty");
420     assert(Base.isDefined() &&
421            "Cannot create common symbol from undefined block");
422     assert(static_cast<Block &>(Base).getSize() == Size &&
423            "Common symbol size should match underlying block size");
424     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
425     new (Sym) Symbol(Base, 0, Name, Size, Linkage::Weak, S, IsLive, false);
426     return *Sym;
427   }
428 
429   static Symbol &constructExternal(void *SymStorage, Addressable &Base,
430                                    StringRef Name, orc::ExecutorAddrDiff Size,
431                                    Linkage L) {
432     assert(SymStorage && "Storage cannot be null");
433     assert(!Base.isDefined() &&
434            "Cannot create external symbol from defined block");
435     assert(!Name.empty() && "External symbol name cannot be empty");
436     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
437     new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false);
438     return *Sym;
439   }
440 
441   static Symbol &constructAbsolute(void *SymStorage, Addressable &Base,
442                                    StringRef Name, orc::ExecutorAddrDiff Size,
443                                    Linkage L, Scope S, bool IsLive) {
444     assert(SymStorage && "Storage cannot be null");
445     assert(!Base.isDefined() &&
446            "Cannot create absolute symbol from a defined block");
447     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
448     new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
449     return *Sym;
450   }
451 
452   static Symbol &constructAnonDef(void *SymStorage, Block &Base,
453                                   orc::ExecutorAddrDiff Offset,
454                                   orc::ExecutorAddrDiff Size, bool IsCallable,
455                                   bool IsLive) {
456     assert(SymStorage && "Storage cannot be null");
457     assert((Offset + Size) <= Base.getSize() &&
458            "Symbol extends past end of block");
459     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
460     new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
461                      Scope::Local, IsLive, IsCallable);
462     return *Sym;
463   }
464 
465   static Symbol &constructNamedDef(void *SymStorage, Block &Base,
466                                    orc::ExecutorAddrDiff Offset, StringRef Name,
467                                    orc::ExecutorAddrDiff Size, Linkage L,
468                                    Scope S, bool IsLive, bool IsCallable) {
469     assert(SymStorage && "Storage cannot be null");
470     assert((Offset + Size) <= Base.getSize() &&
471            "Symbol extends past end of block");
472     assert(!Name.empty() && "Name cannot be empty");
473     auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
474     new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
475     return *Sym;
476   }
477 
478 public:
479   /// Create a null Symbol. This allows Symbols to be default initialized for
480   /// use in containers (e.g. as map values). Null symbols are only useful for
481   /// assigning to.
482   Symbol() = default;
483 
484   // Symbols are not movable or copyable.
485   Symbol(const Symbol &) = delete;
486   Symbol &operator=(const Symbol &) = delete;
487   Symbol(Symbol &&) = delete;
488   Symbol &operator=(Symbol &&) = delete;
489 
490   /// Returns true if this symbol has a name.
491   bool hasName() const { return !Name.empty(); }
492 
493   /// Returns the name of this symbol (empty if the symbol is anonymous).
494   StringRef getName() const {
495     assert((!Name.empty() || getScope() == Scope::Local) &&
496            "Anonymous symbol has non-local scope");
497     return Name;
498   }
499 
500   /// Rename this symbol. The client is responsible for updating scope and
501   /// linkage if this name-change requires it.
502   void setName(StringRef Name) { this->Name = Name; }
503 
504   /// Returns true if this Symbol has content (potentially) defined within this
505   /// object file (i.e. is anything but an external or absolute symbol).
506   bool isDefined() const {
507     assert(Base && "Attempt to access null symbol");
508     return Base->isDefined();
509   }
510 
511   /// Returns true if this symbol is live (i.e. should be treated as a root for
512   /// dead stripping).
513   bool isLive() const {
514     assert(Base && "Attempting to access null symbol");
515     return IsLive;
516   }
517 
518   /// Set this symbol's live bit.
519   void setLive(bool IsLive) { this->IsLive = IsLive; }
520 
521   /// Returns true is this symbol is callable.
522   bool isCallable() const { return IsCallable; }
523 
524   /// Set this symbol's callable bit.
525   void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
526 
527   /// Returns true if the underlying addressable is an unresolved external.
528   bool isExternal() const {
529     assert(Base && "Attempt to access null symbol");
530     return !Base->isDefined() && !Base->isAbsolute();
531   }
532 
533   /// Returns true if the underlying addressable is an absolute symbol.
534   bool isAbsolute() const {
535     assert(Base && "Attempt to access null symbol");
536     return Base->isAbsolute();
537   }
538 
539   /// Return the addressable that this symbol points to.
540   Addressable &getAddressable() {
541     assert(Base && "Cannot get underlying addressable for null symbol");
542     return *Base;
543   }
544 
545   /// Return the addressable that thsi symbol points to.
546   const Addressable &getAddressable() const {
547     assert(Base && "Cannot get underlying addressable for null symbol");
548     return *Base;
549   }
550 
551   /// Return the Block for this Symbol (Symbol must be defined).
552   Block &getBlock() {
553     assert(Base && "Cannot get block for null symbol");
554     assert(Base->isDefined() && "Not a defined symbol");
555     return static_cast<Block &>(*Base);
556   }
557 
558   /// Return the Block for this Symbol (Symbol must be defined).
559   const Block &getBlock() const {
560     assert(Base && "Cannot get block for null symbol");
561     assert(Base->isDefined() && "Not a defined symbol");
562     return static_cast<const Block &>(*Base);
563   }
564 
565   /// Returns the offset for this symbol within the underlying addressable.
566   orc::ExecutorAddrDiff getOffset() const { return Offset; }
567 
568   /// Returns the address of this symbol.
569   orc::ExecutorAddr getAddress() const { return Base->getAddress() + Offset; }
570 
571   /// Returns the size of this symbol.
572   orc::ExecutorAddrDiff getSize() const { return Size; }
573 
574   /// Set the size of this symbol.
575   void setSize(orc::ExecutorAddrDiff Size) {
576     assert(Base && "Cannot set size for null Symbol");
577     assert((Size == 0 || Base->isDefined()) &&
578            "Non-zero size can only be set for defined symbols");
579     assert((Offset + Size <= static_cast<const Block &>(*Base).getSize()) &&
580            "Symbol size cannot extend past the end of its containing block");
581     this->Size = Size;
582   }
583 
584   /// Returns the address range of this symbol.
585   orc::ExecutorAddrRange getRange() const {
586     return orc::ExecutorAddrRange(getAddress(), getSize());
587   }
588 
589   /// Returns true if this symbol is backed by a zero-fill block.
590   /// This method may only be called on defined symbols.
591   bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
592 
593   /// Returns the content in the underlying block covered by this symbol.
594   /// This method may only be called on defined non-zero-fill symbols.
595   ArrayRef<char> getSymbolContent() const {
596     return getBlock().getContent().slice(Offset, Size);
597   }
598 
599   /// Get the linkage for this Symbol.
