1 //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Contains generic JIT-linker types.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
14 #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h"
20 #include "llvm/ExecutionEngine/JITSymbol.h"
21 #include "llvm/ExecutionEngine/Orc/Shared/ExecutorAddress.h"
22 #include "llvm/ExecutionEngine/Orc/Shared/ExecutorSymbolDef.h"
23 #include "llvm/ExecutionEngine/Orc/Shared/MemoryFlags.h"
24 #include "llvm/Support/Allocator.h"
25 #include "llvm/Support/BinaryStreamReader.h"
26 #include "llvm/Support/BinaryStreamWriter.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/FormatVariadic.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/MemoryBuffer.h"
32 #include "llvm/TargetParser/SubtargetFeature.h"
33 #include "llvm/TargetParser/Triple.h"
34 #include <optional>
35 
36 #include <map>
37 #include <string>
38 #include <system_error>
39 
40 namespace llvm {
41 namespace jitlink {
42 
43 class LinkGraph;
44 class Symbol;
45 class Section;
46 
47 /// Base class for errors originating in JIT linker, e.g. missing relocation
48 /// support.
49 class JITLinkError : public ErrorInfo<JITLinkError> {
50 public:
51   static char ID;
52 
53   JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
54 
55   void log(raw_ostream &OS) const override;
56   const std::string &getErrorMessage() const { return ErrMsg; }
57   std::error_code convertToErrorCode() const override;
58 
59 private:
60   std::string ErrMsg;
61 };
62 
63 /// Represents fixups and constraints in the LinkGraph.
64 class Edge {
65 public:
66   using Kind = uint8_t;
67 
68   enum GenericEdgeKind : Kind {
69     Invalid,                    // Invalid edge value.
70     FirstKeepAlive,             // Keeps target alive. Offset/addend zero.
71     KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
72     FirstRelocation             // First architecture specific relocation.
73   };
74 
75   using OffsetT = uint32_t;
76   using AddendT = int64_t;
77 
78   Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
79       : Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
80 
81   OffsetT getOffset() const { return Offset; }
82   void setOffset(OffsetT Offset) { this->Offset = Offset; }
83   Kind getKind() const { return K; }
84   void setKind(Kind K) { this->K = K; }
85   bool isRelocation() const { return K >= FirstRelocation; }
86   Kind getRelocation() const {
87     assert(isRelocation() && "Not a relocation edge");
88     return K - FirstRelocation;
89   }
90   bool isKeepAlive() const { return K >= FirstKeepAlive; }
91   Symbol &getTarget() const { return *Target; }
92   void setTarget(Symbol &Target) { this->Target = &Target; }
93   AddendT getAddend() const { return Addend; }
94   void setAddend(AddendT Addend) { this->Addend = Addend; }
95 
96 private:
97   Symbol *Target = nullptr;
98   OffsetT Offset = 0;
99   AddendT Addend = 0;
100   Kind K = 0;
101 };
102 
103 /// Returns the string name of the given generic edge kind, or "unknown"
104 /// otherwise. Useful for debugging.
105 const char *getGenericEdgeKindName(Edge::Kind K);
106 
107 /// Base class for Addressable entities (externals, absolutes, blocks).
108 class Addressable {
109   friend class LinkGraph;
110 
111 protected:
112   Addressable(orc::ExecutorAddr Address, bool IsDefined)
113       : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
114 
115   Addressable(orc::ExecutorAddr Address)
116       : Address(Address), IsDefined(false), IsAbsolute(true) {
117     assert(!(IsDefined && IsAbsolute) &&
118            "Block cannot be both defined and absolute");
119   }
120 
121 public:
122   Addressable(const Addressable &) = delete;
123   Addressable &operator=(const Addressable &) = default;
124   Addressable(Addressable &&) = delete;
125   Addressable &operator=(Addressable &&) = default;
126 
127   orc::ExecutorAddr getAddress() const { return Address; }
128   void setAddress(orc::ExecutorAddr Address) { this->Address = Address; }
129 
130   /// Returns true if this is a defined addressable, in which case you
131   /// can downcast this to a Block.
132   bool isDefined() const { return static_cast<bool>(IsDefined); }
133   bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
134 
135 private:
136   void setAbsolute(bool IsAbsolute) {
137     assert(!IsDefined && "Cannot change the Absolute flag on a defined block");
138     this->IsAbsolute = IsAbsolute;
139   }
140 
141   orc::ExecutorAddr Address;
142   uint64_t IsDefined : 1;
143   uint64_t IsAbsolute : 1;
144 
145 protected:
146   // bitfields for Block, allocated here to improve packing.
147   uint64_t ContentMutable : 1;
148   uint64_t P2Align : 5;
149   uint64_t AlignmentOffset : 56;
150 };
151 
152 using SectionOrdinal = unsigned;
153 
154 /// An Addressable with content and edges.
155 class Block : public Addressable {
156   friend class LinkGraph;
157 
158 private:
159   /// Create a zero-fill defined addressable.
160   Block(Section &Parent, orc::ExecutorAddrDiff Size, orc::ExecutorAddr Address,
161         uint64_t Alignment, uint64_t AlignmentOffset)
162       : Addressable(Address, true), Parent(&Parent), Size(Size) {
163     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
164     assert(AlignmentOffset < Alignment &&
165            "Alignment offset cannot exceed alignment");
166     assert(AlignmentOffset <= MaxAlignmentOffset &&
167            "Alignment offset exceeds maximum");
168     ContentMutable = false;
169     P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
170     this->AlignmentOffset = AlignmentOffset;
171   }
172 
173   /// Create a defined addressable for the given content.
174   /// The Content is assumed to be non-writable, and will be copied when
175   /// mutations are required.
176   Block(Section &Parent, ArrayRef<char> Content, orc::ExecutorAddr Address,
177         uint64_t Alignment, uint64_t AlignmentOffset)
178       : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
179         Size(Content.size()) {
180     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
181     assert(AlignmentOffset < Alignment &&
182            "Alignment offset cannot exceed alignment");
183     assert(AlignmentOffset <= MaxAlignmentOffset &&
184            "Alignment offset exceeds maximum");
185     ContentMutable = false;
186     P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
187     this->AlignmentOffset = AlignmentOffset;
188   }
189 
190   /// Create a defined addressable for the given content.
191   /// The content is assumed to be writable, and the caller is responsible
192   /// for ensuring that it lives for the duration of the Block's lifetime.
193   /// The standard way to achieve this is to allocate it on the Graph's
194   /// allocator.
195   Block(Section &Parent, MutableArrayRef<char> Content,
196         orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset)
197       : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
198         Size(Content.size()) {
199     assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
200     assert(AlignmentOffset < Alignment &&
201            "Alignment offset cannot exceed alignment");
202     assert(AlignmentOffset <= MaxAlignmentOffset &&
203            "Alignment offset exceeds maximum");
204     ContentMutable = true;
205     P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
206     this->AlignmentOffset = AlignmentOffset;
207   }
208 
209 public:
210   using EdgeVector = std::vector<Edge>;
211   using edge_iterator = EdgeVector::iterator;
212   using const_edge_iterator = EdgeVector::const_iterator;
213 
214   Block(const Block &) = delete;
215   Block &operator=(const Block &) = delete;
216   Block(Block &&) = delete;
217   Block &operator=(Block &&) = delete;
218 
219   /// Return the parent section for this block.
220   Section &getSection() const { return *Parent; }
221 
222   /// Returns true if this is a zero-fill block.
223   ///
224   /// If true, getSize is callable but getContent is not (the content is
225   /// defined to be a sequence of zero bytes of length Size).
226   bool isZeroFill() const { return !Data; }
227 
228   /// Returns the size of this defined addressable.
229   size_t getSize() const { return Size; }
230 
231   /// Returns the address range of this defined addressable.
232   orc::ExecutorAddrRange getRange() const {
233     return orc::ExecutorAddrRange(getAddress(), getSize());
234   }
235 
236   /// Get the content for this block. Block must not be a zero-fill block.
237   ArrayRef<char> getContent() const {
238     assert(Data && "Block does not contain content");
239     return ArrayRef<char>(Data, Size);
240   }
241 
242   /// Set the content for this block.
243   /// Caller is responsible for ensuring the underlying bytes are not
244   /// deallocated while pointed to by this block.
245   void setContent(ArrayRef<char> Content) {
246     assert(Content.data() && "Setting null content");
247     Data = Content.data();
248     Size = Content.size();
249     ContentMutable = false;
250   }
251 
252   /// Get mutable content for this block.
253   ///
254   /// If this Block's content is not already mutable this will trigger a copy
255   /// of the existing immutable content to a new, mutable buffer allocated using
256   /// LinkGraph::allocateContent.
257   MutableArrayRef<char> getMutableContent(LinkGraph &G);
258 
259   /// Get mutable content for this block.
260   ///
261   /// This block's content must already be mutable. It is a programmatic error
262   /// to call this on a block with immutable content -- consider using
263   /// getMutableContent instead.
264   MutableArrayRef<char> getAlreadyMutableContent() {
265     assert(Data && "Block does not contain content");
266     assert(ContentMutable && "Content is not mutable");
267     return MutableArrayRef<char>(const_cast<char *>(Data), Size);
268   }
269 
270   /// Set mutable content for this block.
271   ///
272   /// The caller is responsible for ensuring that the memory pointed to by
273   /// MutableContent is not deallocated while pointed to by this block.
