1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for the subclasses of Constant,
11 /// which represent the different flavors of constant values that live in LLVM.
12 /// Note that Constants are immutable (once created they never change) and are
13 /// fully shared by structural equivalence.  This means that two structurally
14 /// equivalent constants will always have the same address.  Constants are
15 /// created on demand as needed and never deleted: thus clients don't have to
16 /// worry about the lifetime of the objects.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_IR_CONSTANTS_H
21 #define LLVM_IR_CONSTANTS_H
22 
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/None.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/OperandTraits.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <cassert>
39 #include <cstddef>
40 #include <cstdint>
41 
42 namespace llvm {
43 
44 template <class ConstantClass> struct ConstantAggrKeyType;
45 
46 /// Base class for constants with no operands.
47 ///
48 /// These constants have no operands; they represent their data directly.
49 /// Since they can be in use by unrelated modules (and are never based on
50 /// GlobalValues), it never makes sense to RAUW them.
51 class ConstantData : public Constant {
52   friend class Constant;
53 
54   Value *handleOperandChangeImpl(Value *From, Value *To) {
55     llvm_unreachable("Constant data does not have operands!");
56   }
57 
58 protected:
59   explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
60 
61   void *operator new(size_t S) { return User::operator new(S, 0); }
62 
63 public:
64   void operator delete(void *Ptr) { User::operator delete(Ptr); }
65 
66   ConstantData(const ConstantData &) = delete;
67 
68   /// Methods to support type inquiry through isa, cast, and dyn_cast.
69   static bool classof(const Value *V) {
70     return V->getValueID() >= ConstantDataFirstVal &&
71            V->getValueID() <= ConstantDataLastVal;
72   }
73 };
74 
75 //===----------------------------------------------------------------------===//
76 /// This is the shared class of boolean and integer constants. This class
77 /// represents both boolean and integral constants.
78 /// Class for constant integers.
79 class ConstantInt final : public ConstantData {
80   friend class Constant;
81 
82   APInt Val;
83 
84   ConstantInt(IntegerType *Ty, const APInt &V);
85 
86   void destroyConstantImpl();
87 
88 public:
89   ConstantInt(const ConstantInt &) = delete;
90 
91   static ConstantInt *getTrue(LLVMContext &Context);
92   static ConstantInt *getFalse(LLVMContext &Context);
93   static ConstantInt *getBool(LLVMContext &Context, bool V);
94   static Constant *getTrue(Type *Ty);
95   static Constant *getFalse(Type *Ty);
96   static Constant *getBool(Type *Ty, bool V);
97 
98   /// If Ty is a vector type, return a Constant with a splat of the given
99   /// value. Otherwise return a ConstantInt for the given value.
100   static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
101 
102   /// Return a ConstantInt with the specified integer value for the specified
103   /// type. If the type is wider than 64 bits, the value will be zero-extended
104   /// to fit the type, unless IsSigned is true, in which case the value will
105   /// be interpreted as a 64-bit signed integer and sign-extended to fit
106   /// the type.
107   /// Get a ConstantInt for a specific value.
108   static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
109 
110   /// Return a ConstantInt with the specified value for the specified type. The
111   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
112   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
113   /// signed value for the type Ty.
114   /// Get a ConstantInt for a specific signed value.
115   static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
116   static Constant *getSigned(Type *Ty, int64_t V);
117 
118   /// Return a ConstantInt with the specified value and an implied Type. The
119   /// type is the integer type that corresponds to the bit width of the value.
120   static ConstantInt *get(LLVMContext &Context, const APInt &V);
121 
122   /// Return a ConstantInt constructed from the string strStart with the given
123   /// radix.
124   static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
125 
126   /// If Ty is a vector type, return a Constant with a splat of the given
127   /// value. Otherwise return a ConstantInt for the given value.
128   static Constant *get(Type *Ty, const APInt &V);
129 
130   /// Return the constant as an APInt value reference. This allows clients to
131   /// obtain a full-precision copy of the value.
132   /// Return the constant's value.
133   inline const APInt &getValue() const { return Val; }
134 
135   /// getBitWidth - Return the bitwidth of this constant.
136   unsigned getBitWidth() const { return Val.getBitWidth(); }
137 
138   /// Return the constant as a 64-bit unsigned integer value after it
139   /// has been zero extended as appropriate for the type of this constant. Note
140   /// that this method can assert if the value does not fit in 64 bits.
141   /// Return the zero extended value.
142   inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
143 
144   /// Return the constant as a 64-bit integer value after it has been sign
145   /// extended as appropriate for the type of this constant. Note that
146   /// this method can assert if the value does not fit in 64 bits.
147   /// Return the sign extended value.
148   inline int64_t getSExtValue() const { return Val.getSExtValue(); }
149 
150   /// Return the constant as an llvm::MaybeAlign.
151   /// Note that this method can assert if the value does not fit in 64 bits or
152   /// is not a power of two.
153   inline MaybeAlign getMaybeAlignValue() const {
154     return MaybeAlign(getZExtValue());
155   }
156 
157   /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
158   /// Note that this method can assert if the value does not fit in 64 bits or
159   /// is not a power of two.
160   inline Align getAlignValue() const {
161     return getMaybeAlignValue().valueOrOne();
162   }
163 
164   /// A helper method that can be used to determine if the constant contained
165   /// within is equal to a constant.  This only works for very small values,
166   /// because this is all that can be represented with all types.
167   /// Determine if this constant's value is same as an unsigned char.
168   bool equalsInt(uint64_t V) const { return Val == V; }
169 
170   /// getType - Specialize the getType() method to always return an IntegerType,
171   /// which reduces the amount of casting needed in parts of the compiler.
172   ///
173   inline IntegerType *getType() const {
174     return cast<IntegerType>(Value::getType());
175   }
176 
177   /// This static method returns true if the type Ty is big enough to
178   /// represent the value V. This can be used to avoid having the get method
179   /// assert when V is larger than Ty can represent. Note that there are two
180   /// versions of this method, one for unsigned and one for signed integers.
181   /// Although ConstantInt canonicalizes everything to an unsigned integer,
182   /// the signed version avoids callers having to convert a signed quantity
183   /// to the appropriate unsigned type before calling the method.
184   /// @returns true if V is a valid value for type Ty
185   /// Determine if the value is in range for the given type.
186   static bool isValueValidForType(Type *Ty, uint64_t V);
187   static bool isValueValidForType(Type *Ty, int64_t V);
188 
189   bool isNegative() const { return Val.isNegative(); }
190 
191   /// This is just a convenience method to make client code smaller for a
192   /// common code. It also correctly performs the comparison without the
193   /// potential for an assertion from getZExtValue().