600   Linkage getLinkage() const { return static_cast<Linkage>(L); }
601 
602   /// Set the linkage for this Symbol.
603   void setLinkage(Linkage L) {
604     assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) &&
605            "Linkage can only be applied to defined named symbols");
606     this->L = static_cast<uint8_t>(L);
607   }
608 
609   /// Get the visibility for this Symbol.
610   Scope getScope() const { return static_cast<Scope>(S); }
611 
612   /// Set the visibility for this Symbol.
613   void setScope(Scope S) {
614     assert((!Name.empty() || S == Scope::Local) &&
615            "Can not set anonymous symbol to non-local scope");
616     assert((S == Scope::Default || Base->isDefined() || Base->isAbsolute()) &&
617            "Invalid visibility for symbol type");
618     this->S = static_cast<uint8_t>(S);
619   }
620 
621 private:
622   void makeExternal(Addressable &A) {
623     assert(!A.isDefined() && !A.isAbsolute() &&
624            "Attempting to make external with defined or absolute block");
625     Base = &A;
626     Offset = 0;
627     setScope(Scope::Default);
628     IsLive = 0;
629     // note: Size, Linkage and IsCallable fields left unchanged.
630   }
631 
632   void makeAbsolute(Addressable &A) {
633     assert(!A.isDefined() && A.isAbsolute() &&
634            "Attempting to make absolute with defined or external block");
635     Base = &A;
636     Offset = 0;
637   }
638 
639   void setBlock(Block &B) { Base = &B; }
640 
641   void setOffset(orc::ExecutorAddrDiff NewOffset) {
642     assert(NewOffset <= MaxOffset && "Offset out of range");
643     Offset = NewOffset;
644   }
645 
646   static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
647 
648   // FIXME: A char* or SymbolStringPtr may pack better.
649   StringRef Name;
650   Addressable *Base = nullptr;
651   uint64_t Offset : 59;
652   uint64_t L : 1;
653   uint64_t S : 2;
654   uint64_t IsLive : 1;
655   uint64_t IsCallable : 1;
656   orc::ExecutorAddrDiff Size = 0;
657 };
658 
659 raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
660 
661 void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
662                StringRef EdgeKindName);
663 
664 /// Represents an object file section.
665 class Section {
666   friend class LinkGraph;
667 
668 private:
669   Section(StringRef Name, MemProt Prot, SectionOrdinal SecOrdinal)
670       : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
671 
672   using SymbolSet = DenseSet<Symbol *>;
673   using BlockSet = DenseSet<Block *>;
674 
675 public:
676   using symbol_iterator = SymbolSet::iterator;
677   using const_symbol_iterator = SymbolSet::const_iterator;
678 
679   using block_iterator = BlockSet::iterator;
680   using const_block_iterator = BlockSet::const_iterator;
681 
682   ~Section();
683 
684   // Sections are not movable or copyable.
685   Section(const Section &) = delete;
686   Section &operator=(const Section &) = delete;
687   Section(Section &&) = delete;
688   Section &operator=(Section &&) = delete;
689 
690   /// Returns the name of this section.
691   StringRef getName() const { return Name; }
692 
693   /// Returns the protection flags for this section.
694   MemProt getMemProt() const { return Prot; }
695 
696   /// Set the protection flags for this section.
697   void setMemProt(MemProt Prot) { this->Prot = Prot; }
698 
699   /// Get the deallocation policy for this section.
700   MemDeallocPolicy getMemDeallocPolicy() const { return MDP; }
701 
702   /// Set the deallocation policy for this section.
703   void setMemDeallocPolicy(MemDeallocPolicy MDP) { this->MDP = MDP; }
704 
705   /// Returns the ordinal for this section.
706   SectionOrdinal getOrdinal() const { return SecOrdinal; }
707 
708   /// Returns an iterator over the blocks defined in this section.
709   iterator_range<block_iterator> blocks() {
710     return make_range(Blocks.begin(), Blocks.end());
711   }
712 
713   /// Returns an iterator over the blocks defined in this section.
714   iterator_range<const_block_iterator> blocks() const {
715     return make_range(Blocks.begin(), Blocks.end());
716   }
717 
718   /// Returns the number of blocks in this section.
719   BlockSet::size_type blocks_size() const { return Blocks.size(); }
720 
721   /// Returns an iterator over the symbols defined in this section.
722   iterator_range<symbol_iterator> symbols() {
723     return make_range(Symbols.begin(), Symbols.end());
724   }
725 
726   /// Returns an iterator over the symbols defined in this section.
727   iterator_range<const_symbol_iterator> symbols() const {
728     return make_range(Symbols.begin(), Symbols.end());
729   }
730 
731   /// Return the number of symbols in this section.
732   SymbolSet::size_type symbols_size() const { return Symbols.size(); }
733 
734 private:
735   void addSymbol(Symbol &Sym) {
736     assert(!Symbols.count(&Sym) && "Symbol is already in this section");
737     Symbols.insert(&Sym);
738   }
739 
740   void removeSymbol(Symbol &Sym) {
741     assert(Symbols.count(&Sym) && "symbol is not in this section");
742     Symbols.erase(&Sym);
743   }
744 
745   void addBlock(Block &B) {
746     assert(!Blocks.count(&B) && "Block is already in this section");
747     Blocks.insert(&B);
748   }
749 
750   void removeBlock(Block &B) {
751     assert(Blocks.count(&B) && "Block is not in this section");
752     Blocks.erase(&B);
753   }
754 
755   void transferContentTo(Section &DstSection) {
756     if (&DstSection == this)
757       return;
758     for (auto *S : Symbols)
759       DstSection.addSymbol(*S);
760     for (auto *B : Blocks)
761       DstSection.addBlock(*B);
762     Symbols.clear();
763     Blocks.clear();
764   }
765 
766   StringRef Name;
767   MemProt Prot;
768   MemDeallocPolicy MDP = MemDeallocPolicy::Standard;
769   SectionOrdinal SecOrdinal = 0;
770   BlockSet Blocks;
771   SymbolSet Symbols;
772 };
773 
774 /// Represents a section address range via a pair of Block pointers
775 /// to the first and last Blocks in the section.