274   void setMutableContent(MutableArrayRef<char> MutableContent) {
275     assert(MutableContent.data() && "Setting null content");
276     Data = MutableContent.data();
277     Size = MutableContent.size();
278     ContentMutable = true;
279   }
280 
281   /// Returns true if this block's content is mutable.
282   ///
283   /// This is primarily useful for asserting that a block is already in a
284   /// mutable state prior to modifying the content. E.g. when applying
285   /// fixups we expect the block to already be mutable as it should have been
286   /// copied to working memory.
287   bool isContentMutable() const { return ContentMutable; }
288 
289   /// Get the alignment for this content.
290   uint64_t getAlignment() const { return 1ull << P2Align; }
291 
292   /// Set the alignment for this content.
293   void setAlignment(uint64_t Alignment) {
294     assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
295     P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
296   }
297 
298   /// Get the alignment offset for this content.
299   uint64_t getAlignmentOffset() const { return AlignmentOffset; }
300 
301   /// Set the alignment offset for this content.
302   void setAlignmentOffset(uint64_t AlignmentOffset) {
303     assert(AlignmentOffset < (1ull << P2Align) &&
304            "Alignment offset can't exceed alignment");
305     this->AlignmentOffset = AlignmentOffset;
306   }
307 
308   /// Add an edge to this block.
309   void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
310                Edge::AddendT Addend) {
311     assert((K == Edge::KeepAlive || !isZeroFill()) &&
312            "Adding edge to zero-fill block?");
313     Edges.push_back(Edge(K, Offset, Target, Addend));
314   }
315 
316   /// Add an edge by copying an existing one. This is typically used when
317   /// moving edges between blocks.
318   void addEdge(const Edge &E) { Edges.push_back(E); }
319 
320   /// Return the list of edges attached to this content.
321   iterator_range<edge_iterator> edges() {
322     return make_range(Edges.begin(), Edges.end());
323   }
324 
325   /// Returns the list of edges attached to this content.
326   iterator_range<const_edge_iterator> edges() const {
327     return make_range(Edges.begin(), Edges.end());
328   }
329 
330   /// Return the size of the edges list.
331   size_t edges_size() const { return Edges.size(); }
332 
333   /// Returns true if the list of edges is empty.
334   bool edges_empty() const { return Edges.empty(); }
335 
336   /// Remove the edge pointed to by the given iterator.
337   /// Returns an iterator to the new next element.
338   edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); }
339 
340   /// Returns the address of the fixup for the given edge, which is equal to
341   /// this block's address plus the edge's offset.
342   orc::ExecutorAddr getFixupAddress(const Edge &E) const {
343     return getAddress() + E.getOffset();
344   }
345 
346 private:
347   static constexpr uint64_t MaxAlignmentOffset = (1ULL << 56) - 1;
348 
349   void setSection(Section &Parent) { this->Parent = &Parent; }
350 
351   Section *Parent;
352   const char *Data = nullptr;
353   size_t Size = 0;
354   std::vector<Edge> Edges;
355 };
356 
357 // Align an address to conform with block alignment requirements.
358 inline uint64_t alignToBlock(uint64_t Addr, const Block &B) {
359   uint64_t Delta = (B.getAlignmentOffset() - Addr) % B.getAlignment();
360   return Addr + Delta;
361 }
362 
363 // Align a orc::ExecutorAddr to conform with block alignment requirements.
364 inline orc::ExecutorAddr alignToBlock(orc::ExecutorAddr Addr, const Block &B) {
365   return orc::ExecutorAddr(alignToBlock(Addr.getValue(), B));
366 }
367 
368 // Returns true if the given blocks contains exactly one valid c-string.
369 // Zero-fill blocks of size 1 count as valid empty strings. Content blocks
370 // must end with a zero, and contain no zeros before the end.
371 bool isCStringBlock(Block &B);
372 
373 /// Describes symbol linkage. This can be used to resolve definition clashes.
374 enum class Linkage : uint8_t {
375   Strong,
376   Weak,
377 };
378 
379 /// Holds target-specific properties for a symbol.
380 using TargetFlagsType = uint8_t;
381 
382 /// For errors and debugging output.
383 const char *getLinkageName(Linkage L);
384 
385 /// Defines the scope in which this symbol should be visible:
386 ///   Default -- Visible in the public interface of the linkage unit.
387 ///   Hidden -- Visible within the linkage unit, but not exported from it.
388 ///   Local -- Visible only within the LinkGraph.
389 enum class Scope : uint8_t {
390   Default,
391   Hidden,
392   Local
393 };
394 
395 /// For debugging output.
396 const char *getScopeName(Scope S);
397 
398 raw_ostream &operator<<(raw_ostream &OS, const Block &B);
399 
400 /// Symbol representation.
401 ///
402 /// Symbols represent locations within Addressable objects.
403 /// They can be either Named or Anonymous.
404 /// Anonymous symbols have neither linkage nor visibility, and must point at
405 /// ContentBlocks.
406 /// Named symbols may be in one of four states:
407 ///   - Null: Default initialized. Assignable, but otherwise unusable.
408 ///   - Defined: Has both linkage and visibility and points to a ContentBlock
409 ///   - Common: Has both linkage and visibility, points to a null Addressable.
410 ///   - External: Has neither linkage nor visibility, points to an external
411 ///     Addressable.
412 ///
413 class Symbol {
414   friend class LinkGraph;
415 
416 private:
417   Symbol(Addressable &Base, orc::ExecutorAddrDiff Offset, StringRef Name,
418          orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive,
419          bool IsCallable)
420       : Name(Name), Base(&Base), Offset(Offset), WeakRef(0), Size(Size) {
421     assert(Offset <= MaxOffset && "Offset out of range");
422     setLinkage(L);
423     setScope(S);
424     setLive(IsLive);
425     setCallable(IsCallable);
426     setTargetFlags(TargetFlagsType{});
427   }
428 
429   static Symbol &constructExternal(BumpPtrAllocator &Allocator,
430                                    Addressable &Base, StringRef Name,
431                                    orc::ExecutorAddrDiff Size, Linkage L,
432                                    bool WeaklyReferenced) {
433     assert(!Base.isDefined() &&
434            "Cannot create external symbol from defined block");
435     assert(!Name.empty() && "External symbol name cannot be empty");
436     auto *Sym = Allocator.Allocate<Symbol>();
437     new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false);
438     Sym->setWeaklyReferenced(WeaklyReferenced);
439     return *Sym;
440   }
441 
442   static Symbol &constructAbsolute(BumpPtrAllocator &Allocator,
443                                    Addressable &Base, StringRef Name,
444                                    orc::ExecutorAddrDiff Size, Linkage L,
445                                    Scope S, bool IsLive) {
446     assert(!Base.isDefined() &&
447            "Cannot create absolute symbol from a defined block");
448     auto *Sym = Allocator.Allocate<Symbol>();
449     new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
450     return *Sym;
451   }
452 
453   static Symbol &constructAnonDef(BumpPtrAllocator &Allocator, Block &Base,
454                                   orc::ExecutorAddrDiff Offset,
455                                   orc::ExecutorAddrDiff Size, bool IsCallable,
456                                   bool IsLive) {
457     assert((Offset + Size) <= Base.getSize() &&
458            "Symbol extends past end of block");
459     auto *Sym = Allocator.Allocate<Symbol>();
460     new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
461                      Scope::Local, IsLive, IsCallable);
462     return *Sym;
463   }
464 
465   static Symbol &constructNamedDef(BumpPtrAllocator &Allocator, Block &Base,
466                                    orc::ExecutorAddrDiff Offset, StringRef Name,
467                                    orc::ExecutorAddrDiff Size, Linkage L,
468                                    Scope S, bool IsLive, bool IsCallable) {
469     assert((Offset + Size) <= Base.getSize() &&
470            "Symbol extends past end of block");
471     assert(!Name.empty() && "Name cannot be empty");
472     auto *Sym = Allocator.Allocate<Symbol>();
473     new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
474     return *Sym;
475   }
476 
477 public:
478   /// Create a null Symbol. This allows Symbols to be default initialized for
479   /// use in containers (e.g. as map values). Null symbols are only useful for
480   /// assigning to.
481   Symbol() = default;
482 
483   // Symbols are not movable or copyable.
484   Symbol(const Symbol &) = delete;
485   Symbol &operator=(const Symbol &) = delete;
486   Symbol(Symbol &&) = delete;
487   Symbol &operator=(Symbol &&) = delete;
488 
489   /// Returns true if this symbol has a name.
490   bool hasName() const { return !Name.empty(); }
491 
492   /// Returns the name of this symbol (empty if the symbol is anonymous).
493   StringRef getName() const {
494     assert((!Name.empty() || getScope() == Scope::Local) &&
495            "Anonymous symbol has non-local scope");
496     return Name;
497   }
498 
499   /// Rename this symbol. The client is responsible for updating scope and
500   /// linkage if this name-change requires it.
501   void setName(StringRef Name) { this->Name = Name; }
502 
503   /// Returns true if this Symbol has content (potentially) defined within this
504   /// object file (i.e. is anything but an external or absolute symbol).
505   bool isDefined() const {
506     assert(Base && "Attempt to access null symbol");
507     return Base->isDefined();
508   }
509 
510   /// Returns true if this symbol is live (i.e. should be treated as a root for
511   /// dead stripping).