194   bool isZero() const { return Val.isZero(); }
195 
196   /// This is just a convenience method to make client code smaller for a
197   /// common case. It also correctly performs the comparison without the
198   /// potential for an assertion from getZExtValue().
199   /// Determine if the value is one.
200   bool isOne() const { return Val.isOne(); }
201 
202   /// This function will return true iff every bit in this constant is set
203   /// to true.
204   /// @returns true iff this constant's bits are all set to true.
205   /// Determine if the value is all ones.
206   bool isMinusOne() const { return Val.isAllOnes(); }
207 
208   /// This function will return true iff this constant represents the largest
209   /// value that may be represented by the constant's type.
210   /// @returns true iff this is the largest value that may be represented
211   /// by this type.
212   /// Determine if the value is maximal.
213   bool isMaxValue(bool IsSigned) const {
214     if (IsSigned)
215       return Val.isMaxSignedValue();
216     else
217       return Val.isMaxValue();
218   }
219 
220   /// This function will return true iff this constant represents the smallest
221   /// value that may be represented by this constant's type.
222   /// @returns true if this is the smallest value that may be represented by
223   /// this type.
224   /// Determine if the value is minimal.
225   bool isMinValue(bool IsSigned) const {
226     if (IsSigned)
227       return Val.isMinSignedValue();
228     else
229       return Val.isMinValue();
230   }
231 
232   /// This function will return true iff this constant represents a value with
233   /// active bits bigger than 64 bits or a value greater than the given uint64_t
234   /// value.
235   /// @returns true iff this constant is greater or equal to the given number.
236   /// Determine if the value is greater or equal to the given number.
237   bool uge(uint64_t Num) const { return Val.uge(Num); }
238 
239   /// getLimitedValue - If the value is smaller than the specified limit,
240   /// return it, otherwise return the limit value.  This causes the value
241   /// to saturate to the limit.
242   /// @returns the min of the value of the constant and the specified value
243   /// Get the constant's value with a saturation limit
244   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
245     return Val.getLimitedValue(Limit);
246   }
247 
248   /// Methods to support type inquiry through isa, cast, and dyn_cast.
249   static bool classof(const Value *V) {
250     return V->getValueID() == ConstantIntVal;
251   }
252 };
253 
254 //===----------------------------------------------------------------------===//
255 /// ConstantFP - Floating Point Values [float, double]
256 ///
257 class ConstantFP final : public ConstantData {
258   friend class Constant;
259 
260   APFloat Val;
261 
262   ConstantFP(Type *Ty, const APFloat &V);
263 
264   void destroyConstantImpl();
265 
266 public:
267   ConstantFP(const ConstantFP &) = delete;
268 
269   /// Floating point negation must be implemented with f(x) = -0.0 - x. This
270   /// method returns the negative zero constant for floating point or vector
271   /// floating point types; for all other types, it returns the null value.
272   static Constant *getZeroValueForNegation(Type *Ty);
273 
274   /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
275   /// for the specified value in the specified type. This should only be used
276   /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
277   /// host double and as the target format.
278   static Constant *get(Type *Ty, double V);
279 
280   /// If Ty is a vector type, return a Constant with a splat of the given
281   /// value. Otherwise return a ConstantFP for the given value.
282   static Constant *get(Type *Ty, const APFloat &V);
283 
284   static Constant *get(Type *Ty, StringRef Str);
285   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
286   static Constant *getNaN(Type *Ty, bool Negative = false,
287                           uint64_t Payload = 0);
288   static Constant *getQNaN(Type *Ty, bool Negative = false,
289                            APInt *Payload = nullptr);
290   static Constant *getSNaN(Type *Ty, bool Negative = false,
291                            APInt *Payload = nullptr);
292   static Constant *getZero(Type *Ty, bool Negative = false);
293   static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); }
294   static Constant *getInfinity(Type *Ty, bool Negative = false);
295 
296   /// Return true if Ty is big enough to represent V.
297   static bool isValueValidForType(Type *Ty, const APFloat &V);
298   inline const APFloat &getValueAPF() const { return Val; }
299   inline const APFloat &getValue() const { return Val; }
300 
301   /// Return true if the value is positive or negative zero.
302   bool isZero() const { return Val.isZero(); }
303 
304   /// Return true if the sign bit is set.
305   bool isNegative() const { return Val.isNegative(); }
306 
307   /// Return true if the value is infinity
308   bool isInfinity() const { return Val.isInfinity(); }
309 
310   /// Return true if the value is a NaN.
311   bool isNaN() const { return Val.isNaN(); }
312 
313   /// We don't rely on operator== working on double values, as it returns true
314   /// for things that are clearly not equal, like -0.0 and 0.0.
315   /// As such, this method can be used to do an exact bit-for-bit comparison of
316   /// two floating point values.  The version with a double operand is retained
317   /// because it's so convenient to write isExactlyValue(2.0), but please use
318   /// it only for simple constants.
319   bool isExactlyValue(const APFloat &V) const;
320 
321   bool isExactlyValue(double V) const {
322     bool ignored;
323     APFloat FV(V);
324     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
325     return isExactlyValue(FV);
326   }
327 
328   /// Methods for support type inquiry through isa, cast, and dyn_cast:
329   static bool classof(const Value *V) {
330     return V->getValueID() == ConstantFPVal;
331   }
332 };
333 
334 //===----------------------------------------------------------------------===//
335 /// All zero aggregate value
336 ///
337 class ConstantAggregateZero final : public ConstantData {
338   friend class Constant;
339 
340   explicit ConstantAggregateZero(Type *Ty)
341       : ConstantData(Ty, ConstantAggregateZeroVal) {}
342 
343   void destroyConstantImpl();
344 
345 public:
346   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
347 
348   static ConstantAggregateZero *get(Type *Ty);
349 
350   /// If this CAZ has array or vector type, return a zero with the right element
351   /// type.
352   Constant *getSequentialElement() const;
353 
354   /// If this CAZ has struct type, return a zero with the right element type for
355   /// the specified element.
356   Constant *getStructElement(unsigned Elt) const;
357 
358   /// Return a zero of the right value for the specified GEP index if we can,
359   /// otherwise return null (e.g. if C is a ConstantExpr).
360   Constant *getElementValue(Constant *C) const;
361 
362   /// Return a zero of the right value for the specified GEP index.
363   Constant *getElementValue(unsigned Idx) const;
364 
365   /// Return the number of elements in the array, vector, or struct.