776 class SectionRange {
777 public:
778   SectionRange() = default;
779   SectionRange(const Section &Sec) {
780     if (llvm::empty(Sec.blocks()))
781       return;
782     First = Last = *Sec.blocks().begin();
783     for (auto *B : Sec.blocks()) {
784       if (B->getAddress() < First->getAddress())
785         First = B;
786       if (B->getAddress() > Last->getAddress())
787         Last = B;
788     }
789   }
790   Block *getFirstBlock() const {
791     assert((!Last || First) && "First can not be null if end is non-null");
792     return First;
793   }
794   Block *getLastBlock() const {
795     assert((First || !Last) && "Last can not be null if start is non-null");
796     return Last;
797   }
798   bool empty() const {
799     assert((First || !Last) && "Last can not be null if start is non-null");
800     return !First;
801   }
802   orc::ExecutorAddr getStart() const {
803     return First ? First->getAddress() : orc::ExecutorAddr();
804   }
805   orc::ExecutorAddr getEnd() const {
806     return Last ? Last->getAddress() + Last->getSize() : orc::ExecutorAddr();
807   }
808   orc::ExecutorAddrDiff getSize() const { return getEnd() - getStart(); }
809 
810   orc::ExecutorAddrRange getRange() const {
811     return orc::ExecutorAddrRange(getStart(), getEnd());
812   }
813 
814 private:
815   Block *First = nullptr;
816   Block *Last = nullptr;
817 };
818 
819 class LinkGraph {
820 private:
821   using SectionList = std::vector<std::unique_ptr<Section>>;
822   using ExternalSymbolSet = DenseSet<Symbol *>;
823   using BlockSet = DenseSet<Block *>;
824 
825   template <typename... ArgTs>
826   Addressable &createAddressable(ArgTs &&... Args) {
827     Addressable *A =
828         reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
829     new (A) Addressable(std::forward<ArgTs>(Args)...);
830     return *A;
831   }
832 
833   void destroyAddressable(Addressable &A) {
834     A.~Addressable();
835     Allocator.Deallocate(&A);
836   }
837 
838   template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
839     Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
840     new (B) Block(std::forward<ArgTs>(Args)...);
841     B->getSection().addBlock(*B);
842     return *B;
843   }
844 
845   void destroyBlock(Block &B) {
846     B.~Block();
847     Allocator.Deallocate(&B);
848   }
849 
850   void destroySymbol(Symbol &S) {
851     S.~Symbol();
852     Allocator.Deallocate(&S);
853   }
854 
855   static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
856     return S.blocks();
857   }
858 
859   static iterator_range<Section::const_block_iterator>
860   getSectionConstBlocks(Section &S) {
861     return S.blocks();
862   }
863 
864   static iterator_range<Section::symbol_iterator>
865   getSectionSymbols(Section &S) {
866     return S.symbols();
867   }
868 
869   static iterator_range<Section::const_symbol_iterator>
870   getSectionConstSymbols(Section &S) {
871     return S.symbols();
872   }
873 
874 public:
875   using external_symbol_iterator = ExternalSymbolSet::iterator;
876 
877   using section_iterator = pointee_iterator<SectionList::iterator>;
878   using const_section_iterator = pointee_iterator<SectionList::const_iterator>;
879 
880   template <typename OuterItrT, typename InnerItrT, typename T,
881             iterator_range<InnerItrT> getInnerRange(
882                 typename OuterItrT::reference)>
883   class nested_collection_iterator
884       : public iterator_facade_base<
885             nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
886             std::forward_iterator_tag, T> {
887   public:
888     nested_collection_iterator() = default;
889 
890     nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
891         : OuterI(OuterI), OuterE(OuterE),
892           InnerI(getInnerBegin(OuterI, OuterE)) {
893       moveToNonEmptyInnerOrEnd();
894     }
895 
896     bool operator==(const nested_collection_iterator &RHS) const {
897       return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
898     }
899 
900     T operator*() const {
901       assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
902       return *InnerI;
903     }
904 
905     nested_collection_iterator operator++() {
906       ++InnerI;
907       moveToNonEmptyInnerOrEnd();
908       return *this;
909     }
910 
911   private:
912     static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
913       return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
914     }
915 
916     void moveToNonEmptyInnerOrEnd() {
917       while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
918         ++OuterI;
919         InnerI = getInnerBegin(OuterI, OuterE);
920       }
921     }
922 
923     OuterItrT OuterI, OuterE;
924     InnerItrT InnerI;
925   };
926 
927   using defined_symbol_iterator =
928       nested_collection_iterator<const_section_iterator,
929                                  Section::symbol_iterator, Symbol *,
930                                  getSectionSymbols>;
931 
932   using const_defined_symbol_iterator =
933       nested_collection_iterator<const_section_iterator,
934                                  Section::const_symbol_iterator, const Symbol *,
935                                  getSectionConstSymbols>;
936 
937   using block_iterator = nested_collection_iterator<const_section_iterator,
938                                                     Section::block_iterator,
939                                                     Block *, getSectionBlocks>;
940 
941   using const_block_iterator =
942       nested_collection_iterator<const_section_iterator,
943                                  Section::const_block_iterator, const Block *,
944                                  getSectionConstBlocks>;
945 
946   using GetEdgeKindNameFunction = const char *(*)(Edge::Kind);
947 
948   LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize,
949             support::endianness Endianness,
950             GetEdgeKindNameFunction GetEdgeKindName)
951       : Name(std::move(Name)), TT(TT), PointerSize(PointerSize),
952         Endianness(Endianness), GetEdgeKindName(std::move(GetEdgeKindName)) {}
953 
954   LinkGraph(const LinkGraph &) = delete;
955   LinkGraph &operator=(const LinkGraph &) = delete;
956   LinkGraph(LinkGraph &&) = delete;
957   LinkGraph &operator=(LinkGraph &&) = delete;
958 
959   /// Returns the name of this graph (usually the name of the original
960   /// underlying MemoryBuffer).
961   const std::string &getName() const { return Name; }
962 
963   /// Returns the target triple for this Graph.
964   const Triple &getTargetTriple() const { return TT; }
965 
966   /// Returns the pointer size for use in this graph.
967   unsigned getPointerSize() const { return PointerSize; }
968 
969   /// Returns the endianness of content in this graph.
970   support::endianness getEndianness() const { return Endianness; }
971 
972   const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); }
973 
974   /// Allocate a mutable buffer of the given size using the LinkGraph's
975   /// allocator.
976   MutableArrayRef<char> allocateBuffer(size_t Size) {
977     return {Allocator.Allocate<char>(Size), Size};
978   }
979 
980   /// Allocate a copy of the given string using the LinkGraph's allocator.
981   /// This can be useful when renaming symbols or adding new content to the
982   /// graph.
983   MutableArrayRef<char> allocateContent(ArrayRef<char> Source) {
984     auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size());
985     llvm::copy(Source, AllocatedBuffer);
986     return MutableArrayRef<char>(AllocatedBuffer, Source.size());
987   }
988 
989   /// Allocate a copy of the given string using the LinkGraph's allocator.
990   /// This can be useful when renaming symbols or adding new content to the
991   /// graph.
992   ///
993   /// Note: This Twine-based overload requires an extra string copy and an
994   /// extra heap allocation for large strings. The ArrayRef<char> overload
995   /// should be preferred where possible.