512   bool isLive() const {
513     assert(Base && "Attempting to access null symbol");
514     return IsLive;
515   }
516 
517   /// Set this symbol's live bit.
518   void setLive(bool IsLive) { this->IsLive = IsLive; }
519 
520   /// Returns true is this symbol is callable.
521   bool isCallable() const { return IsCallable; }
522 
523   /// Set this symbol's callable bit.
524   void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
525 
526   /// Returns true if the underlying addressable is an unresolved external.
527   bool isExternal() const {
528     assert(Base && "Attempt to access null symbol");
529     return !Base->isDefined() && !Base->isAbsolute();
530   }
531 
532   /// Returns true if the underlying addressable is an absolute symbol.
533   bool isAbsolute() const {
534     assert(Base && "Attempt to access null symbol");
535     return Base->isAbsolute();
536   }
537 
538   /// Return the addressable that this symbol points to.
539   Addressable &getAddressable() {
540     assert(Base && "Cannot get underlying addressable for null symbol");
541     return *Base;
542   }
543 
544   /// Return the addressable that this symbol points to.
545   const Addressable &getAddressable() const {
546     assert(Base && "Cannot get underlying addressable for null symbol");
547     return *Base;
548   }
549 
550   /// Return the Block for this Symbol (Symbol must be defined).
551   Block &getBlock() {
552     assert(Base && "Cannot get block for null symbol");
553     assert(Base->isDefined() && "Not a defined symbol");
554     return static_cast<Block &>(*Base);
555   }
556 
557   /// Return the Block for this Symbol (Symbol must be defined).
558   const Block &getBlock() const {
559     assert(Base && "Cannot get block for null symbol");
560     assert(Base->isDefined() && "Not a defined symbol");
561     return static_cast<const Block &>(*Base);
562   }
563 
564   /// Returns the offset for this symbol within the underlying addressable.
565   orc::ExecutorAddrDiff getOffset() const { return Offset; }
566 
567   void setOffset(orc::ExecutorAddrDiff NewOffset) {
568     assert(NewOffset < getBlock().getSize() && "Offset out of range");
569     Offset = NewOffset;
570   }
571 
572   /// Returns the address of this symbol.
573   orc::ExecutorAddr getAddress() const { return Base->getAddress() + Offset; }
574 
575   /// Returns the size of this symbol.
576   orc::ExecutorAddrDiff getSize() const { return Size; }
577 
578   /// Set the size of this symbol.
579   void setSize(orc::ExecutorAddrDiff Size) {
580     assert(Base && "Cannot set size for null Symbol");
581     assert((Size == 0 || Base->isDefined()) &&
582            "Non-zero size can only be set for defined symbols");
583     assert((Offset + Size <= static_cast<const Block &>(*Base).getSize()) &&
584            "Symbol size cannot extend past the end of its containing block");
585     this->Size = Size;
586   }
587 
588   /// Returns the address range of this symbol.
589   orc::ExecutorAddrRange getRange() const {
590     return orc::ExecutorAddrRange(getAddress(), getSize());
591   }
592 
593   /// Returns true if this symbol is backed by a zero-fill block.
594   /// This method may only be called on defined symbols.
595   bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
596 
597   /// Returns the content in the underlying block covered by this symbol.
598   /// This method may only be called on defined non-zero-fill symbols.
599   ArrayRef<char> getSymbolContent() const {
600     return getBlock().getContent().slice(Offset, Size);
601   }
602 
603   /// Get the linkage for this Symbol.
604   Linkage getLinkage() const { return static_cast<Linkage>(L); }
605 
606   /// Set the linkage for this Symbol.
607   void setLinkage(Linkage L) {
608     assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) &&
609            "Linkage can only be applied to defined named symbols");
610     this->L = static_cast<uint8_t>(L);
611   }
612 
613   /// Get the visibility for this Symbol.
614   Scope getScope() const { return static_cast<Scope>(S); }
615 
616   /// Set the visibility for this Symbol.
617   void setScope(Scope S) {
618     assert((!Name.empty() || S == Scope::Local) &&
619            "Can not set anonymous symbol to non-local scope");
620     assert((S != Scope::Local || Base->isDefined() || Base->isAbsolute()) &&
621            "Invalid visibility for symbol type");
622     this->S = static_cast<uint8_t>(S);
623   }
624 
625   /// Check wehther the given target flags are set for this Symbol.
626   bool hasTargetFlags(TargetFlagsType Flags) const {
627     return static_cast<TargetFlagsType>(TargetFlags) & Flags;
628   }
629 
630   /// Set the target flags for this Symbol.
631   void setTargetFlags(TargetFlagsType Flags) {
632     assert(Flags <= 1 && "Add more bits to store more than single flag");
633     TargetFlags = Flags;
634   }
635 
636   /// Returns true if this is a weakly referenced external symbol.
637   /// This method may only be called on external symbols.
638   bool isWeaklyReferenced() const {
639     assert(isExternal() && "isWeaklyReferenced called on non-external");
640     return WeakRef;
641   }
642 
643   /// Set the WeaklyReferenced value for this symbol.
644   /// This method may only be called on external symbols.
645   void setWeaklyReferenced(bool WeakRef) {
646     assert(isExternal() && "setWeaklyReferenced called on non-external");
647     this->WeakRef = WeakRef;
648   }
649 
650 private:
651   void makeExternal(Addressable &A) {
652     assert(!A.isDefined() && !A.isAbsolute() &&
653            "Attempting to make external with defined or absolute block");
654     Base = &A;
655     Offset = 0;
656     setScope(Scope::Default);
657     IsLive = 0;
658     // note: Size, Linkage and IsCallable fields left unchanged.
659   }
660 
661   void makeAbsolute(Addressable &A) {
662     assert(!A.isDefined() && A.isAbsolute() &&
663            "Attempting to make absolute with defined or external block");
664     Base = &A;
665     Offset = 0;
666   }
667 
668   void setBlock(Block &B) { Base = &B; }
669 
670   static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
671 
672   // FIXME: A char* or SymbolStringPtr may pack better.
673   StringRef Name;
674   Addressable *Base = nullptr;
675   uint64_t Offset : 57;
676   uint64_t L : 1;
677   uint64_t S : 2;
678   uint64_t IsLive : 1;
679   uint64_t IsCallable : 1;
680   uint64_t WeakRef : 1;
681   uint64_t TargetFlags : 1;
682   size_t Size = 0;
683 };
684 
685 raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
686 
687 void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
688                StringRef EdgeKindName);
689 
690 /// Represents an object file section.
691 class Section {
692   friend class LinkGraph;
693 
694 private:
695   Section(StringRef Name, orc::MemProt Prot, SectionOrdinal SecOrdinal)
696       : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
697 
698   using SymbolSet = DenseSet<Symbol *>;
699   using BlockSet = DenseSet<Block *>;
700 
701 public:
702   using symbol_iterator = SymbolSet::iterator;
703   using const_symbol_iterator = SymbolSet::const_iterator;
704 
705   using block_iterator = BlockSet::iterator;
706   using const_block_iterator = BlockSet::const_iterator;
707 
708   ~Section();
709 
710   // Sections are not movable or copyable.
711   Section(const Section &) = delete;
712   Section &operator=(const Section &) = delete;
713   Section(Section &&) = delete;
714   Section &operator=(Section &&) = delete;
715 
716   /// Returns the name of this section.
717   StringRef getName() const { return Name; }
718 
719   /// Returns the protection flags for this section.
720   orc::MemProt getMemProt() const { return Prot; }
721 
722   /// Set the protection flags for this section.
723   void setMemProt(orc::MemProt Prot) { this->Prot = Prot; }
724 
725   /// Get the memory lifetime policy for this section.
726   orc::MemLifetimePolicy getMemLifetimePolicy() const { return MLP; }
727 
728   /// Set the memory lifetime policy for this section.
729   void setMemLifetimePolicy(orc::MemLifetimePolicy MLP) { this->MLP = MLP; }
730 
731   /// Returns the ordinal for this section.
732   SectionOrdinal getOrdinal() const { return SecOrdinal; }
733 
734   /// Returns true if this section is empty (contains no blocks or symbols).
735   bool empty() const { return Blocks.empty(); }
736 
737   /// Returns an iterator over the blocks defined in this section.
738   iterator_range<block_iterator> blocks() {
739     return make_range(Blocks.begin(), Blocks.end());
740   }
741 
742   /// Returns an iterator over the blocks defined in this section.
743   iterator_range<const_block_iterator> blocks() const {
744     return make_range(Blocks.begin(), Blocks.end());
745   }
746 
747   /// Returns the number of blocks in this section.
748   BlockSet::size_type blocks_size() const { return Blocks.size(); }
749 
750   /// Returns an iterator over the symbols defined in this section.
751   iterator_range<symbol_iterator> symbols() {
752     return make_range(Symbols.begin(), Symbols.end());
753   }
754 
755   /// Returns an iterator over the symbols defined in this section.
756   iterator_range<const_symbol_iterator> symbols() const {
757     return make_range(Symbols.begin(), Symbols.end());
758   }
759 
760   /// Return the number of symbols in this section.