366   ElementCount getElementCount() const;
367 
368   /// Methods for support type inquiry through isa, cast, and dyn_cast:
369   ///
370   static bool classof(const Value *V) {
371     return V->getValueID() == ConstantAggregateZeroVal;
372   }
373 };
374 
375 /// Base class for aggregate constants (with operands).
376 ///
377 /// These constants are aggregates of other constants, which are stored as
378 /// operands.
379 ///
380 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
381 /// ConstantVector.
382 ///
383 /// \note Some subclasses of \a ConstantData are semantically aggregates --
384 /// such as \a ConstantDataArray -- but are not subclasses of this because they
385 /// use operands.
386 class ConstantAggregate : public Constant {
387 protected:
388   ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
389 
390 public:
391   /// Transparently provide more efficient getOperand methods.
392   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
393 
394   /// Methods for support type inquiry through isa, cast, and dyn_cast:
395   static bool classof(const Value *V) {
396     return V->getValueID() >= ConstantAggregateFirstVal &&
397            V->getValueID() <= ConstantAggregateLastVal;
398   }
399 };
400 
401 template <>
402 struct OperandTraits<ConstantAggregate>
403     : public VariadicOperandTraits<ConstantAggregate> {};
404 
405 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
406 
407 //===----------------------------------------------------------------------===//
408 /// ConstantArray - Constant Array Declarations
409 ///
410 class ConstantArray final : public ConstantAggregate {
411   friend struct ConstantAggrKeyType<ConstantArray>;
412   friend class Constant;
413 
414   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
415 
416   void destroyConstantImpl();
417   Value *handleOperandChangeImpl(Value *From, Value *To);
418 
419 public:
420   // ConstantArray accessors
421   static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
422 
423 private:
424   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
425 
426 public:
427   /// Specialize the getType() method to always return an ArrayType,
428   /// which reduces the amount of casting needed in parts of the compiler.
429   inline ArrayType *getType() const {
430     return cast<ArrayType>(Value::getType());
431   }
432 
433   /// Methods for support type inquiry through isa, cast, and dyn_cast:
434   static bool classof(const Value *V) {
435     return V->getValueID() == ConstantArrayVal;
436   }
437 };
438 
439 //===----------------------------------------------------------------------===//
440 // Constant Struct Declarations
441 //
442 class ConstantStruct final : public ConstantAggregate {
443   friend struct ConstantAggrKeyType<ConstantStruct>;
444   friend class Constant;
445 
446   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
447 
448   void destroyConstantImpl();
449   Value *handleOperandChangeImpl(Value *From, Value *To);
450 
451 public:
452   // ConstantStruct accessors
453   static Constant *get(StructType *T, ArrayRef<Constant *> V);
454 
455   template <typename... Csts>
456   static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
457   get(StructType *T, Csts *...Vs) {
458     return get(T, ArrayRef<Constant *>({Vs...}));
459   }
460 
461   /// Return an anonymous struct that has the specified elements.
462   /// If the struct is possibly empty, then you must specify a context.
463   static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
464     return get(getTypeForElements(V, Packed), V);
465   }
466   static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
467                            bool Packed = false) {
468     return get(getTypeForElements(Ctx, V, Packed), V);
469   }
470 
471   /// Return an anonymous struct type to use for a constant with the specified
472   /// set of elements. The list must not be empty.
473   static StructType *getTypeForElements(ArrayRef<Constant *> V,
474                                         bool Packed = false);
475   /// This version of the method allows an empty list.
476   static StructType *getTypeForElements(LLVMContext &Ctx,
477                                         ArrayRef<Constant *> V,
478                                         bool Packed = false);
479 
480   /// Specialization - reduce amount of casting.
481   inline StructType *getType() const {
482     return cast<StructType>(Value::getType());
483   }
484 
485   /// Methods for support type inquiry through isa, cast, and dyn_cast:
486   static bool classof(const Value *V) {
487     return V->getValueID() == ConstantStructVal;
488   }
489 };
490 
491 //===----------------------------------------------------------------------===//
492 /// Constant Vector Declarations
493 ///
494 class ConstantVector final : public ConstantAggregate {
495   friend struct ConstantAggrKeyType<ConstantVector>;
496   friend class Constant;
497 
498   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
499 
500   void destroyConstantImpl();
501   Value *handleOperandChangeImpl(Value *From, Value *To);
502 
503 public:
504   // ConstantVector accessors
505   static Constant *get(ArrayRef<Constant *> V);
506 
507 private:
508   static Constant *getImpl(ArrayRef<Constant *> V);
509 
510 public:
511   /// Return a ConstantVector with the specified constant in each element.
512   /// Note that this might not return an instance of ConstantVector
513   static Constant *getSplat(ElementCount EC, Constant *Elt);
514 
515   /// Specialize the getType() method to always return a FixedVectorType,
516   /// which reduces the amount of casting needed in parts of the compiler.
517   inline FixedVectorType *getType() const {
518     return cast<FixedVectorType>(Value::getType());
519   }
520 
521   /// If all elements of the vector constant have the same value, return that
522   /// value. Otherwise, return nullptr. Ignore undefined elements by setting
523   /// AllowUndefs to true.
524   Constant *getSplatValue(bool AllowUndefs = false) const;
525 
526   /// Methods for support type inquiry through isa, cast, and dyn_cast:
527   static bool classof(const Value *V) {
528     return V->getValueID() == ConstantVectorVal;
529   }
530 };
531 
532 //===----------------------------------------------------------------------===//
533 /// A constant pointer value that points to null
534 ///
535 class ConstantPointerNull final : public ConstantData {
536   friend class Constant;
537 
538   explicit ConstantPointerNull(PointerType *T)
539       : ConstantData(T, Value::ConstantPointerNullVal) {}
540 
541   void destroyConstantImpl();
542 
543 public:
544   ConstantPointerNull(const ConstantPointerNull &) = delete;
545 
546   /// Static factory methods - Return objects of the specified value
547   static ConstantPointerNull *get(PointerType *T);
548 
549   /// Specialize the getType() method to always return an PointerType,
550   /// which reduces the amount of casting needed in parts of the compiler.
551   inline PointerType *getType() const {
552     return cast<PointerType>(Value::getType());
553   }
554 
555   /// Methods for support type inquiry through isa, cast, and dyn_cast:
556   static bool classof(const Value *V) {
557     return V->getValueID() == ConstantPointerNullVal;
558   }
559 };
560 
561 //===----------------------------------------------------------------------===//
562 /// ConstantDataSequential - A vector or array constant whose element type is a
563 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
564 /// are just simple data values (i.e. ConstantInt/ConstantFP).  This Constant
565 /// node has no operands because it stores all of the elements of the constant
566 /// as densely packed data, instead of as Value*'s.