996   MutableArrayRef<char> allocateString(Twine Source) {
997     SmallString<256> TmpBuffer;
998     auto SourceStr = Source.toStringRef(TmpBuffer);
999     auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size());
1000     llvm::copy(SourceStr, AllocatedBuffer);
1001     return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size());
1002   }
1003 
1004   /// Create a section with the given name, protection flags, and alignment.
1005   Section &createSection(StringRef Name, MemProt Prot) {
1006     assert(llvm::find_if(Sections,
1007                          [&](std::unique_ptr<Section> &Sec) {
1008                            return Sec->getName() == Name;
1009                          }) == Sections.end() &&
1010            "Duplicate section name");
1011     std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
1012     Sections.push_back(std::move(Sec));
1013     return *Sections.back();
1014   }
1015 
1016   /// Create a content block.
1017   Block &createContentBlock(Section &Parent, ArrayRef<char> Content,
1018                             orc::ExecutorAddr Address, uint64_t Alignment,
1019                             uint64_t AlignmentOffset) {
1020     return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1021   }
1022 
1023   /// Create a content block with initially mutable data.
1024   Block &createMutableContentBlock(Section &Parent,
1025                                    MutableArrayRef<char> MutableContent,
1026                                    orc::ExecutorAddr Address,
1027                                    uint64_t Alignment,
1028                                    uint64_t AlignmentOffset) {
1029     return createBlock(Parent, MutableContent, Address, Alignment,
1030                        AlignmentOffset);
1031   }
1032 
1033   /// Create a zero-fill block.
1034   Block &createZeroFillBlock(Section &Parent, orc::ExecutorAddrDiff Size,
1035                              orc::ExecutorAddr Address, uint64_t Alignment,
1036                              uint64_t AlignmentOffset) {
1037     return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
1038   }
1039 
1040   /// Cache type for the splitBlock function.
1041   using SplitBlockCache = Optional<SmallVector<Symbol *, 8>>;
1042 
1043   /// Splits block B at the given index which must be greater than zero.
1044   /// If SplitIndex == B.getSize() then this function is a no-op and returns B.
1045   /// If SplitIndex < B.getSize() then this function returns a new block
1046   /// covering the range [ 0, SplitIndex ), and B is modified to cover the range
1047   /// [ SplitIndex, B.size() ).
1048   ///
1049   /// The optional Cache parameter can be used to speed up repeated calls to
1050   /// splitBlock for a single block. If the value is None the cache will be
1051   /// treated as uninitialized and splitBlock will populate it. Otherwise it
1052   /// is assumed to contain the list of Symbols pointing at B, sorted in
1053   /// descending order of offset.
1054   ///
1055   /// Notes:
1056   ///
1057   /// 1. splitBlock must be used with care. Splitting a block may cause
1058   ///    incoming edges to become invalid if the edge target subexpression
1059   ///    points outside the bounds of the newly split target block (E.g. an
1060   ///    edge 'S + 10 : Pointer64' where S points to a newly split block
1061   ///    whose size is less than 10). No attempt is made to detect invalidation
1062   ///    of incoming edges, as in general this requires context that the
1063   ///    LinkGraph does not have. Clients are responsible for ensuring that
1064   ///    splitBlock is not used in a way that invalidates edges.
1065   ///
1066   /// 2. The newly introduced block will have a new ordinal which will be
1067   ///    higher than any other ordinals in the section. Clients are responsible
1068   ///    for re-assigning block ordinals to restore a compatible order if
1069   ///    needed.
1070   ///
1071   /// 3. The cache is not automatically updated if new symbols are introduced
1072   ///    between calls to splitBlock. Any newly introduced symbols may be
1073   ///    added to the cache manually (descending offset order must be
1074   ///    preserved), or the cache can be set to None and rebuilt by
1075   ///    splitBlock on the next call.
1076   Block &splitBlock(Block &B, size_t SplitIndex,
1077                     SplitBlockCache *Cache = nullptr);
1078 
1079   /// Add an external symbol.
1080   /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
1081   /// size is not known, you should substitute '0'.
1082   /// For external symbols Linkage determines whether the symbol must be
1083   /// present during lookup: Externals with strong linkage must be found or
1084   /// an error will be emitted. Externals with weak linkage are permitted to
1085   /// be undefined, in which case they are assigned a value of 0.
1086   Symbol &addExternalSymbol(StringRef Name, orc::ExecutorAddrDiff Size,
1087                             Linkage L) {
1088     assert(llvm::count_if(ExternalSymbols,
1089                           [&](const Symbol *Sym) {
1090                             return Sym->getName() == Name;
1091                           }) == 0 &&
1092            "Duplicate external symbol");
1093     auto &Sym = Symbol::constructExternal(
1094         Allocator.Allocate<Symbol>(),
1095         createAddressable(orc::ExecutorAddr(), false), Name, Size, L);
1096     ExternalSymbols.insert(&Sym);
1097     return Sym;
1098   }
1099 
1100   /// Add an absolute symbol.
1101   Symbol &addAbsoluteSymbol(StringRef Name, orc::ExecutorAddr Address,
1102                             orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1103                             bool IsLive) {
1104     assert(llvm::count_if(AbsoluteSymbols,
1105                           [&](const Symbol *Sym) {
1106                             return Sym->getName() == Name;
1107                           }) == 0 &&
1108            "Duplicate absolute symbol");
1109     auto &Sym = Symbol::constructAbsolute(Allocator.Allocate<Symbol>(),
1110                                           createAddressable(Address), Name,
1111                                           Size, L, S, IsLive);
1112     AbsoluteSymbols.insert(&Sym);
1113     return Sym;
1114   }
1115 
1116   /// Convenience method for adding a weak zero-fill symbol.
1117   Symbol &addCommonSymbol(StringRef Name, Scope S, Section &Section,
1118                           orc::ExecutorAddr Address, orc::ExecutorAddrDiff Size,
1119                           uint64_t Alignment, bool IsLive) {
1120     assert(llvm::count_if(defined_symbols(),
1121                           [&](const Symbol *Sym) {
1122                             return Sym->getName() == Name;
1123                           }) == 0 &&
1124            "Duplicate defined symbol");
1125     auto &Sym = Symbol::constructCommon(
1126         Allocator.Allocate<Symbol>(),
1127         createBlock(Section, Size, Address, Alignment, 0), Name, Size, S,
1128         IsLive);
1129     Section.addSymbol(Sym);
1130     return Sym;
1131   }
1132 
1133   /// Add an anonymous symbol.
1134   Symbol &addAnonymousSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1135                              orc::ExecutorAddrDiff Size, bool IsCallable,
1136                              bool IsLive) {
1137     auto &Sym = Symbol::constructAnonDef(Allocator.Allocate<Symbol>(), Content,
1138                                          Offset, Size, IsCallable, IsLive);
1139     Content.getSection().addSymbol(Sym);
1140     return Sym;
1141   }
1142 
1143   /// Add a named symbol.