761   SymbolSet::size_type symbols_size() const { return Symbols.size(); }
762 
763 private:
764   void addSymbol(Symbol &Sym) {
765     assert(!Symbols.count(&Sym) && "Symbol is already in this section");
766     Symbols.insert(&Sym);
767   }
768 
769   void removeSymbol(Symbol &Sym) {
770     assert(Symbols.count(&Sym) && "symbol is not in this section");
771     Symbols.erase(&Sym);
772   }
773 
774   void addBlock(Block &B) {
775     assert(!Blocks.count(&B) && "Block is already in this section");
776     Blocks.insert(&B);
777   }
778 
779   void removeBlock(Block &B) {
780     assert(Blocks.count(&B) && "Block is not in this section");
781     Blocks.erase(&B);
782   }
783 
784   void transferContentTo(Section &DstSection) {
785     if (&DstSection == this)
786       return;
787     for (auto *S : Symbols)
788       DstSection.addSymbol(*S);
789     for (auto *B : Blocks)
790       DstSection.addBlock(*B);
791     Symbols.clear();
792     Blocks.clear();
793   }
794 
795   StringRef Name;
796   orc::MemProt Prot;
797   orc::MemLifetimePolicy MLP = orc::MemLifetimePolicy::Standard;
798   SectionOrdinal SecOrdinal = 0;
799   BlockSet Blocks;
800   SymbolSet Symbols;
801 };
802 
803 /// Represents a section address range via a pair of Block pointers
804 /// to the first and last Blocks in the section.
805 class SectionRange {
806 public:
807   SectionRange() = default;
808   SectionRange(const Section &Sec) {
809     if (Sec.blocks().empty())
810       return;
811     First = Last = *Sec.blocks().begin();
812     for (auto *B : Sec.blocks()) {
813       if (B->getAddress() < First->getAddress())
814         First = B;
815       if (B->getAddress() > Last->getAddress())
816         Last = B;
817     }
818   }
819   Block *getFirstBlock() const {
820     assert((!Last || First) && "First can not be null if end is non-null");
821     return First;
822   }
823   Block *getLastBlock() const {
824     assert((First || !Last) && "Last can not be null if start is non-null");
825     return Last;
826   }
827   bool empty() const {
828     assert((First || !Last) && "Last can not be null if start is non-null");
829     return !First;
830   }
831   orc::ExecutorAddr getStart() const {
832     return First ? First->getAddress() : orc::ExecutorAddr();
833   }
834   orc::ExecutorAddr getEnd() const {
835     return Last ? Last->getAddress() + Last->getSize() : orc::ExecutorAddr();
836   }
837   orc::ExecutorAddrDiff getSize() const { return getEnd() - getStart(); }
838 
839   orc::ExecutorAddrRange getRange() const {
840     return orc::ExecutorAddrRange(getStart(), getEnd());
841   }
842 
843 private:
844   Block *First = nullptr;
845   Block *Last = nullptr;
846 };
847 
848 class LinkGraph {
849 private:
850   using SectionMap = DenseMap<StringRef, std::unique_ptr<Section>>;
851   using ExternalSymbolSet = DenseSet<Symbol *>;
852   using BlockSet = DenseSet<Block *>;
853 
854   template <typename... ArgTs>
855   Addressable &createAddressable(ArgTs &&... Args) {
856     Addressable *A =
857         reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
858     new (A) Addressable(std::forward<ArgTs>(Args)...);
859     return *A;
860   }
861 
862   void destroyAddressable(Addressable &A) {
863     A.~Addressable();
864     Allocator.Deallocate(&A);
865   }
866 
867   template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
868     Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
869     new (B) Block(std::forward<ArgTs>(Args)...);
870     B->getSection().addBlock(*B);
871     return *B;
872   }
873 
874   void destroyBlock(Block &B) {
875     B.~Block();
876     Allocator.Deallocate(&B);
877   }
878 
879   void destroySymbol(Symbol &S) {
880     S.~Symbol();
881     Allocator.Deallocate(&S);
882   }
883 
884   static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
885     return S.blocks();
886   }
887 
888   static iterator_range<Section::const_block_iterator>
889   getSectionConstBlocks(const Section &S) {
890     return S.blocks();
891   }
892 
893   static iterator_range<Section::symbol_iterator>
894   getSectionSymbols(Section &S) {
895     return S.symbols();
896   }
897 
898   static iterator_range<Section::const_symbol_iterator>
899   getSectionConstSymbols(const Section &S) {
900     return S.symbols();
901   }
902 
903   struct GetSectionMapEntryValue {
904     Section &operator()(SectionMap::value_type &KV) const { return *KV.second; }
905   };
906 
907   struct GetSectionMapEntryConstValue {
908     const Section &operator()(const SectionMap::value_type &KV) const {
909       return *KV.second;
910     }
911   };
912 
913 public:
914   using external_symbol_iterator = ExternalSymbolSet::iterator;
915 
916   using section_iterator =
917       mapped_iterator<SectionMap::iterator, GetSectionMapEntryValue>;
918   using const_section_iterator =
919       mapped_iterator<SectionMap::const_iterator, GetSectionMapEntryConstValue>;
920 
921   template <typename OuterItrT, typename InnerItrT, typename T,
922             iterator_range<InnerItrT> getInnerRange(
923                 typename OuterItrT::reference)>
924   class nested_collection_iterator
925       : public iterator_facade_base<
926             nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
927             std::forward_iterator_tag, T> {
928   public:
929     nested_collection_iterator() = default;
930 
931     nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
932         : OuterI(OuterI), OuterE(OuterE),
933           InnerI(getInnerBegin(OuterI, OuterE)) {
934       moveToNonEmptyInnerOrEnd();
935     }
936 
937     bool operator==(const nested_collection_iterator &RHS) const {
938       return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
939     }
940 
941     T operator*() const {
942       assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
943       return *InnerI;
944     }
945 
946     nested_collection_iterator operator++() {
947       ++InnerI;
948       moveToNonEmptyInnerOrEnd();
949       return *this;
950     }
951 
952   private:
953     static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
954       return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
955     }
956 
957     void moveToNonEmptyInnerOrEnd() {
958       while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
959         ++OuterI;
960         InnerI = getInnerBegin(OuterI, OuterE);
961       }
962     }
963 
964     OuterItrT OuterI, OuterE;
965     InnerItrT InnerI;
966   };
967 
968   using defined_symbol_iterator =
969       nested_collection_iterator<section_iterator, Section::symbol_iterator,
970                                  Symbol *, getSectionSymbols>;
971 
972   using const_defined_symbol_iterator =
973       nested_collection_iterator<const_section_iterator,
974                                  Section::const_symbol_iterator, const Symbol *,
975                                  getSectionConstSymbols>;
976 
977   using block_iterator =
978       nested_collection_iterator<section_iterator, Section::block_iterator,
979                                  Block *, getSectionBlocks>;
980 
981   using const_block_iterator =
982       nested_collection_iterator<const_section_iterator,
983                                  Section::const_block_iterator, const Block *,
984                                  getSectionConstBlocks>;
985 
986   using GetEdgeKindNameFunction = const char *(*)(Edge::Kind);
987 
988   LinkGraph(std::string Name, const Triple &TT, SubtargetFeatures Features,
989             unsigned PointerSize, support::endianness Endianness,
990             GetEdgeKindNameFunction GetEdgeKindName)
991       : Name(std::move(Name)), TT(TT), Features(std::move(Features)),
992         PointerSize(PointerSize), Endianness(Endianness),
993         GetEdgeKindName(std::move(GetEdgeKindName)) {}
994 
995   LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize,
996             support::endianness Endianness,
997             GetEdgeKindNameFunction GetEdgeKindName)
998       : LinkGraph(std::move(Name), TT, SubtargetFeatures(), PointerSize,
999                   Endianness, GetEdgeKindName) {}
1000 
1001   LinkGraph(const LinkGraph &) = delete;
1002   LinkGraph &operator=(const LinkGraph &) = delete;
1003   LinkGraph(LinkGraph &&) = delete;
1004   LinkGraph &operator=(LinkGraph &&) = delete;
1005 
1006   /// Returns the name of this graph (usually the name of the original
1007   /// underlying MemoryBuffer).
1008   const std::string &getName() const { return Name; }
1009 
1010   /// Returns the target triple for this Graph.
1011   const Triple &getTargetTriple() const { return TT; }
1012 
1013   /// Return the subtarget features for this Graph.
1014   const SubtargetFeatures &getFeatures() const { return Features; }
1015 
1016   /// Returns the pointer size for use in this graph.
1017   unsigned getPointerSize() const { return PointerSize; }
1018 
1019   /// Returns the endianness of content in this graph.
1020   support::endianness getEndianness() const { return Endianness; }
1021 
1022   const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); }
1023 
1024   /// Allocate a mutable buffer of the given size using the LinkGraph's
1025   /// allocator.
1026   MutableArrayRef<char> allocateBuffer(size_t Size) {
1027     return {Allocator.Allocate<char>(Size), Size};
1028   }
1029 
1030   /// Allocate a copy of the given string using the LinkGraph's allocator.
1031   /// This can be useful when renaming symbols or adding new content to the
1032   /// graph.
1033   MutableArrayRef<char> allocateContent(ArrayRef<char> Source) {
1034     auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size());
1035     llvm::copy(Source, AllocatedBuffer);
1036     return MutableArrayRef<char>(AllocatedBuffer, Source.size());
1037   }
1038 
1039   /// Allocate a copy of the given string using the LinkGraph's allocator.