567 ///
568 /// This is the common base class of ConstantDataArray and ConstantDataVector.
569 ///
570 class ConstantDataSequential : public ConstantData {
571   friend class LLVMContextImpl;
572   friend class Constant;
573 
574   /// A pointer to the bytes underlying this constant (which is owned by the
575   /// uniquing StringMap).
576   const char *DataElements;
577 
578   /// This forms a link list of ConstantDataSequential nodes that have
579   /// the same value but different type.  For example, 0,0,0,1 could be a 4
580   /// element array of i8, or a 1-element array of i32.  They'll both end up in
581   /// the same StringMap bucket, linked up.
582   std::unique_ptr<ConstantDataSequential> Next;
583 
584   void destroyConstantImpl();
585 
586 protected:
587   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
588       : ConstantData(ty, VT), DataElements(Data) {}
589 
590   static Constant *getImpl(StringRef Bytes, Type *Ty);
591 
592 public:
593   ConstantDataSequential(const ConstantDataSequential &) = delete;
594 
595   /// Return true if a ConstantDataSequential can be formed with a vector or
596   /// array of the specified element type.
597   /// ConstantDataArray only works with normal float and int types that are
598   /// stored densely in memory, not with things like i42 or x86_f80.
599   static bool isElementTypeCompatible(Type *Ty);
600 
601   /// If this is a sequential container of integers (of any size), return the
602   /// specified element in the low bits of a uint64_t.
603   uint64_t getElementAsInteger(unsigned i) const;
604 
605   /// If this is a sequential container of integers (of any size), return the
606   /// specified element as an APInt.
607   APInt getElementAsAPInt(unsigned i) const;
608 
609   /// If this is a sequential container of floating point type, return the
610   /// specified element as an APFloat.
611   APFloat getElementAsAPFloat(unsigned i) const;
612 
613   /// If this is an sequential container of floats, return the specified element
614   /// as a float.
615   float getElementAsFloat(unsigned i) const;
616 
617   /// If this is an sequential container of doubles, return the specified
618   /// element as a double.
619   double getElementAsDouble(unsigned i) const;
620 
621   /// Return a Constant for a specified index's element.
622   /// Note that this has to compute a new constant to return, so it isn't as
623   /// efficient as getElementAsInteger/Float/Double.
624   Constant *getElementAsConstant(unsigned i) const;
625 
626   /// Return the element type of the array/vector.
627   Type *getElementType() const;
628 
629   /// Return the number of elements in the array or vector.
630   unsigned getNumElements() const;
631 
632   /// Return the size (in bytes) of each element in the array/vector.
633   /// The size of the elements is known to be a multiple of one byte.
634   uint64_t getElementByteSize() const;
635 
636   /// This method returns true if this is an array of \p CharSize integers.
637   bool isString(unsigned CharSize = 8) const;
638 
639   /// This method returns true if the array "isString", ends with a null byte,
640   /// and does not contains any other null bytes.
641   bool isCString() const;
642 
643   /// If this array is isString(), then this method returns the array as a
644   /// StringRef. Otherwise, it asserts out.
645   StringRef getAsString() const {
646     assert(isString() && "Not a string");
647     return getRawDataValues();
648   }
649 
650   /// If this array is isCString(), then this method returns the array (without
651   /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
652   StringRef getAsCString() const {
653     assert(isCString() && "Isn't a C string");
654     StringRef Str = getAsString();
655     return Str.substr(0, Str.size() - 1);
656   }
657 
658   /// Return the raw, underlying, bytes of this data. Note that this is an
659   /// extremely tricky thing to work with, as it exposes the host endianness of
660   /// the data elements.
661   StringRef getRawDataValues() const;
662 
663   /// Methods for support type inquiry through isa, cast, and dyn_cast:
664   static bool classof(const Value *V) {
665     return V->getValueID() == ConstantDataArrayVal ||
666            V->getValueID() == ConstantDataVectorVal;
667   }
668 
669 private:
670   const char *getElementPointer(unsigned Elt) const;
671 };
672 
673 //===----------------------------------------------------------------------===//
674 /// An array constant whose element type is a simple 1/2/4/8-byte integer or
675 /// float/double, and whose elements are just simple data values
676 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
677 /// stores all of the elements of the constant as densely packed data, instead
678 /// of as Value*'s.
679 class ConstantDataArray final : public ConstantDataSequential {
680   friend class ConstantDataSequential;
681 
682   explicit ConstantDataArray(Type *ty, const char *Data)
683       : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
684 
685 public:
686   ConstantDataArray(const ConstantDataArray &) = delete;
687 
688   /// get() constructor - Return a constant with array type with an element
689   /// count and element type matching the ArrayRef passed in.  Note that this
690   /// can return a ConstantAggregateZero object.
691   template <typename ElementTy>
692   static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
693     const char *Data = reinterpret_cast<const char *>(Elts.data());
694     return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
695                   Type::getScalarTy<ElementTy>(Context));
696   }
697 
698   /// get() constructor - ArrayTy needs to be compatible with
699   /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
700   template <typename ArrayTy>
701   static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
702     return ConstantDataArray::get(Context, makeArrayRef(Elts));
703   }
704 
705   /// getRaw() constructor - Return a constant with array type with an element
706   /// count and element type matching the NumElements and ElementTy parameters
707   /// passed in. Note that this can return a ConstantAggregateZero object.
708   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
709   /// the buffer containing the elements. Be careful to make sure Data uses the
710   /// right endianness, the buffer will be used as-is.
711   static Constant *getRaw(StringRef Data, uint64_t NumElements,
712                           Type *ElementTy) {
713     Type *Ty = ArrayType::get(ElementTy, NumElements);
714     return getImpl(Data, Ty);
715   }
716 
717   /// getFP() constructors - Return a constant of array type with a float
718   /// element type taken from argument `ElementType', and count taken from
719   /// argument `Elts'.  The amount of bits of the contained type must match the
720   /// number of bits of the type contained in the passed in ArrayRef.
721   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
722   /// that this can return a ConstantAggregateZero object.
723   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
724   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
725   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
726 
727   /// This method constructs a CDS and initializes it with a text string.