1144   Symbol &addDefinedSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1145                            StringRef Name, orc::ExecutorAddrDiff Size,
1146                            Linkage L, Scope S, bool IsCallable, bool IsLive) {
1147     assert((S == Scope::Local || llvm::count_if(defined_symbols(),
1148                                                 [&](const Symbol *Sym) {
1149                                                   return Sym->getName() == Name;
1150                                                 }) == 0) &&
1151            "Duplicate defined symbol");
1152     auto &Sym =
1153         Symbol::constructNamedDef(Allocator.Allocate<Symbol>(), Content, Offset,
1154                                   Name, Size, L, S, IsLive, IsCallable);
1155     Content.getSection().addSymbol(Sym);
1156     return Sym;
1157   }
1158 
1159   iterator_range<section_iterator> sections() {
1160     return make_range(section_iterator(Sections.begin()),
1161                       section_iterator(Sections.end()));
1162   }
1163 
1164   SectionList::size_type sections_size() const { return Sections.size(); }
1165 
1166   /// Returns the section with the given name if it exists, otherwise returns
1167   /// null.
1168   Section *findSectionByName(StringRef Name) {
1169     for (auto &S : sections())
1170       if (S.getName() == Name)
1171         return &S;
1172     return nullptr;
1173   }
1174 
1175   iterator_range<block_iterator> blocks() {
1176     return make_range(block_iterator(Sections.begin(), Sections.end()),
1177                       block_iterator(Sections.end(), Sections.end()));
1178   }
1179 
1180   iterator_range<const_block_iterator> blocks() const {
1181     return make_range(const_block_iterator(Sections.begin(), Sections.end()),
1182                       const_block_iterator(Sections.end(), Sections.end()));
1183   }
1184 
1185   iterator_range<external_symbol_iterator> external_symbols() {
1186     return make_range(ExternalSymbols.begin(), ExternalSymbols.end());
1187   }
1188 
1189   iterator_range<external_symbol_iterator> absolute_symbols() {
1190     return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1191   }
1192 
1193   iterator_range<defined_symbol_iterator> defined_symbols() {
1194     return make_range(defined_symbol_iterator(Sections.begin(), Sections.end()),
1195                       defined_symbol_iterator(Sections.end(), Sections.end()));
1196   }
1197 
1198   iterator_range<const_defined_symbol_iterator> defined_symbols() const {
1199     return make_range(
1200         const_defined_symbol_iterator(Sections.begin(), Sections.end()),
1201         const_defined_symbol_iterator(Sections.end(), Sections.end()));
1202   }
1203 
1204   /// Make the given symbol external (must not already be external).
1205   ///
1206   /// Symbol size, linkage and callability will be left unchanged. Symbol scope
1207   /// will be set to Default, and offset will be reset to 0.
1208   void makeExternal(Symbol &Sym) {
1209     assert(!Sym.isExternal() && "Symbol is already external");
1210     if (Sym.isAbsolute()) {
1211       assert(AbsoluteSymbols.count(&Sym) &&
1212              "Sym is not in the absolute symbols set");
1213       assert(Sym.getOffset() == 0 && "Absolute not at offset 0");
1214       AbsoluteSymbols.erase(&Sym);
1215       Sym.getAddressable().setAbsolute(false);
1216     } else {
1217       assert(Sym.isDefined() && "Sym is not a defined symbol");
1218       Section &Sec = Sym.getBlock().getSection();
1219       Sec.removeSymbol(Sym);
1220       Sym.makeExternal(createAddressable(orc::ExecutorAddr(), false));
1221     }
1222     ExternalSymbols.insert(&Sym);
1223   }
1224 
1225   /// Make the given symbol an absolute with the given address (must not already
1226   /// be absolute).
1227   ///
1228   /// The symbol's size, linkage, and callability, and liveness will be left
1229   /// unchanged, and its offset will be reset to 0.
1230   ///
1231   /// If the symbol was external then its scope will be set to local, otherwise
1232   /// it will be left unchanged.
1233   void makeAbsolute(Symbol &Sym, orc::ExecutorAddr Address) {
1234     assert(!Sym.isAbsolute() && "Symbol is already absolute");
1235     if (Sym.isExternal()) {
1236       assert(ExternalSymbols.count(&Sym) &&
1237              "Sym is not in the absolute symbols set");
1238       assert(Sym.getOffset() == 0 && "External is not at offset 0");
1239       ExternalSymbols.erase(&Sym);
1240       Sym.getAddressable().setAbsolute(true);
1241       Sym.setScope(Scope::Local);
1242     } else {
1243       assert(Sym.isDefined() && "Sym is not a defined symbol");
1244       Section &Sec = Sym.getBlock().getSection();
1245       Sec.removeSymbol(Sym);
1246       Sym.makeAbsolute(createAddressable(Address));
1247     }
1248     AbsoluteSymbols.insert(&Sym);
1249   }
1250 
1251   /// Turn an absolute or external symbol into a defined one by attaching it to
1252   /// a block. Symbol must not already be defined.
1253   void makeDefined(Symbol &Sym, Block &Content, orc::ExecutorAddrDiff Offset,
1254                    orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1255                    bool IsLive) {
1256     assert(!Sym.isDefined() && "Sym is already a defined symbol");
1257     if (Sym.isAbsolute()) {
1258       assert(AbsoluteSymbols.count(&Sym) &&
1259              "Symbol is not in the absolutes set");
1260       AbsoluteSymbols.erase(&Sym);
1261     } else {
1262       assert(ExternalSymbols.count(&Sym) &&
1263              "Symbol is not in the externals set");
1264       ExternalSymbols.erase(&Sym);
1265     }
1266     Addressable &OldBase = *Sym.Base;
1267     Sym.setBlock(Content);
1268     Sym.setOffset(Offset);
1269     Sym.setSize(Size);
1270     Sym.setLinkage(L);
1271     Sym.setScope(S);
1272     Sym.setLive(IsLive);
1273     Content.getSection().addSymbol(Sym);
1274     destroyAddressable(OldBase);
1275   }
1276 
1277   /// Transfer a defined symbol from one block to another.
1278   ///
1279   /// The symbol's offset within DestBlock is set to NewOffset.
1280   ///
1281   /// If ExplicitNewSize is given as None then the size of the symbol will be
1282   /// checked and auto-truncated to at most the size of the remainder (from the
1283   /// given offset) of the size of the new block.
1284   ///
1285   /// All other symbol attributes are unchanged.
1286   void transferDefinedSymbol(Symbol &Sym, Block &DestBlock,
1287                              orc::ExecutorAddrDiff NewOffset,
1288                              Optional<orc::ExecutorAddrDiff> ExplicitNewSize) {
1289     auto &OldSection = Sym.getBlock().getSection();
1290     Sym.setBlock(DestBlock);
1291     Sym.setOffset(NewOffset);
1292     if (ExplicitNewSize)
1293       Sym.setSize(*ExplicitNewSize);
1294     else {
1295       auto RemainingBlockSize = DestBlock.getSize() - NewOffset;
1296       if (Sym.getSize() > RemainingBlockSize)
1297         Sym.setSize(RemainingBlockSize);
1298     }
1299     if (&DestBlock.getSection() != &OldSection) {
1300       OldSection.removeSymbol(Sym);
1301       DestBlock.getSection().addSymbol(Sym);
1302     }
1303   }
1304 
1305   /// Transfers the given Block and all Symbols pointing to it to the given
1306   /// Section.