1040   /// This can be useful when renaming symbols or adding new content to the
1041   /// graph.
1042   ///
1043   /// Note: This Twine-based overload requires an extra string copy and an
1044   /// extra heap allocation for large strings. The ArrayRef<char> overload
1045   /// should be preferred where possible.
1046   MutableArrayRef<char> allocateContent(Twine Source) {
1047     SmallString<256> TmpBuffer;
1048     auto SourceStr = Source.toStringRef(TmpBuffer);
1049     auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size());
1050     llvm::copy(SourceStr, AllocatedBuffer);
1051     return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size());
1052   }
1053 
1054   /// Allocate a copy of the given string using the LinkGraph's allocator.
1055   ///
1056   /// The allocated string will be terminated with a null character, and the
1057   /// returned MutableArrayRef will include this null character in the last
1058   /// position.
1059   MutableArrayRef<char> allocateCString(StringRef Source) {
1060     char *AllocatedBuffer = Allocator.Allocate<char>(Source.size() + 1);
1061     llvm::copy(Source, AllocatedBuffer);
1062     AllocatedBuffer[Source.size()] = '\0';
1063     return MutableArrayRef<char>(AllocatedBuffer, Source.size() + 1);
1064   }
1065 
1066   /// Allocate a copy of the given string using the LinkGraph's allocator.
1067   ///
1068   /// The allocated string will be terminated with a null character, and the
1069   /// returned MutableArrayRef will include this null character in the last
1070   /// position.
1071   ///
1072   /// Note: This Twine-based overload requires an extra string copy and an
1073   /// extra heap allocation for large strings. The ArrayRef<char> overload
1074   /// should be preferred where possible.
1075   MutableArrayRef<char> allocateCString(Twine Source) {
1076     SmallString<256> TmpBuffer;
1077     auto SourceStr = Source.toStringRef(TmpBuffer);
1078     auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size() + 1);
1079     llvm::copy(SourceStr, AllocatedBuffer);
1080     AllocatedBuffer[SourceStr.size()] = '\0';
1081     return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size() + 1);
1082   }
1083 
1084   /// Create a section with the given name, protection flags, and alignment.
1085   Section &createSection(StringRef Name, orc::MemProt Prot) {
1086     assert(!Sections.count(Name) && "Duplicate section name");
1087     std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
1088     return *Sections.insert(std::make_pair(Name, std::move(Sec))).first->second;
1089   }
1090 
1091   /// Create a content block.
1092   Block &createContentBlock(Section &Parent, ArrayRef<char> Content,
1093                             orc::ExecutorAddr Address, uint64_t Alignment,
1094                             uint64_t AlignmentOffset) {
1095     return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1096   }
1097 
1098   /// Create a content block with initially mutable data.
1099   Block &createMutableContentBlock(Section &Parent,
1100                                    MutableArrayRef<char> MutableContent,
1101                                    orc::ExecutorAddr Address,
1102                                    uint64_t Alignment,
1103                                    uint64_t AlignmentOffset) {
1104     return createBlock(Parent, MutableContent, Address, Alignment,
1105                        AlignmentOffset);
1106   }
1107 
1108   /// Create a content block with initially mutable data of the given size.
1109   /// Content will be allocated via the LinkGraph's allocateBuffer method.
1110   /// By default the memory will be zero-initialized. Passing false for
1111   /// ZeroInitialize will prevent this.
1112   Block &createMutableContentBlock(Section &Parent, size_t ContentSize,
1113                                    orc::ExecutorAddr Address,
1114                                    uint64_t Alignment, uint64_t AlignmentOffset,
1115                                    bool ZeroInitialize = true) {
1116     auto Content = allocateBuffer(ContentSize);
1117     if (ZeroInitialize)
1118       memset(Content.data(), 0, Content.size());
1119     return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1120   }
1121 
1122   /// Create a zero-fill block.
1123   Block &createZeroFillBlock(Section &Parent, orc::ExecutorAddrDiff Size,
1124                              orc::ExecutorAddr Address, uint64_t Alignment,
1125                              uint64_t AlignmentOffset) {
1126     return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
1127   }
1128 
1129   /// Returns a BinaryStreamReader for the given block.
1130   BinaryStreamReader getBlockContentReader(Block &B) {
1131     ArrayRef<uint8_t> C(
1132         reinterpret_cast<const uint8_t *>(B.getContent().data()), B.getSize());
1133     return BinaryStreamReader(C, getEndianness());
1134   }
1135 
1136   /// Returns a BinaryStreamWriter for the given block.
1137   /// This will call getMutableContent to obtain mutable content for the block.
1138   BinaryStreamWriter getBlockContentWriter(Block &B) {
1139     MutableArrayRef<uint8_t> C(
1140         reinterpret_cast<uint8_t *>(B.getMutableContent(*this).data()),
1141         B.getSize());
1142     return BinaryStreamWriter(C, getEndianness());
1143   }
1144 
1145   /// Cache type for the splitBlock function.
1146   using SplitBlockCache = std::optional<SmallVector<Symbol *, 8>>;
1147 
1148   /// Splits block B at the given index which must be greater than zero.
1149   /// If SplitIndex == B.getSize() then this function is a no-op and returns B.
1150   /// If SplitIndex < B.getSize() then this function returns a new block
1151   /// covering the range [ 0, SplitIndex ), and B is modified to cover the range
1152   /// [ SplitIndex, B.size() ).
1153   ///
1154   /// The optional Cache parameter can be used to speed up repeated calls to
1155   /// splitBlock for a single block. If the value is None the cache will be
1156   /// treated as uninitialized and splitBlock will populate it. Otherwise it
1157   /// is assumed to contain the list of Symbols pointing at B, sorted in
1158   /// descending order of offset.
1159   ///
1160   /// Notes:
1161   ///
1162   /// 1. splitBlock must be used with care. Splitting a block may cause
1163   ///    incoming edges to become invalid if the edge target subexpression
1164   ///    points outside the bounds of the newly split target block (E.g. an
1165   ///    edge 'S + 10 : Pointer64' where S points to a newly split block
1166   ///    whose size is less than 10). No attempt is made to detect invalidation
1167   ///    of incoming edges, as in general this requires context that the
1168   ///    LinkGraph does not have. Clients are responsible for ensuring that
1169   ///    splitBlock is not used in a way that invalidates edges.
1170   ///
1171   /// 2. The newly introduced block will have a new ordinal which will be
1172   ///    higher than any other ordinals in the section. Clients are responsible
1173   ///    for re-assigning block ordinals to restore a compatible order if
1174   ///    needed.
1175   ///
1176   /// 3. The cache is not automatically updated if new symbols are introduced
1177   ///    between calls to splitBlock. Any newly introduced symbols may be
1178   ///    added to the cache manually (descending offset order must be
1179   ///    preserved), or the cache can be set to None and rebuilt by
1180   ///    splitBlock on the next call.
1181   Block &splitBlock(Block &B, size_t SplitIndex,
1182                     SplitBlockCache *Cache = nullptr);
1183 
1184   /// Add an external symbol.
1185   /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
1186   /// size is not known, you should substitute '0'.
1187   /// The IsWeaklyReferenced argument determines whether the symbol must be
1188   /// present during lookup: Externals that are strongly referenced must be
1189   /// found or an error will be emitted. Externals that are weakly referenced
1190   /// are permitted to be undefined, in which case they are assigned an address
1191   /// of 0.
1192   Symbol &addExternalSymbol(StringRef Name, orc::ExecutorAddrDiff Size,
1193                             bool IsWeaklyReferenced) {
1194     assert(llvm::count_if(ExternalSymbols,
1195                           [&](const Symbol *Sym) {
1196                             return Sym->getName() == Name;
1197                           }) == 0 &&
1198            "Duplicate external symbol");
1199     auto &Sym = Symbol::constructExternal(
1200         Allocator, createAddressable(orc::ExecutorAddr(), false), Name, Size,
1201         Linkage::Strong, IsWeaklyReferenced);
1202     ExternalSymbols.insert(&Sym);
1203     return Sym;
1204   }
1205 
1206   /// Add an absolute symbol.
1207   Symbol &addAbsoluteSymbol(StringRef Name, orc::ExecutorAddr Address,
1208                             orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1209                             bool IsLive) {
1210     assert((S == Scope::Local || llvm::count_if(AbsoluteSymbols,
1211                                                [&](const Symbol *Sym) {
1212                                                  return Sym->getName() == Name;
1213                                                }) == 0) &&
1214                                     "Duplicate absolute symbol");
1215     auto &Sym = Symbol::constructAbsolute(Allocator, createAddressable(Address),
1216                                           Name, Size, L, S, IsLive);
1217     AbsoluteSymbols.insert(&Sym);
1218     return Sym;
1219   }
1220 
1221   /// Add an anonymous symbol.
1222   Symbol &addAnonymousSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1223                              orc::ExecutorAddrDiff Size, bool IsCallable,
1224                              bool IsLive) {
1225     auto &Sym = Symbol::constructAnonDef(Allocator, Content, Offset, Size,
1226                                          IsCallable, IsLive);
1227     Content.getSection().addSymbol(Sym);
1228     return Sym;
1229   }
1230 
1231   /// Add a named symbol.