728   /// The default behavior (AddNull==true) causes a null terminator to
729   /// be placed at the end of the array (increasing the length of the string by
730   /// one more than the StringRef would normally indicate.  Pass AddNull=false
731   /// to disable this behavior.
732   static Constant *getString(LLVMContext &Context, StringRef Initializer,
733                              bool AddNull = true);
734 
735   /// Specialize the getType() method to always return an ArrayType,
736   /// which reduces the amount of casting needed in parts of the compiler.
737   inline ArrayType *getType() const {
738     return cast<ArrayType>(Value::getType());
739   }
740 
741   /// Methods for support type inquiry through isa, cast, and dyn_cast:
742   static bool classof(const Value *V) {
743     return V->getValueID() == ConstantDataArrayVal;
744   }
745 };
746 
747 //===----------------------------------------------------------------------===//
748 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or
749 /// float/double, and whose elements are just simple data values
750 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
751 /// stores all of the elements of the constant as densely packed data, instead
752 /// of as Value*'s.
753 class ConstantDataVector final : public ConstantDataSequential {
754   friend class ConstantDataSequential;
755 
756   explicit ConstantDataVector(Type *ty, const char *Data)
757       : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
758         IsSplatSet(false) {}
759   // Cache whether or not the constant is a splat.
760   mutable bool IsSplatSet : 1;
761   mutable bool IsSplat : 1;
762   bool isSplatData() const;
763 
764 public:
765   ConstantDataVector(const ConstantDataVector &) = delete;
766 
767   /// get() constructors - Return a constant with vector type with an element
768   /// count and element type matching the ArrayRef passed in.  Note that this
769   /// can return a ConstantAggregateZero object.
770   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
771   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
772   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
773   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
774   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
775   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
776 
777   /// getRaw() constructor - Return a constant with vector type with an element
778   /// count and element type matching the NumElements and ElementTy parameters
779   /// passed in. Note that this can return a ConstantAggregateZero object.
780   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
781   /// the buffer containing the elements. Be careful to make sure Data uses the
782   /// right endianness, the buffer will be used as-is.
783   static Constant *getRaw(StringRef Data, uint64_t NumElements,
784                           Type *ElementTy) {
785     Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
786     return getImpl(Data, Ty);
787   }
788 
789   /// getFP() constructors - Return a constant of vector type with a float
790   /// element type taken from argument `ElementType', and count taken from
791   /// argument `Elts'.  The amount of bits of the contained type must match the
792   /// number of bits of the type contained in the passed in ArrayRef.
793   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
794   /// that this can return a ConstantAggregateZero object.
795   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
796   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
797   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
798 
799   /// Return a ConstantVector with the specified constant in each element.
800   /// The specified constant has to be a of a compatible type (i8/i16/
801   /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
802   static Constant *getSplat(unsigned NumElts, Constant *Elt);
803 
804   /// Returns true if this is a splat constant, meaning that all elements have
805   /// the same value.
806   bool isSplat() const;
807 
808   /// If this is a splat constant, meaning that all of the elements have the
809   /// same value, return that value. Otherwise return NULL.
810   Constant *getSplatValue() const;
811 
812   /// Specialize the getType() method to always return a FixedVectorType,
813   /// which reduces the amount of casting needed in parts of the compiler.
814   inline FixedVectorType *getType() const {
815     return cast<FixedVectorType>(Value::getType());
816   }
817 
818   /// Methods for support type inquiry through isa, cast, and dyn_cast:
819   static bool classof(const Value *V) {
820     return V->getValueID() == ConstantDataVectorVal;
821   }
822 };
823 
824 //===----------------------------------------------------------------------===//
825 /// A constant token which is empty
826 ///
827 class ConstantTokenNone final : public ConstantData {
828   friend class Constant;
829 
830   explicit ConstantTokenNone(LLVMContext &Context)
831       : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
832 
833   void destroyConstantImpl();
834 
835 public:
836   ConstantTokenNone(const ConstantTokenNone &) = delete;
837 
838   /// Return the ConstantTokenNone.
839   static ConstantTokenNone *get(LLVMContext &Context);
840 
841   /// Methods to support type inquiry through isa, cast, and dyn_cast.
842   static bool classof(const Value *V) {
843     return V->getValueID() == ConstantTokenNoneVal;
844   }
845 };
846 
847 /// The address of a basic block.
848 ///
849 class BlockAddress final : public Constant {
850   friend class Constant;
851 
852   BlockAddress(Function *F, BasicBlock *BB);
853 
854   void *operator new(size_t S) { return User::operator new(S, 2); }
855 
856   void destroyConstantImpl();
857   Value *handleOperandChangeImpl(Value *From, Value *To);
858 
859 public:
860   void operator delete(void *Ptr) { User::operator delete(Ptr); }
861 
862   /// Return a BlockAddress for the specified function and basic block.
863   static BlockAddress *get(Function *F, BasicBlock *BB);
864 
865   /// Return a BlockAddress for the specified basic block.  The basic
866   /// block must be embedded into a function.
867   static BlockAddress *get(BasicBlock *BB);
868 
869   /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
870   ///
871   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
872   static BlockAddress *lookup(const BasicBlock *BB);
873 
874   /// Transparently provide more efficient getOperand methods.
875   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
876 
877   Function *getFunction() const { return (Function *)Op<0>().get(); }
878   BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
879 
880   /// Methods for support type inquiry through isa, cast, and dyn_cast:
881   static bool classof(const Value *V) {
882     return V->getValueID() == BlockAddressVal;
883   }
884 };
885 
886 template <>
887 struct OperandTraits<BlockAddress>
888     : public FixedNumOperandTraits<BlockAddress, 2> {};
889 
890 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
891 
892 /// Wrapper for a function that represents a value that
893 /// functionally represents the original function. This can be a function,
894 /// global alias to a function, or an ifunc.
895 class DSOLocalEquivalent final : public Constant {
896   friend class Constant;
897 
898   DSOLocalEquivalent(GlobalValue *GV);
899 
900   void *operator new(size_t S) { return User::operator new(S, 1); }
901 
902   void destroyConstantImpl();
903   Value *handleOperandChangeImpl(Value *From, Value *To);
904 
905 public:
906   void operator delete(void *Ptr) { User::operator delete(Ptr); }
907 
908   /// Return a DSOLocalEquivalent for the specified global value.
909   static DSOLocalEquivalent *get(GlobalValue *GV);
910 
911   /// Transparently provide more efficient getOperand methods.