1307   ///
1308   /// No attempt is made to check compatibility of the source and destination
1309   /// sections. Blocks may be moved between sections with incompatible
1310   /// permissions (e.g. from data to text). The client is responsible for
1311   /// ensuring that this is safe.
1312   void transferBlock(Block &B, Section &NewSection) {
1313     auto &OldSection = B.getSection();
1314     if (&OldSection == &NewSection)
1315       return;
1316     SmallVector<Symbol *> AttachedSymbols;
1317     for (auto *S : OldSection.symbols())
1318       if (&S->getBlock() == &B)
1319         AttachedSymbols.push_back(S);
1320     for (auto *S : AttachedSymbols) {
1321       OldSection.removeSymbol(*S);
1322       NewSection.addSymbol(*S);
1323     }
1324     OldSection.removeBlock(B);
1325     NewSection.addBlock(B);
1326   }
1327 
1328   /// Move all blocks and symbols from the source section to the destination
1329   /// section.
1330   ///
1331   /// If PreserveSrcSection is true (or SrcSection and DstSection are the same)
1332   /// then SrcSection is preserved, otherwise it is removed (the default).
1333   void mergeSections(Section &DstSection, Section &SrcSection,
1334                      bool PreserveSrcSection = false) {
1335     if (&DstSection == &SrcSection)
1336       return;
1337     for (auto *B : SrcSection.blocks())
1338       B->setSection(DstSection);
1339     SrcSection.transferContentTo(DstSection);
1340     if (!PreserveSrcSection)
1341       removeSection(SrcSection);
1342   }
1343 
1344   /// Removes an external symbol. Also removes the underlying Addressable.
1345   void removeExternalSymbol(Symbol &Sym) {
1346     assert(!Sym.isDefined() && !Sym.isAbsolute() &&
1347            "Sym is not an external symbol");
1348     assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set");
1349     ExternalSymbols.erase(&Sym);
1350     Addressable &Base = *Sym.Base;
1351     assert(llvm::find_if(ExternalSymbols,
1352                          [&](Symbol *AS) { return AS->Base == &Base; }) ==
1353                ExternalSymbols.end() &&
1354            "Base addressable still in use");
1355     destroySymbol(Sym);
1356     destroyAddressable(Base);
1357   }
1358 
1359   /// Remove an absolute symbol. Also removes the underlying Addressable.
1360   void removeAbsoluteSymbol(Symbol &Sym) {
1361     assert(!Sym.isDefined() && Sym.isAbsolute() &&
1362            "Sym is not an absolute symbol");
1363     assert(AbsoluteSymbols.count(&Sym) &&
1364            "Symbol is not in the absolute symbols set");
1365     AbsoluteSymbols.erase(&Sym);
1366     Addressable &Base = *Sym.Base;
1367     assert(llvm::find_if(ExternalSymbols,
1368                          [&](Symbol *AS) { return AS->Base == &Base; }) ==
1369                ExternalSymbols.end() &&
1370            "Base addressable still in use");
1371     destroySymbol(Sym);
1372     destroyAddressable(Base);
1373   }
1374 
1375   /// Removes defined symbols. Does not remove the underlying block.
1376   void removeDefinedSymbol(Symbol &Sym) {
1377     assert(Sym.isDefined() && "Sym is not a defined symbol");
1378     Sym.getBlock().getSection().removeSymbol(Sym);
1379     destroySymbol(Sym);
1380   }
1381 
1382   /// Remove a block. The block reference is defunct after calling this
1383   /// function and should no longer be used.
1384   void removeBlock(Block &B) {
1385     assert(llvm::none_of(B.getSection().symbols(),
1386                          [&](const Symbol *Sym) {
1387                            return &Sym->getBlock() == &B;
1388                          }) &&
1389            "Block still has symbols attached");
1390     B.getSection().removeBlock(B);
1391     destroyBlock(B);
1392   }
1393 
1394   /// Remove a section. The section reference is defunct after calling this
1395   /// function and should no longer be used.
1396   void removeSection(Section &Sec) {
1397     auto I = llvm::find_if(Sections, [&Sec](const std::unique_ptr<Section> &S) {
1398       return S.get() == &Sec;
1399     });
1400     assert(I != Sections.end() && "Section does not appear in this graph");
1401     Sections.erase(I);
1402   }
1403 
1404   /// Accessor for the AllocActions object for this graph. This can be used to
1405   /// register allocation action calls prior to finalization.
1406   ///
1407   /// Accessing this object after finalization will result in undefined
1408   /// behavior.
1409   orc::shared::AllocActions &allocActions() { return AAs; }
1410 
1411   /// Dump the graph.
1412   void dump(raw_ostream &OS);
1413 
1414 private:
1415   // Put the BumpPtrAllocator first so that we don't free any of the underlying
1416   // memory until the Symbol/Addressable destructors have been run.
1417   BumpPtrAllocator Allocator;
1418 
1419   std::string Name;
1420   Triple TT;
1421   unsigned PointerSize;
1422   support::endianness Endianness;
1423   GetEdgeKindNameFunction GetEdgeKindName = nullptr;
1424   SectionList Sections;
1425   ExternalSymbolSet ExternalSymbols;
1426   ExternalSymbolSet AbsoluteSymbols;
1427   orc::shared::AllocActions AAs;
1428 };
1429 
1430 inline MutableArrayRef<char> Block::getMutableContent(LinkGraph &G) {
1431   if (!ContentMutable)
1432     setMutableContent(G.allocateContent({Data, Size}));
1433   return MutableArrayRef<char>(const_cast<char *>(Data), Size);
1434 }
1435 
1436 /// Enables easy lookup of blocks by addresses.
1437 class BlockAddressMap {
1438 public:
1439   using AddrToBlockMap = std::map<orc::ExecutorAddr, Block *>;
1440   using const_iterator = AddrToBlockMap::const_iterator;
1441 
1442   /// A block predicate that always adds all blocks.
1443   static bool includeAllBlocks(const Block &B) { return true; }
1444 
1445   /// A block predicate that always includes blocks with non-null addresses.
1446   static bool includeNonNull(const Block &B) { return !!B.getAddress(); }
1447 
1448   BlockAddressMap() = default;
1449 
1450   /// Add a block to the map. Returns an error if the block overlaps with any
1451   /// existing block.