1232   Symbol &addDefinedSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1233                            StringRef Name, orc::ExecutorAddrDiff Size,
1234                            Linkage L, Scope S, bool IsCallable, bool IsLive) {
1235     assert((S == Scope::Local || llvm::count_if(defined_symbols(),
1236                                                 [&](const Symbol *Sym) {
1237                                                   return Sym->getName() == Name;
1238                                                 }) == 0) &&
1239            "Duplicate defined symbol");
1240     auto &Sym = Symbol::constructNamedDef(Allocator, Content, Offset, Name,
1241                                           Size, L, S, IsLive, IsCallable);
1242     Content.getSection().addSymbol(Sym);
1243     return Sym;
1244   }
1245 
1246   iterator_range<section_iterator> sections() {
1247     return make_range(
1248         section_iterator(Sections.begin(), GetSectionMapEntryValue()),
1249         section_iterator(Sections.end(), GetSectionMapEntryValue()));
1250   }
1251 
1252   iterator_range<const_section_iterator> sections() const {
1253     return make_range(
1254         const_section_iterator(Sections.begin(),
1255                                GetSectionMapEntryConstValue()),
1256         const_section_iterator(Sections.end(), GetSectionMapEntryConstValue()));
1257   }
1258 
1259   size_t sections_size() const { return Sections.size(); }
1260 
1261   /// Returns the section with the given name if it exists, otherwise returns
1262   /// null.
1263   Section *findSectionByName(StringRef Name) {
1264     auto I = Sections.find(Name);
1265     if (I == Sections.end())
1266       return nullptr;
1267     return I->second.get();
1268   }
1269 
1270   iterator_range<block_iterator> blocks() {
1271     auto Secs = sections();
1272     return make_range(block_iterator(Secs.begin(), Secs.end()),
1273                       block_iterator(Secs.end(), Secs.end()));
1274   }
1275 
1276   iterator_range<const_block_iterator> blocks() const {
1277     auto Secs = sections();
1278     return make_range(const_block_iterator(Secs.begin(), Secs.end()),
1279                       const_block_iterator(Secs.end(), Secs.end()));
1280   }
1281 
1282   iterator_range<external_symbol_iterator> external_symbols() {
1283     return make_range(ExternalSymbols.begin(), ExternalSymbols.end());
1284   }
1285 
1286   iterator_range<external_symbol_iterator> absolute_symbols() {
1287     return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1288   }
1289 
1290   iterator_range<defined_symbol_iterator> defined_symbols() {
1291     auto Secs = sections();
1292     return make_range(defined_symbol_iterator(Secs.begin(), Secs.end()),
1293                       defined_symbol_iterator(Secs.end(), Secs.end()));
1294   }
1295 
1296   iterator_range<const_defined_symbol_iterator> defined_symbols() const {
1297     auto Secs = sections();
1298     return make_range(const_defined_symbol_iterator(Secs.begin(), Secs.end()),
1299                       const_defined_symbol_iterator(Secs.end(), Secs.end()));
1300   }
1301 
1302   /// Make the given symbol external (must not already be external).
1303   ///
1304   /// Symbol size, linkage and callability will be left unchanged. Symbol scope
1305   /// will be set to Default, and offset will be reset to 0.
1306   void makeExternal(Symbol &Sym) {
1307     assert(!Sym.isExternal() && "Symbol is already external");
1308     if (Sym.isAbsolute()) {
1309       assert(AbsoluteSymbols.count(&Sym) &&
1310              "Sym is not in the absolute symbols set");
1311       assert(Sym.getOffset() == 0 && "Absolute not at offset 0");
1312       AbsoluteSymbols.erase(&Sym);
1313       auto &A = Sym.getAddressable();
1314       A.setAbsolute(false);
1315       A.setAddress(orc::ExecutorAddr());
1316     } else {
1317       assert(Sym.isDefined() && "Sym is not a defined symbol");
1318       Section &Sec = Sym.getBlock().getSection();
1319       Sec.removeSymbol(Sym);
1320       Sym.makeExternal(createAddressable(orc::ExecutorAddr(), false));
1321     }
1322     ExternalSymbols.insert(&Sym);
1323   }
1324 
1325   /// Make the given symbol an absolute with the given address (must not already
1326   /// be absolute).
1327   ///
1328   /// The symbol's size, linkage, and callability, and liveness will be left
1329   /// unchanged, and its offset will be reset to 0.
1330   ///
1331   /// If the symbol was external then its scope will be set to local, otherwise
1332   /// it will be left unchanged.
1333   void makeAbsolute(Symbol &Sym, orc::ExecutorAddr Address) {
1334     assert(!Sym.isAbsolute() && "Symbol is already absolute");
1335     if (Sym.isExternal()) {
1336       assert(ExternalSymbols.count(&Sym) &&
1337              "Sym is not in the absolute symbols set");
1338       assert(Sym.getOffset() == 0 && "External is not at offset 0");
1339       ExternalSymbols.erase(&Sym);
1340       auto &A = Sym.getAddressable();
1341       A.setAbsolute(true);
1342       A.setAddress(Address);
1343       Sym.setScope(Scope::Local);
1344     } else {
1345       assert(Sym.isDefined() && "Sym is not a defined symbol");
1346       Section &Sec = Sym.getBlock().getSection();
1347       Sec.removeSymbol(Sym);
1348       Sym.makeAbsolute(createAddressable(Address));
1349     }
1350     AbsoluteSymbols.insert(&Sym);
1351   }
1352 
1353   /// Turn an absolute or external symbol into a defined one by attaching it to
1354   /// a block. Symbol must not already be defined.
1355   void makeDefined(Symbol &Sym, Block &Content, orc::ExecutorAddrDiff Offset,
1356                    orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1357                    bool IsLive) {
1358     assert(!Sym.isDefined() && "Sym is already a defined symbol");
1359     if (Sym.isAbsolute()) {
1360       assert(AbsoluteSymbols.count(&Sym) &&
1361              "Symbol is not in the absolutes set");
1362       AbsoluteSymbols.erase(&Sym);
1363     } else {
1364       assert(ExternalSymbols.count(&Sym) &&
1365              "Symbol is not in the externals set");
1366       ExternalSymbols.erase(&Sym);
1367     }
1368     Addressable &OldBase = *Sym.Base;
1369     Sym.setBlock(Content);
1370     Sym.setOffset(Offset);
1371     Sym.setSize(Size);
1372     Sym.setLinkage(L);
1373     Sym.setScope(S);
1374     Sym.setLive(IsLive);
1375     Content.getSection().addSymbol(Sym);
1376     destroyAddressable(OldBase);
1377   }
1378 
1379   /// Transfer a defined symbol from one block to another.
1380   ///
1381   /// The symbol's offset within DestBlock is set to NewOffset.
1382   ///
1383   /// If ExplicitNewSize is given as None then the size of the symbol will be
1384   /// checked and auto-truncated to at most the size of the remainder (from the
1385   /// given offset) of the size of the new block.
1386   ///
1387   /// All other symbol attributes are unchanged.
1388   void
1389   transferDefinedSymbol(Symbol &Sym, Block &DestBlock,
1390                         orc::ExecutorAddrDiff NewOffset,
1391                         std::optional<orc::ExecutorAddrDiff> ExplicitNewSize) {
1392     auto &OldSection = Sym.getBlock().getSection();
1393     Sym.setBlock(DestBlock);
1394     Sym.setOffset(NewOffset);
1395     if (ExplicitNewSize)
1396       Sym.setSize(*ExplicitNewSize);
1397     else {
1398       auto RemainingBlockSize = DestBlock.getSize() - NewOffset;
1399       if (Sym.getSize() > RemainingBlockSize)
1400         Sym.setSize(RemainingBlockSize);
1401     }
1402     if (&DestBlock.getSection() != &OldSection) {
1403       OldSection.removeSymbol(Sym);
1404       DestBlock.getSection().addSymbol(Sym);
1405     }
1406   }
1407 
1408   /// Transfers the given Block and all Symbols pointing to it to the given
1409   /// Section.
1410   ///
1411   /// No attempt is made to check compatibility of the source and destination
1412   /// sections. Blocks may be moved between sections with incompatible
1413   /// permissions (e.g. from data to text). The client is responsible for
1414   /// ensuring that this is safe.
1415   void transferBlock(Block &B, Section &NewSection) {
1416     auto &OldSection = B.getSection();
1417     if (&OldSection == &NewSection)
1418       return;
1419     SmallVector<Symbol *> AttachedSymbols;
1420     for (auto *S : OldSection.symbols())
1421       if (&S->getBlock() == &B)
1422         AttachedSymbols.push_back(S);
1423     for (auto *S : AttachedSymbols) {
1424       OldSection.removeSymbol(*S);
1425       NewSection.addSymbol(*S);
1426     }
1427     OldSection.removeBlock(B);
1428     NewSection.addBlock(B);
1429   }
1430 
1431   /// Move all blocks and symbols from the source section to the destination
1432   /// section.
1433   ///
1434   /// If PreserveSrcSection is true (or SrcSection and DstSection are the same)
1435   /// then SrcSection is preserved, otherwise it is removed (the default).
1436   void mergeSections(Section &DstSection, Section &SrcSection,
1437                      bool PreserveSrcSection = false) {
1438     if (&DstSection == &SrcSection)
1439       return;
1440     for (auto *B : SrcSection.blocks())
1441       B->setSection(DstSection);
1442     SrcSection.transferContentTo(DstSection);
1443     if (!PreserveSrcSection)
1444       removeSection(SrcSection);
1445   }
1446 
1447   /// Removes an external symbol. Also removes the underlying Addressable.