912   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
913 
914   GlobalValue *getGlobalValue() const {
915     return cast<GlobalValue>(Op<0>().get());
916   }
917 
918   /// Methods for support type inquiry through isa, cast, and dyn_cast:
919   static bool classof(const Value *V) {
920     return V->getValueID() == DSOLocalEquivalentVal;
921   }
922 };
923 
924 template <>
925 struct OperandTraits<DSOLocalEquivalent>
926     : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
927 
928 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
929 
930 /// Wrapper for a value that won't be replaced with a CFI jump table
931 /// pointer in LowerTypeTestsModule.
932 class NoCFIValue final : public Constant {
933   friend class Constant;
934 
935   NoCFIValue(GlobalValue *GV);
936 
937   void *operator new(size_t S) { return User::operator new(S, 1); }
938 
939   void destroyConstantImpl();
940   Value *handleOperandChangeImpl(Value *From, Value *To);
941 
942 public:
943   /// Return a NoCFIValue for the specified function.
944   static NoCFIValue *get(GlobalValue *GV);
945 
946   /// Transparently provide more efficient getOperand methods.
947   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
948 
949   GlobalValue *getGlobalValue() const {
950     return cast<GlobalValue>(Op<0>().get());
951   }
952 
953   /// Methods for support type inquiry through isa, cast, and dyn_cast:
954   static bool classof(const Value *V) {
955     return V->getValueID() == NoCFIValueVal;
956   }
957 };
958 
959 template <>
960 struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> {
961 };
962 
963 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value)
964 
965 //===----------------------------------------------------------------------===//
966 /// A constant value that is initialized with an expression using
967 /// other constant values.
968 ///
969 /// This class uses the standard Instruction opcodes to define the various
970 /// constant expressions.  The Opcode field for the ConstantExpr class is
971 /// maintained in the Value::SubclassData field.
972 class ConstantExpr : public Constant {
973   friend struct ConstantExprKeyType;
974   friend class Constant;
975 
976   void destroyConstantImpl();
977   Value *handleOperandChangeImpl(Value *From, Value *To);
978 
979 protected:
980   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
981       : Constant(ty, ConstantExprVal, Ops, NumOps) {
982     // Operation type (an Instruction opcode) is stored as the SubclassData.
983     setValueSubclassData(Opcode);
984   }
985 
986   ~ConstantExpr() = default;
987 
988 public:
989   // Static methods to construct a ConstantExpr of different kinds.  Note that
990   // these methods may return a object that is not an instance of the
991   // ConstantExpr class, because they will attempt to fold the constant
992   // expression into something simpler if possible.
993 
994   /// getAlignOf constant expr - computes the alignment of a type in a target
995   /// independent way (Note: the return type is an i64).
996   static Constant *getAlignOf(Type *Ty);
997 
998   /// getSizeOf constant expr - computes the (alloc) size of a type (in
999   /// address-units, not bits) in a target independent way (Note: the return
1000   /// type is an i64).
1001   ///
1002   static Constant *getSizeOf(Type *Ty);
1003 
1004   /// getOffsetOf constant expr - computes the offset of a struct field in a
1005   /// target independent way (Note: the return type is an i64).
1006   ///
1007   static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
1008 
1009   /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
1010   /// which supports any aggregate type, and any Constant index.
1011   ///
1012   static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
1013 
1014   static Constant *getNeg(Constant *C, bool HasNUW = false,
1015                           bool HasNSW = false);
1016   static Constant *getFNeg(Constant *C);
1017   static Constant *getNot(Constant *C);
1018   static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
1019                           bool HasNSW = false);
1020   static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
1021                           bool HasNSW = false);
1022   static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
1023                           bool HasNSW = false);
1024   static Constant *getAnd(Constant *C1, Constant *C2);
1025   static Constant *getOr(Constant *C1, Constant *C2);
1026   static Constant *getXor(Constant *C1, Constant *C2);
1027   static Constant *getUMin(Constant *C1, Constant *C2);
1028   static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false,
1029                           bool HasNSW = false);
1030   static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
1031   static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
1032   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1033   static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1034   static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1035   static Constant *getFPTrunc(Constant *C, Type *Ty,
1036                               bool OnlyIfReduced = false);
1037   static Constant *getFPExtend(Constant *C, Type *Ty,
1038                                bool OnlyIfReduced = false);
1039   static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1040   static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1041   static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1042   static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1043   static Constant *getPtrToInt(Constant *C, Type *Ty,
1044                                bool OnlyIfReduced = false);
1045   static Constant *getIntToPtr(Constant *C, Type *Ty,
1046                                bool OnlyIfReduced = false);
1047   static Constant *getBitCast(Constant *C, Type *Ty,
1048                               bool OnlyIfReduced = false);
1049   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1050                                     bool OnlyIfReduced = false);
1051 
1052   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
1053   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
1054 
1055   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1056     return getAdd(C1, C2, false, true);
1057   }
1058 
1059   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1060     return getAdd(C1, C2, true, false);
1061   }
1062 
1063   static Constant *getNSWSub(Constant *C1, Constant *C2) {
1064     return getSub(C1, C2, false, true);
1065   }
1066 
1067   static Constant *getNUWSub(Constant *C1, Constant *C2) {
1068     return getSub(C1, C2, true, false);
1069   }
1070 
1071   static Constant *getNSWMul(Constant *C1, Constant *C2) {
1072     return getMul(C1, C2, false, true);
1073   }
1074 
1075   static Constant *getNUWMul(Constant *C1, Constant *C2) {
1076     return getMul(C1, C2, true, false);
1077   }
1078 
1079   static Constant *getNSWShl(Constant *C1, Constant *C2) {
1080     return getShl(C1, C2, false, true);
1081   }
1082 
1083   static Constant *getNUWShl(Constant *C1, Constant *C2) {
1084     return getShl(C1, C2, true, false);
1085   }
1086 
1087   static Constant *getExactAShr(Constant *C1, Constant *C2) {
1088     return getAShr(C1, C2, true);
1089   }
1090 
1091   static Constant *getExactLShr(Constant *C1, Constant *C2) {
1092     return getLShr(C1, C2, true);
1093   }
1094 
1095   /// If C is a scalar/fixed width vector of known powers of 2, then this
1096   /// function returns a new scalar/fixed width vector obtained from logBase2
1097   /// of C. Undef vector elements are set to zero.
1098   /// Return a null pointer otherwise.
1099   static Constant *getExactLogBase2(Constant *C);
1100 
1101   /// Return the identity constant for a binary opcode.
1102   /// The identity constant C is defined as X op C = X and C op X = X for every
1103   /// X when the binary operation is commutative. If the binop is not
1104   /// commutative, callers can acquire the operand 1 identity constant by
1105   /// setting AllowRHSConstant to true. For example, any shift has a zero
1106   /// identity constant for operand 1: X shift 0 = X.