1452   template <typename PredFn = decltype(includeAllBlocks)>
1453   Error addBlock(Block &B, PredFn Pred = includeAllBlocks) {
1454     if (!Pred(B))
1455       return Error::success();
1456 
1457     auto I = AddrToBlock.upper_bound(B.getAddress());
1458 
1459     // If we're not at the end of the map, check for overlap with the next
1460     // element.
1461     if (I != AddrToBlock.end()) {
1462       if (B.getAddress() + B.getSize() > I->second->getAddress())
1463         return overlapError(B, *I->second);
1464     }
1465 
1466     // If we're not at the start of the map, check for overlap with the previous
1467     // element.
1468     if (I != AddrToBlock.begin()) {
1469       auto &PrevBlock = *std::prev(I)->second;
1470       if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
1471         return overlapError(B, PrevBlock);
1472     }
1473 
1474     AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
1475     return Error::success();
1476   }
1477 
1478   /// Add a block to the map without checking for overlap with existing blocks.
1479   /// The client is responsible for ensuring that the block added does not
1480   /// overlap with any existing block.
1481   void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
1482 
1483   /// Add a range of blocks to the map. Returns an error if any block in the
1484   /// range overlaps with any other block in the range, or with any existing
1485   /// block in the map.
1486   template <typename BlockPtrRange,
1487             typename PredFn = decltype(includeAllBlocks)>
1488   Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
1489     for (auto *B : Blocks)
1490       if (auto Err = addBlock(*B, Pred))
1491         return Err;
1492     return Error::success();
1493   }
1494 
1495   /// Add a range of blocks to the map without checking for overlap with
1496   /// existing blocks. The client is responsible for ensuring that the block
1497   /// added does not overlap with any existing block.
1498   template <typename BlockPtrRange>
1499   void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
1500     for (auto *B : Blocks)
1501       addBlockWithoutChecking(*B);
1502   }
1503 
1504   /// Iterates over (Address, Block*) pairs in ascending order of address.
1505   const_iterator begin() const { return AddrToBlock.begin(); }
1506   const_iterator end() const { return AddrToBlock.end(); }
1507 
1508   /// Returns the block starting at the given address, or nullptr if no such
1509   /// block exists.
1510   Block *getBlockAt(orc::ExecutorAddr Addr) const {
1511     auto I = AddrToBlock.find(Addr);
1512     if (I == AddrToBlock.end())
1513       return nullptr;
1514     return I->second;
1515   }
1516 
1517   /// Returns the block covering the given address, or nullptr if no such block
1518   /// exists.
1519   Block *getBlockCovering(orc::ExecutorAddr Addr) const {
1520     auto I = AddrToBlock.upper_bound(Addr);
1521     if (I == AddrToBlock.begin())
1522       return nullptr;
1523     auto *B = std::prev(I)->second;
1524     if (Addr < B->getAddress() + B->getSize())
1525       return B;
1526     return nullptr;
1527   }
1528 
1529 private:
1530   Error overlapError(Block &NewBlock, Block &ExistingBlock) {
1531     auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
1532     auto ExistingBlockEnd =
1533         ExistingBlock.getAddress() + ExistingBlock.getSize();
1534     return make_error<JITLinkError>(
1535         "Block at " +
1536         formatv("{0:x16} -- {1:x16}", NewBlock.getAddress().getValue(),
1537                 NewBlockEnd.getValue()) +
1538         " overlaps " +
1539         formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress().getValue(),
1540                 ExistingBlockEnd.getValue()));
1541   }
1542 
1543   AddrToBlockMap AddrToBlock;
1544 };
1545 
1546 /// A map of addresses to Symbols.
1547 class SymbolAddressMap {
1548 public:
1549   using SymbolVector = SmallVector<Symbol *, 1>;
1550 
1551   /// Add a symbol to the SymbolAddressMap.
1552   void addSymbol(Symbol &Sym) {
1553     AddrToSymbols[Sym.getAddress()].push_back(&Sym);
1554   }
1555 
1556   /// Add all symbols in a given range to the SymbolAddressMap.
1557   template <typename SymbolPtrCollection>
1558   void addSymbols(SymbolPtrCollection &&Symbols) {
1559     for (auto *Sym : Symbols)
1560       addSymbol(*Sym);
1561   }
1562 
1563   /// Returns the list of symbols that start at the given address, or nullptr if
1564   /// no such symbols exist.
1565   const SymbolVector *getSymbolsAt(orc::ExecutorAddr Addr) const {
1566     auto I = AddrToSymbols.find(Addr);
1567     if (I == AddrToSymbols.end())
1568       return nullptr;
1569     return &I->second;
1570   }
1571 
1572 private:
1573   std::map<orc::ExecutorAddr, SymbolVector> AddrToSymbols;
1574 };
1575 
1576 /// A function for mutating LinkGraphs.
1577 using LinkGraphPassFunction = std::function<Error(LinkGraph &)>;
1578 
1579 /// A list of LinkGraph passes.
1580 using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
1581 
1582 /// An LinkGraph pass configuration, consisting of a list of pre-prune,
1583 /// post-prune, and post-fixup passes.
1584 struct PassConfiguration {
1585 
1586   /// Pre-prune passes.
1587   ///
1588   /// These passes are called on the graph after it is built, and before any
1589   /// symbols have been pruned. Graph nodes still have their original vmaddrs.
1590   ///
1591   /// Notable use cases: Marking symbols live or should-discard.
1592   LinkGraphPassList PrePrunePasses;
1593 
1594   /// Post-prune passes.
1595   ///
1596   /// These passes are called on the graph after dead stripping, but before
1597   /// memory is allocated or nodes assigned their final addresses.
1598   ///
1599   /// Notable use cases: Building GOT, stub, and TLV symbols.
1600   LinkGraphPassList PostPrunePasses;
1601 
1602   /// Post-allocation passes.
1603   ///
1604   /// These passes are called on the graph after memory has been allocated and
1605   /// defined nodes have been assigned their final addresses, but before the
1606   /// context has been notified of these addresses. At this point externals
1607   /// have not been resolved, and symbol content has not yet been copied into
1608   /// working memory.
1609   ///
1610   /// Notable use cases: Setting up data structures associated with addresses
1611   /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the
1612   /// JIT runtime) -- using a PostAllocationPass for this ensures that the
1613   /// data structures are in-place before any query for resolved symbols
1614   /// can complete.
1615   LinkGraphPassList PostAllocationPasses;
1616 
1617   /// Pre-fixup passes.
1618   ///
1619   /// These passes are called on the graph after memory has been allocated,
1620   /// content copied into working memory, and all nodes (including externals)
1621   /// have been assigned their final addresses, but before any fixups have been
1622   /// applied.
1623   ///
1624   /// Notable use cases: Late link-time optimizations like GOT and stub
1625   /// elimination.
1626   LinkGraphPassList PreFixupPasses;
1627 
1628   /// Post-fixup passes.