1448   void removeExternalSymbol(Symbol &Sym) {
1449     assert(!Sym.isDefined() && !Sym.isAbsolute() &&
1450            "Sym is not an external symbol");
1451     assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set");
1452     ExternalSymbols.erase(&Sym);
1453     Addressable &Base = *Sym.Base;
1454     assert(llvm::none_of(ExternalSymbols,
1455                          [&](Symbol *AS) { return AS->Base == &Base; }) &&
1456            "Base addressable still in use");
1457     destroySymbol(Sym);
1458     destroyAddressable(Base);
1459   }
1460 
1461   /// Remove an absolute symbol. Also removes the underlying Addressable.
1462   void removeAbsoluteSymbol(Symbol &Sym) {
1463     assert(!Sym.isDefined() && Sym.isAbsolute() &&
1464            "Sym is not an absolute symbol");
1465     assert(AbsoluteSymbols.count(&Sym) &&
1466            "Symbol is not in the absolute symbols set");
1467     AbsoluteSymbols.erase(&Sym);
1468     Addressable &Base = *Sym.Base;
1469     assert(llvm::none_of(ExternalSymbols,
1470                          [&](Symbol *AS) { return AS->Base == &Base; }) &&
1471            "Base addressable still in use");
1472     destroySymbol(Sym);
1473     destroyAddressable(Base);
1474   }
1475 
1476   /// Removes defined symbols. Does not remove the underlying block.
1477   void removeDefinedSymbol(Symbol &Sym) {
1478     assert(Sym.isDefined() && "Sym is not a defined symbol");
1479     Sym.getBlock().getSection().removeSymbol(Sym);
1480     destroySymbol(Sym);
1481   }
1482 
1483   /// Remove a block. The block reference is defunct after calling this
1484   /// function and should no longer be used.
1485   void removeBlock(Block &B) {
1486     assert(llvm::none_of(B.getSection().symbols(),
1487                          [&](const Symbol *Sym) {
1488                            return &Sym->getBlock() == &B;
1489                          }) &&
1490            "Block still has symbols attached");
1491     B.getSection().removeBlock(B);
1492     destroyBlock(B);
1493   }
1494 
1495   /// Remove a section. The section reference is defunct after calling this
1496   /// function and should no longer be used.
1497   void removeSection(Section &Sec) {
1498     assert(Sections.count(Sec.getName()) && "Section not found");
1499     assert(Sections.find(Sec.getName())->second.get() == &Sec &&
1500            "Section map entry invalid");
1501     Sections.erase(Sec.getName());
1502   }
1503 
1504   /// Accessor for the AllocActions object for this graph. This can be used to
1505   /// register allocation action calls prior to finalization.
1506   ///
1507   /// Accessing this object after finalization will result in undefined
1508   /// behavior.
1509   orc::shared::AllocActions &allocActions() { return AAs; }
1510 
1511   /// Dump the graph.
1512   void dump(raw_ostream &OS);
1513 
1514 private:
1515   // Put the BumpPtrAllocator first so that we don't free any of the underlying
1516   // memory until the Symbol/Addressable destructors have been run.
1517   BumpPtrAllocator Allocator;
1518 
1519   std::string Name;
1520   Triple TT;
1521   SubtargetFeatures Features;
1522   unsigned PointerSize;
1523   support::endianness Endianness;
1524   GetEdgeKindNameFunction GetEdgeKindName = nullptr;
1525   DenseMap<StringRef, std::unique_ptr<Section>> Sections;
1526   ExternalSymbolSet ExternalSymbols;
1527   ExternalSymbolSet AbsoluteSymbols;
1528   orc::shared::AllocActions AAs;
1529 };
1530 
1531 inline MutableArrayRef<char> Block::getMutableContent(LinkGraph &G) {
1532   if (!ContentMutable)
1533     setMutableContent(G.allocateContent({Data, Size}));
1534   return MutableArrayRef<char>(const_cast<char *>(Data), Size);
1535 }
1536 
1537 /// Enables easy lookup of blocks by addresses.
1538 class BlockAddressMap {
1539 public:
1540   using AddrToBlockMap = std::map<orc::ExecutorAddr, Block *>;
1541   using const_iterator = AddrToBlockMap::const_iterator;
1542 
1543   /// A block predicate that always adds all blocks.
1544   static bool includeAllBlocks(const Block &B) { return true; }
1545 
1546   /// A block predicate that always includes blocks with non-null addresses.
1547   static bool includeNonNull(const Block &B) { return !!B.getAddress(); }
1548 
1549   BlockAddressMap() = default;
1550 
1551   /// Add a block to the map. Returns an error if the block overlaps with any
1552   /// existing block.
1553   template <typename PredFn = decltype(includeAllBlocks)>
1554   Error addBlock(Block &B, PredFn Pred = includeAllBlocks) {
1555     if (!Pred(B))
1556       return Error::success();
1557 
1558     auto I = AddrToBlock.upper_bound(B.getAddress());
1559 
1560     // If we're not at the end of the map, check for overlap with the next
1561     // element.
1562     if (I != AddrToBlock.end()) {
1563       if (B.getAddress() + B.getSize() > I->second->getAddress())
1564         return overlapError(B, *I->second);
1565     }
1566 
1567     // If we're not at the start of the map, check for overlap with the previous
1568     // element.
1569     if (I != AddrToBlock.begin()) {
1570       auto &PrevBlock = *std::prev(I)->second;
1571       if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
1572         return overlapError(B, PrevBlock);
1573     }
1574 
1575     AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
1576     return Error::success();
1577   }
1578 
1579   /// Add a block to the map without checking for overlap with existing blocks.
1580   /// The client is responsible for ensuring that the block added does not
1581   /// overlap with any existing block.
1582   void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
1583 
1584   /// Add a range of blocks to the map. Returns an error if any block in the
1585   /// range overlaps with any other block in the range, or with any existing
1586   /// block in the map.
1587   template <typename BlockPtrRange,
1588             typename PredFn = decltype(includeAllBlocks)>
1589   Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
1590     for (auto *B : Blocks)
1591       if (auto Err = addBlock(*B, Pred))
1592         return Err;
1593     return Error::success();
1594   }
1595 
1596   /// Add a range of blocks to the map without checking for overlap with
1597   /// existing blocks. The client is responsible for ensuring that the block
1598   /// added does not overlap with any existing block.
1599   template <typename BlockPtrRange>
1600   void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
1601     for (auto *B : Blocks)
1602       addBlockWithoutChecking(*B);
1603   }
1604 
1605   /// Iterates over (Address, Block*) pairs in ascending order of address.
1606   const_iterator begin() const { return AddrToBlock.begin(); }
1607   const_iterator end() const { return AddrToBlock.end(); }
1608 
1609   /// Returns the block starting at the given address, or nullptr if no such
1610   /// block exists.
1611   Block *getBlockAt(orc::ExecutorAddr Addr) const {
1612     auto I = AddrToBlock.find(Addr);
1613     if (I == AddrToBlock.end())
1614       return nullptr;
1615     return I->second;
1616   }
1617 
1618   /// Returns the block covering the given address, or nullptr if no such block
1619   /// exists.
1620   Block *getBlockCovering(orc::ExecutorAddr Addr) const {
1621     auto I = AddrToBlock.upper_bound(Addr);
1622     if (I == AddrToBlock.begin())
1623       return nullptr;
1624     auto *B = std::prev(I)->second;
1625     if (Addr < B->getAddress() + B->getSize())
1626       return B;
1627     return nullptr;
1628   }
1629 
1630 private:
1631   Error overlapError(Block &NewBlock, Block &ExistingBlock) {
1632     auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
1633     auto ExistingBlockEnd =
1634         ExistingBlock.getAddress() + ExistingBlock.getSize();
1635     return make_error<JITLinkError>(
1636         "Block at " +
1637         formatv("{0:x16} -- {1:x16}", NewBlock.getAddress().getValue(),
1638                 NewBlockEnd.getValue()) +
1639         " overlaps " +
1640         formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress().getValue(),
1641                 ExistingBlockEnd.getValue()));
1642   }
1643 
1644   AddrToBlockMap AddrToBlock;
1645 };
1646 
1647 /// A map of addresses to Symbols.
1648 class SymbolAddressMap {
1649 public:
1650   using SymbolVector = SmallVector<Symbol *, 1>;
1651 
1652   /// Add a symbol to the SymbolAddressMap.
1653   void addSymbol(Symbol &Sym) {
1654     AddrToSymbols[Sym.getAddress()].push_back(&Sym);
1655   }
1656 
1657   /// Add all symbols in a given range to the SymbolAddressMap.
1658   template <typename SymbolPtrCollection>
1659   void addSymbols(SymbolPtrCollection &&Symbols) {
1660     for (auto *Sym : Symbols)
1661       addSymbol(*Sym);
1662   }
1663 
1664   /// Returns the list of symbols that start at the given address, or nullptr if
1665   /// no such symbols exist.