1107   /// If this is a fadd/fsub operation and we don't care about signed zeros,
1108   /// then setting NSZ to true returns the identity +0.0 instead of -0.0.
1109   /// Return nullptr if the operator does not have an identity constant.
1110   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1111                                     bool AllowRHSConstant = false,
1112                                     bool NSZ = false);
1113 
1114   /// Return the absorbing element for the given binary
1115   /// operation, i.e. a constant C such that X op C = C and C op X = C for
1116   /// every X.  For example, this returns zero for integer multiplication.
1117   /// It returns null if the operator doesn't have an absorbing element.
1118   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1119 
1120   /// Transparently provide more efficient getOperand methods.
1121   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1122 
1123   /// Convenience function for getting a Cast operation.
1124   ///
1125   /// \param ops The opcode for the conversion
1126   /// \param C  The constant to be converted
1127   /// \param Ty The type to which the constant is converted
1128   /// \param OnlyIfReduced see \a getWithOperands() docs.
1129   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1130                            bool OnlyIfReduced = false);
1131 
1132   // Create a ZExt or BitCast cast constant expression
1133   static Constant *
1134   getZExtOrBitCast(Constant *C, ///< The constant to zext or bitcast
1135                    Type *Ty     ///< The type to zext or bitcast C to
1136   );
1137 
1138   // Create a SExt or BitCast cast constant expression
1139   static Constant *
1140   getSExtOrBitCast(Constant *C, ///< The constant to sext or bitcast
1141                    Type *Ty     ///< The type to sext or bitcast C to
1142   );
1143 
1144   // Create a Trunc or BitCast cast constant expression
1145   static Constant *
1146   getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1147                     Type *Ty     ///< The type to trunc or bitcast C to
1148   );
1149 
1150   /// Create either an sext, trunc or nothing, depending on whether Ty is
1151   /// wider, narrower or the same as C->getType(). This only works with
1152   /// integer or vector of integer types.
1153   static Constant *getSExtOrTrunc(Constant *C, Type *Ty);
1154 
1155   /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1156   /// expression.
1157   static Constant *
1158   getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1159                  Type *Ty     ///< The type to which cast should be made
1160   );
1161 
1162   /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1163   /// the address space.
1164   static Constant *getPointerBitCastOrAddrSpaceCast(
1165       Constant *C, ///< The constant to addrspacecast or bitcast
1166       Type *Ty     ///< The type to bitcast or addrspacecast C to
1167   );
1168 
1169   /// Create a ZExt, Bitcast or Trunc for integer -> integer casts
1170   static Constant *
1171   getIntegerCast(Constant *C,  ///< The integer constant to be casted
1172                  Type *Ty,     ///< The integer type to cast to
1173                  bool IsSigned ///< Whether C should be treated as signed or not
1174   );
1175 
1176   /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
1177   static Constant *getFPCast(Constant *C, ///< The integer constant to be casted
1178                              Type *Ty     ///< The integer type to cast to
1179   );
1180 
1181   /// Return true if this is a convert constant expression
1182   bool isCast() const;
1183 
1184   /// Return true if this is a compare constant expression
1185   bool isCompare() const;
1186 
1187   /// Select constant expr
1188   ///
1189   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1190   static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
1191                              Type *OnlyIfReducedTy = nullptr);
1192 
1193   /// get - Return a unary operator constant expression,
1194   /// folding if possible.
1195   ///
1196   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1197   static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0,
1198                        Type *OnlyIfReducedTy = nullptr);
1199 
1200   /// get - Return a binary or shift operator constant expression,
1201   /// folding if possible.
1202   ///
1203   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1204   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1205                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1206 
1207   /// Return an ICmp or FCmp comparison operator constant expression.
1208   ///
1209   /// \param OnlyIfReduced see \a getWithOperands() docs.
1210   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1211                               bool OnlyIfReduced = false);
1212 
1213   /// get* - Return some common constants without having to
1214   /// specify the full Instruction::OPCODE identifier.
1215   ///
1216   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1217                            bool OnlyIfReduced = false);
1218   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1219                            bool OnlyIfReduced = false);
1220 
1221   /// Getelementptr form.  Value* is only accepted for convenience;
1222   /// all elements must be Constants.
1223   ///
1224   /// \param InRangeIndex the inrange index if present or None.
1225   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1226   static Constant *getGetElementPtr(Type *Ty, Constant *C,
1227                                     ArrayRef<Constant *> IdxList,
1228                                     bool InBounds = false,
1229                                     Optional<unsigned> InRangeIndex = None,
1230                                     Type *OnlyIfReducedTy = nullptr) {
1231     return getGetElementPtr(
1232         Ty, C, makeArrayRef((Value *const *)IdxList.data(), IdxList.size()),
1233         InBounds, InRangeIndex, OnlyIfReducedTy);
1234   }
1235   static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1236                                     bool InBounds = false,
1237                                     Optional<unsigned> InRangeIndex = None,
1238                                     Type *OnlyIfReducedTy = nullptr) {
1239     // This form of the function only exists to avoid ambiguous overload
1240     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1241     // ArrayRef<Value *>.
1242     return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1243                             OnlyIfReducedTy);
1244   }
1245   static Constant *getGetElementPtr(Type *Ty, Constant *C,
1246                                     ArrayRef<Value *> IdxList,
1247                                     bool InBounds = false,
1248                                     Optional<unsigned> InRangeIndex = None,
1249                                     Type *OnlyIfReducedTy = nullptr);
1250 
1251   /// Create an "inbounds" getelementptr. See the documentation for the
1252   /// "inbounds" flag in LangRef.html for details.
1253   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1254                                             ArrayRef<Constant *> IdxList) {
1255     return getGetElementPtr(Ty, C, IdxList, true);
1256   }
1257   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1258                                             Constant *Idx) {
1259     // This form of the function only exists to avoid ambiguous overload
1260     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1261     // ArrayRef<Value *>.
1262     return getGetElementPtr(Ty, C, Idx, true);
1263   }
1264   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1265                                             ArrayRef<Value *> IdxList) {
1266     return getGetElementPtr(Ty, C, IdxList, true);
1267   }
1268 
1269   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1270                                      Type *OnlyIfReducedTy = nullptr);
1271   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1272                                     Type *OnlyIfReducedTy = nullptr);
1273   static Constant *getShuffleVector(Constant *V1, Constant *V2,
1274                                     ArrayRef<int> Mask,
1275                                     Type *OnlyIfReducedTy = nullptr);
1276 
1277   /// Return the opcode at the root of this constant expression
1278   unsigned getOpcode() const { return getSubclassDataFromValue(); }
1279 
1280   /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1281   /// FCMP constant expression.