1629   ///
1630   /// These passes are called on the graph after block contents has been copied
1631   /// to working memory, and fixups applied. Blocks have been updated to point
1632   /// to their fixed up content.
1633   ///
1634   /// Notable use cases: Testing and validation.
1635   LinkGraphPassList PostFixupPasses;
1636 };
1637 
1638 /// Flags for symbol lookup.
1639 ///
1640 /// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
1641 ///        the two types once we have an OrcSupport library.
1642 enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
1643 
1644 raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF);
1645 
1646 /// A map of symbol names to resolved addresses.
1647 using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>;
1648 
1649 /// A function object to call with a resolved symbol map (See AsyncLookupResult)
1650 /// or an error if resolution failed.
1651 class JITLinkAsyncLookupContinuation {
1652 public:
1653   virtual ~JITLinkAsyncLookupContinuation() = default;
1654   virtual void run(Expected<AsyncLookupResult> LR) = 0;
1655 
1656 private:
1657   virtual void anchor();
1658 };
1659 
1660 /// Create a lookup continuation from a function object.
1661 template <typename Continuation>
1662 std::unique_ptr<JITLinkAsyncLookupContinuation>
1663 createLookupContinuation(Continuation Cont) {
1664 
1665   class Impl final : public JITLinkAsyncLookupContinuation {
1666   public:
1667     Impl(Continuation C) : C(std::move(C)) {}
1668     void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
1669 
1670   private:
1671     Continuation C;
1672   };
1673 
1674   return std::make_unique<Impl>(std::move(Cont));
1675 }
1676 
1677 /// Holds context for a single jitLink invocation.
1678 class JITLinkContext {
1679 public:
1680   using LookupMap = DenseMap<StringRef, SymbolLookupFlags>;
1681 
1682   /// Create a JITLinkContext.
1683   JITLinkContext(const JITLinkDylib *JD) : JD(JD) {}
1684 
1685   /// Destroy a JITLinkContext.
1686   virtual ~JITLinkContext();
1687 
1688   /// Return the JITLinkDylib that this link is targeting, if any.
1689   const JITLinkDylib *getJITLinkDylib() const { return JD; }
1690 
1691   /// Return the MemoryManager to be used for this link.
1692   virtual JITLinkMemoryManager &getMemoryManager() = 0;
1693 
1694   /// Notify this context that linking failed.
1695   /// Called by JITLink if linking cannot be completed.
1696   virtual void notifyFailed(Error Err) = 0;
1697 
1698   /// Called by JITLink to resolve external symbols. This method is passed a
1699   /// lookup continutation which it must call with a result to continue the
1700   /// linking process.
1701   virtual void lookup(const LookupMap &Symbols,
1702                       std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
1703 
1704   /// Called by JITLink once all defined symbols in the graph have been assigned
1705   /// their final memory locations in the target process. At this point the
1706   /// LinkGraph can be inspected to build a symbol table, however the block
1707   /// content will not generally have been copied to the target location yet.
1708   ///
1709   /// If the client detects an error in the LinkGraph state (e.g. unexpected or
1710   /// missing symbols) they may return an error here. The error will be
1711   /// propagated to notifyFailed and the linker will bail out.
1712   virtual Error notifyResolved(LinkGraph &G) = 0;
1713 
1714   /// Called by JITLink to notify the context that the object has been
1715   /// finalized (i.e. emitted to memory and memory permissions set). If all of
1716   /// this objects dependencies have also been finalized then the code is ready
1717   /// to run.
1718   virtual void notifyFinalized(JITLinkMemoryManager::FinalizedAlloc Alloc) = 0;
1719 
1720   /// Called by JITLink prior to linking to determine whether default passes for
1721   /// the target should be added. The default implementation returns true.
1722   /// If subclasses override this method to return false for any target then
1723   /// they are required to fully configure the pass pipeline for that target.
1724   virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
1725 
1726   /// Returns the mark-live pass to be used for this link. If no pass is
1727   /// returned (the default) then the target-specific linker implementation will
1728   /// choose a conservative default (usually marking all symbols live).
1729   /// This function is only called if shouldAddDefaultTargetPasses returns true,
1730   /// otherwise the JITContext is responsible for adding a mark-live pass in
1731   /// modifyPassConfig.
1732   virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
1733 
1734   /// Called by JITLink to modify the pass pipeline prior to linking.
1735   /// The default version performs no modification.
1736   virtual Error modifyPassConfig(LinkGraph &G, PassConfiguration &Config);
1737 
1738 private:
1739   const JITLinkDylib *JD = nullptr;
1740 };
1741 
1742 /// Marks all symbols in a graph live. This can be used as a default,
1743 /// conservative mark-live implementation.
1744 Error markAllSymbolsLive(LinkGraph &G);
1745 
1746 /// Create an out of range error for the given edge in the given block.
1747 Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B,
1748                                 const Edge &E);
1749 
1750 Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N,
1751                          const Edge &E);
1752 
1753 /// Base case for edge-visitors where the visitor-list is empty.
1754 inline void visitEdge(LinkGraph &G, Block *B, Edge &E) {}
1755 
1756 /// Applies the first visitor in the list to the given edge. If the visitor's
1757 /// visitEdge method returns true then we return immediately, otherwise we
1758 /// apply the next visitor.
1759 template <typename VisitorT, typename... VisitorTs>
1760 void visitEdge(LinkGraph &G, Block *B, Edge &E, VisitorT &&V,
1761                VisitorTs &&...Vs) {
1762   if (!V.visitEdge(G, B, E))
1763     visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1764 }
1765 
1766 /// For each edge in the given graph, apply a list of visitors to the edge,
1767 /// stopping when the first visitor's visitEdge method returns true.
1768 ///
1769 /// Only visits edges that were in the graph at call time: if any visitor
1770 /// adds new edges those will not be visited. Visitors are not allowed to
1771 /// remove edges (though they can change their kind, target, and addend).
1772 template <typename... VisitorTs>
1773 void visitExistingEdges(LinkGraph &G, VisitorTs &&...Vs) {
1774   // We may add new blocks during this process, but we don't want to iterate
1775   // over them, so build a worklist.
1776   std::vector<Block *> Worklist(G.blocks().begin(), G.blocks().end());
1777 
1778   for (auto *B : Worklist)
1779     for (auto &E : B->edges())
1780       visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1781 }
1782 
1783 /// Create a LinkGraph from the given object buffer.
1784 ///
1785 /// Note: The graph does not take ownership of the underlying buffer, nor copy
1786 /// its contents. The caller is responsible for ensuring that the object buffer
1787 /// outlives the graph.
1788 Expected<std::unique_ptr<LinkGraph>>
1789 createLinkGraphFromObject(MemoryBufferRef ObjectBuffer);
1790 
1791 /// Link the given graph.
1792 void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx);
1793 
1794 } // end namespace jitlink
1795 } // end namespace llvm
1796 
1797 #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
1798