1666   const SymbolVector *getSymbolsAt(orc::ExecutorAddr Addr) const {
1667     auto I = AddrToSymbols.find(Addr);
1668     if (I == AddrToSymbols.end())
1669       return nullptr;
1670     return &I->second;
1671   }
1672 
1673 private:
1674   std::map<orc::ExecutorAddr, SymbolVector> AddrToSymbols;
1675 };
1676 
1677 /// A function for mutating LinkGraphs.
1678 using LinkGraphPassFunction = unique_function<Error(LinkGraph &)>;
1679 
1680 /// A list of LinkGraph passes.
1681 using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
1682 
1683 /// An LinkGraph pass configuration, consisting of a list of pre-prune,
1684 /// post-prune, and post-fixup passes.
1685 struct PassConfiguration {
1686 
1687   /// Pre-prune passes.
1688   ///
1689   /// These passes are called on the graph after it is built, and before any
1690   /// symbols have been pruned. Graph nodes still have their original vmaddrs.
1691   ///
1692   /// Notable use cases: Marking symbols live or should-discard.
1693   LinkGraphPassList PrePrunePasses;
1694 
1695   /// Post-prune passes.
1696   ///
1697   /// These passes are called on the graph after dead stripping, but before
1698   /// memory is allocated or nodes assigned their final addresses.
1699   ///
1700   /// Notable use cases: Building GOT, stub, and TLV symbols.
1701   LinkGraphPassList PostPrunePasses;
1702 
1703   /// Post-allocation passes.
1704   ///
1705   /// These passes are called on the graph after memory has been allocated and
1706   /// defined nodes have been assigned their final addresses, but before the
1707   /// context has been notified of these addresses. At this point externals
1708   /// have not been resolved, and symbol content has not yet been copied into
1709   /// working memory.
1710   ///
1711   /// Notable use cases: Setting up data structures associated with addresses
1712   /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the
1713   /// JIT runtime) -- using a PostAllocationPass for this ensures that the
1714   /// data structures are in-place before any query for resolved symbols
1715   /// can complete.
1716   LinkGraphPassList PostAllocationPasses;
1717 
1718   /// Pre-fixup passes.
1719   ///
1720   /// These passes are called on the graph after memory has been allocated,
1721   /// content copied into working memory, and all nodes (including externals)
1722   /// have been assigned their final addresses, but before any fixups have been
1723   /// applied.
1724   ///
1725   /// Notable use cases: Late link-time optimizations like GOT and stub
1726   /// elimination.
1727   LinkGraphPassList PreFixupPasses;
1728 
1729   /// Post-fixup passes.
1730   ///
1731   /// These passes are called on the graph after block contents has been copied
1732   /// to working memory, and fixups applied. Blocks have been updated to point
1733   /// to their fixed up content.
1734   ///
1735   /// Notable use cases: Testing and validation.
1736   LinkGraphPassList PostFixupPasses;
1737 };
1738 
1739 /// Flags for symbol lookup.
1740 ///
1741 /// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
1742 ///        the two types once we have an OrcSupport library.
1743 enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
1744 
1745 raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF);
1746 
1747 /// A map of symbol names to resolved addresses.
1748 using AsyncLookupResult = DenseMap<StringRef, orc::ExecutorSymbolDef>;
1749 
1750 /// A function object to call with a resolved symbol map (See AsyncLookupResult)
1751 /// or an error if resolution failed.
1752 class JITLinkAsyncLookupContinuation {
1753 public:
1754   virtual ~JITLinkAsyncLookupContinuation() = default;
1755   virtual void run(Expected<AsyncLookupResult> LR) = 0;
1756 
1757 private:
1758   virtual void anchor();
1759 };
1760 
1761 /// Create a lookup continuation from a function object.
1762 template <typename Continuation>
1763 std::unique_ptr<JITLinkAsyncLookupContinuation>
1764 createLookupContinuation(Continuation Cont) {
1765 
1766   class Impl final : public JITLinkAsyncLookupContinuation {
1767   public:
1768     Impl(Continuation C) : C(std::move(C)) {}
1769     void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
1770 
1771   private:
1772     Continuation C;
1773   };
1774 
1775   return std::make_unique<Impl>(std::move(Cont));
1776 }
1777 
1778 /// Holds context for a single jitLink invocation.
1779 class JITLinkContext {
1780 public:
1781   using LookupMap = DenseMap<StringRef, SymbolLookupFlags>;
1782 
1783   /// Create a JITLinkContext.
1784   JITLinkContext(const JITLinkDylib *JD) : JD(JD) {}
1785 
1786   /// Destroy a JITLinkContext.
1787   virtual ~JITLinkContext();
1788 
1789   /// Return the JITLinkDylib that this link is targeting, if any.
1790   const JITLinkDylib *getJITLinkDylib() const { return JD; }
1791 
1792   /// Return the MemoryManager to be used for this link.
1793   virtual JITLinkMemoryManager &getMemoryManager() = 0;
1794 
1795   /// Notify this context that linking failed.
1796   /// Called by JITLink if linking cannot be completed.
1797   virtual void notifyFailed(Error Err) = 0;
1798 
1799   /// Called by JITLink to resolve external symbols. This method is passed a
1800   /// lookup continutation which it must call with a result to continue the
1801   /// linking process.
1802   virtual void lookup(const LookupMap &Symbols,
1803                       std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
1804 
1805   /// Called by JITLink once all defined symbols in the graph have been assigned
1806   /// their final memory locations in the target process. At this point the
1807   /// LinkGraph can be inspected to build a symbol table, however the block
1808   /// content will not generally have been copied to the target location yet.
1809   ///
1810   /// If the client detects an error in the LinkGraph state (e.g. unexpected or
1811   /// missing symbols) they may return an error here. The error will be
1812   /// propagated to notifyFailed and the linker will bail out.
1813   virtual Error notifyResolved(LinkGraph &G) = 0;
1814 
1815   /// Called by JITLink to notify the context that the object has been
1816   /// finalized (i.e. emitted to memory and memory permissions set). If all of
1817   /// this objects dependencies have also been finalized then the code is ready
1818   /// to run.
1819   virtual void notifyFinalized(JITLinkMemoryManager::FinalizedAlloc Alloc) = 0;
1820 
1821   /// Called by JITLink prior to linking to determine whether default passes for
1822   /// the target should be added. The default implementation returns true.
1823   /// If subclasses override this method to return false for any target then
1824   /// they are required to fully configure the pass pipeline for that target.
1825   virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
1826 
1827   /// Returns the mark-live pass to be used for this link. If no pass is
1828   /// returned (the default) then the target-specific linker implementation will
1829   /// choose a conservative default (usually marking all symbols live).
1830   /// This function is only called if shouldAddDefaultTargetPasses returns true,
1831   /// otherwise the JITContext is responsible for adding a mark-live pass in
1832   /// modifyPassConfig.
1833   virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
1834 
1835   /// Called by JITLink to modify the pass pipeline prior to linking.
1836   /// The default version performs no modification.
1837   virtual Error modifyPassConfig(LinkGraph &G, PassConfiguration &Config);
1838 
1839 private:
1840   const JITLinkDylib *JD = nullptr;
1841 };
1842 
1843 /// Marks all symbols in a graph live. This can be used as a default,
1844 /// conservative mark-live implementation.
1845 Error markAllSymbolsLive(LinkGraph &G);
1846 
1847 /// Create an out of range error for the given edge in the given block.
1848 Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B,
1849                                 const Edge &E);
1850 
1851 Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N,
1852                          const Edge &E);
1853 
1854 /// Base case for edge-visitors where the visitor-list is empty.
1855 inline void visitEdge(LinkGraph &G, Block *B, Edge &E) {}
1856 
1857 /// Applies the first visitor in the list to the given edge. If the visitor's
1858 /// visitEdge method returns true then we return immediately, otherwise we
1859 /// apply the next visitor.
1860 template <typename VisitorT, typename... VisitorTs>
1861 void visitEdge(LinkGraph &G, Block *B, Edge &E, VisitorT &&V,
1862                VisitorTs &&...Vs) {
1863   if (!V.visitEdge(G, B, E))
1864     visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1865 }
1866 
1867 /// For each edge in the given graph, apply a list of visitors to the edge,
1868 /// stopping when the first visitor's visitEdge method returns true.
1869 ///
1870 /// Only visits edges that were in the graph at call time: if any visitor
1871 /// adds new edges those will not be visited. Visitors are not allowed to
1872 /// remove edges (though they can change their kind, target, and addend).
1873 template <typename... VisitorTs>
1874 void visitExistingEdges(LinkGraph &G, VisitorTs &&...Vs) {
1875   // We may add new blocks during this process, but we don't want to iterate
1876   // over them, so build a worklist.
1877   std::vector<Block *> Worklist(G.blocks().begin(), G.blocks().end());
1878 
1879   for (auto *B : Worklist)
1880     for (auto &E : B->edges())
1881       visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1882 }
1883 
1884 /// Create a LinkGraph from the given object buffer.
1885 ///
1886 /// Note: The graph does not take ownership of the underlying buffer, nor copy
1887 /// its contents. The caller is responsible for ensuring that the object buffer
1888 /// outlives the graph.
1889 Expected<std::unique_ptr<LinkGraph>>
1890 createLinkGraphFromObject(MemoryBufferRef ObjectBuffer);
1891 
1892 /// Link the given graph.
1893 void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx);
1894 
1895 } // end namespace jitlink
1896 } // end namespace llvm
1897 
1898 #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
1899