1282   unsigned getPredicate() const;
1283 
1284   /// Assert that this is a shufflevector and return the mask. See class
1285   /// ShuffleVectorInst for a description of the mask representation.
1286   ArrayRef<int> getShuffleMask() const;
1287 
1288   /// Assert that this is a shufflevector and return the mask.
1289   ///
1290   /// TODO: This is a temporary hack until we update the bitcode format for
1291   /// shufflevector.
1292   Constant *getShuffleMaskForBitcode() const;
1293 
1294   /// Return a string representation for an opcode.
1295   const char *getOpcodeName() const;
1296 
1297   /// This returns the current constant expression with the operands replaced
1298   /// with the specified values. The specified array must have the same number
1299   /// of operands as our current one.
1300   Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1301     return getWithOperands(Ops, getType());
1302   }
1303 
1304   /// Get the current expression with the operands replaced.
1305   ///
1306   /// Return the current constant expression with the operands replaced with \c
1307   /// Ops and the type with \c Ty.  The new operands must have the same number
1308   /// as the current ones.
1309   ///
1310   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1311   /// gets constant-folded, the type changes, or the expression is otherwise
1312   /// canonicalized.  This parameter should almost always be \c false.
1313   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1314                             bool OnlyIfReduced = false,
1315                             Type *SrcTy = nullptr) const;
1316 
1317   /// Returns an Instruction which implements the same operation as this
1318   /// ConstantExpr. If \p InsertBefore is not null, the new instruction is
1319   /// inserted before it, otherwise it is not inserted into any basic block.
1320   ///
1321   /// A better approach to this could be to have a constructor for Instruction
1322   /// which would take a ConstantExpr parameter, but that would have spread
1323   /// implementation details of ConstantExpr outside of Constants.cpp, which
1324   /// would make it harder to remove ConstantExprs altogether.
1325   Instruction *getAsInstruction(Instruction *InsertBefore = nullptr) const;
1326 
1327   /// Whether creating a constant expression for this binary operator is
1328   /// desirable.
1329   static bool isDesirableBinOp(unsigned Opcode);
1330 
1331   /// Whether creating a constant expression for this binary operator is
1332   /// supported.
1333   static bool isSupportedBinOp(unsigned Opcode);
1334 
1335   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1336   static bool classof(const Value *V) {
1337     return V->getValueID() == ConstantExprVal;
1338   }
1339 
1340 private:
1341   // Shadow Value::setValueSubclassData with a private forwarding method so that
1342   // subclasses cannot accidentally use it.
1343   void setValueSubclassData(unsigned short D) {
1344     Value::setValueSubclassData(D);
1345   }
1346 };
1347 
1348 template <>
1349 struct OperandTraits<ConstantExpr>
1350     : public VariadicOperandTraits<ConstantExpr, 1> {};
1351 
1352 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1353 
1354 //===----------------------------------------------------------------------===//
1355 /// 'undef' values are things that do not have specified contents.
1356 /// These are used for a variety of purposes, including global variable
1357 /// initializers and operands to instructions.  'undef' values can occur with
1358 /// any first-class type.
1359 ///
1360 /// Undef values aren't exactly constants; if they have multiple uses, they
1361 /// can appear to have different bit patterns at each use. See
1362 /// LangRef.html#undefvalues for details.
1363 ///
1364 class UndefValue : public ConstantData {
1365   friend class Constant;
1366 
1367   explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1368 
1369   void destroyConstantImpl();
1370 
1371 protected:
1372   explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1373 
1374 public:
1375   UndefValue(const UndefValue &) = delete;
1376 
1377   /// Static factory methods - Return an 'undef' object of the specified type.
1378   static UndefValue *get(Type *T);
1379 
1380   /// If this Undef has array or vector type, return a undef with the right
1381   /// element type.
1382   UndefValue *getSequentialElement() const;
1383 
1384   /// If this undef has struct type, return a undef with the right element type
1385   /// for the specified element.
1386   UndefValue *getStructElement(unsigned Elt) const;
1387 
1388   /// Return an undef of the right value for the specified GEP index if we can,
1389   /// otherwise return null (e.g. if C is a ConstantExpr).
1390   UndefValue *getElementValue(Constant *C) const;
1391 
1392   /// Return an undef of the right value for the specified GEP index.
1393   UndefValue *getElementValue(unsigned Idx) const;
1394 
1395   /// Return the number of elements in the array, vector, or struct.
1396   unsigned getNumElements() const;
1397 
1398   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1399   static bool classof(const Value *V) {
1400     return V->getValueID() == UndefValueVal ||
1401            V->getValueID() == PoisonValueVal;
1402   }
1403 };
1404 
1405 //===----------------------------------------------------------------------===//
1406 /// In order to facilitate speculative execution, many instructions do not
1407 /// invoke immediate undefined behavior when provided with illegal operands,
1408 /// and return a poison value instead.
1409 ///
1410 /// see LangRef.html#poisonvalues for details.
1411 ///
1412 class PoisonValue final : public UndefValue {
1413   friend class Constant;
1414 
1415   explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1416 
1417   void destroyConstantImpl();
1418 
1419 public:
1420   PoisonValue(const PoisonValue &) = delete;
1421 
1422   /// Static factory methods - Return an 'poison' object of the specified type.
1423   static PoisonValue *get(Type *T);
1424 
1425   /// If this poison has array or vector type, return a poison with the right
1426   /// element type.
1427   PoisonValue *getSequentialElement() const;
1428 
1429   /// If this poison has struct type, return a poison with the right element
1430   /// type for the specified element.
1431   PoisonValue *getStructElement(unsigned Elt) const;
1432 
1433   /// Return an poison of the right value for the specified GEP index if we can,
1434   /// otherwise return null (e.g. if C is a ConstantExpr).
1435   PoisonValue *getElementValue(Constant *C) const;
1436 
1437   /// Return an poison of the right value for the specified GEP index.
1438   PoisonValue *getElementValue(unsigned Idx) const;
1439 
1440   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1441   static bool classof(const Value *V) {
1442     return V->getValueID() == PoisonValueVal;
1443   }
1444 };
1445 
1446 } // end namespace llvm
1447 
1448 #endif // LLVM_IR_CONSTANTS_H
1449