1 //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines layout properties related to datatype size/offset/alignment
10 // information.  It uses lazy annotations to cache information about how
11 // structure types are laid out and used.
12 //
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&.  None of the members functions
15 // require modification to the object.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_IR_DATALAYOUT_H
20 #define LLVM_IR_DATALAYOUT_H
21 
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Alignment.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/TrailingObjects.h"
35 #include "llvm/Support/TypeSize.h"
36 #include <cassert>
37 #include <cstdint>
38 #include <string>
39 
40 // This needs to be outside of the namespace, to avoid conflict with llvm-c
41 // decl.
42 using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
43 
44 namespace llvm {
45 
46 class GlobalVariable;
47 class LLVMContext;
48 class Module;
49 class StructLayout;
50 class Triple;
51 class Value;
52 
53 /// Enum used to categorize the alignment types stored by LayoutAlignElem
54 enum AlignTypeEnum {
55   INTEGER_ALIGN = 'i',
56   VECTOR_ALIGN = 'v',
57   FLOAT_ALIGN = 'f',
58   AGGREGATE_ALIGN = 'a'
59 };
60 
61 // FIXME: Currently the DataLayout string carries a "preferred alignment"
62 // for types. As the DataLayout is module/global, this should likely be
63 // sunk down to an FTTI element that is queried rather than a global
64 // preference.
65 
66 /// Layout alignment element.
67 ///
68 /// Stores the alignment data associated with a given type bit width.
69 ///
70 /// \note The unusual order of elements in the structure attempts to reduce
71 /// padding and make the structure slightly more cache friendly.
72 struct LayoutAlignElem {
73   uint32_t TypeBitWidth;
74   Align ABIAlign;
75   Align PrefAlign;
76 
77   static LayoutAlignElem get(Align ABIAlign, Align PrefAlign,
78                              uint32_t BitWidth);
79 
80   bool operator==(const LayoutAlignElem &rhs) const;
81 };
82 
83 /// Layout pointer alignment element.
84 ///
85 /// Stores the alignment data associated with a given pointer and address space.
86 ///
87 /// \note The unusual order of elements in the structure attempts to reduce
88 /// padding and make the structure slightly more cache friendly.
89 struct PointerAlignElem {
90   Align ABIAlign;
91   Align PrefAlign;
92   uint32_t TypeBitWidth;
93   uint32_t AddressSpace;
94   uint32_t IndexBitWidth;
95 
96   /// Initializer
97   static PointerAlignElem getInBits(uint32_t AddressSpace, Align ABIAlign,
98                                     Align PrefAlign, uint32_t TypeBitWidth,
99                                     uint32_t IndexBitWidth);
100 
101   bool operator==(const PointerAlignElem &rhs) const;
102 };
103 
104 /// A parsed version of the target data layout string in and methods for
105 /// querying it.
106 ///
107 /// The target data layout string is specified *by the target* - a frontend
108 /// generating LLVM IR is required to generate the right target data for the
109 /// target being codegen'd to.
110 class DataLayout {
111 public:
112   enum class FunctionPtrAlignType {
113     /// The function pointer alignment is independent of the function alignment.
114     Independent,
115     /// The function pointer alignment is a multiple of the function alignment.
116     MultipleOfFunctionAlign,
117   };
118 private:
119   /// Defaults to false.
120   bool BigEndian;
121 
122   unsigned AllocaAddrSpace;
123   MaybeAlign StackNaturalAlign;
124   unsigned ProgramAddrSpace;
125   unsigned DefaultGlobalsAddrSpace;
126 
127   MaybeAlign FunctionPtrAlign;
128   FunctionPtrAlignType TheFunctionPtrAlignType;
129 
130   enum ManglingModeT {
131     MM_None,
132     MM_ELF,
133     MM_MachO,
134     MM_WinCOFF,
135     MM_WinCOFFX86,
136     MM_GOFF,
137     MM_Mips,
138     MM_XCOFF
139   };
140   ManglingModeT ManglingMode;
141 
142   SmallVector<unsigned char, 8> LegalIntWidths;
143 
144   /// Primitive type alignment data. This is sorted by type and bit
145   /// width during construction.
146   using AlignmentsTy = SmallVector<LayoutAlignElem, 4>;
147   AlignmentsTy IntAlignments;
148   AlignmentsTy FloatAlignments;
149   AlignmentsTy VectorAlignments;
150   LayoutAlignElem StructAlignment;
151 
152   /// The string representation used to create this DataLayout
153   std::string StringRepresentation;
154 
155   using PointersTy = SmallVector<PointerAlignElem, 8>;
156   PointersTy Pointers;
157 
158   const PointerAlignElem &getPointerAlignElem(uint32_t AddressSpace) const;
159 
160   // The StructType -> StructLayout map.
161   mutable void *LayoutMap = nullptr;
162 
163   /// Pointers in these address spaces are non-integral, and don't have a
164   /// well-defined bitwise representation.
165   SmallVector<unsigned, 8> NonIntegralAddressSpaces;
166 
167   /// Attempts to set the alignment of the given type. Returns an error
168   /// description on failure.
169   Error setAlignment(AlignTypeEnum AlignType, Align ABIAlign, Align PrefAlign,
170                      uint32_t BitWidth);
171 
172   /// Attempts to set the alignment of a pointer in the given address space.
173   /// Returns an error description on failure.
174   Error setPointerAlignmentInBits(uint32_t AddrSpace, Align ABIAlign,
175                                   Align PrefAlign, uint32_t TypeBitWidth,
176                                   uint32_t IndexBitWidth);
177 
178   /// Internal helper to get alignment for integer of given bitwidth.
179   Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const;
180 
181   /// Internal helper method that returns requested alignment for type.
182   Align getAlignment(Type *Ty, bool abi_or_pref) const;
183 
184   /// Attempts to parse a target data specification string and reports an error
185   /// if the string is malformed.
186   Error parseSpecifier(StringRef Desc);
187 
188   // Free all internal data structures.
189   void clear();
190 
191 public:
192   /// Constructs a DataLayout from a specification string. See reset().
193   explicit DataLayout(StringRef LayoutDescription) {
194     reset(LayoutDescription);
195   }
196 
197   /// Initialize target data from properties stored in the module.
198   explicit DataLayout(const Module *M);
199 
200   DataLayout(const DataLayout &DL) { *this = DL; }
201 
202   ~DataLayout(); // Not virtual, do not subclass this class
203 
204   DataLayout &operator=(const DataLayout &DL) {
205     clear();
206     StringRepresentation = DL.StringRepresentation;
207     BigEndian = DL.isBigEndian();
208     AllocaAddrSpace = DL.AllocaAddrSpace;
209     StackNaturalAlign = DL.StackNaturalAlign;
210     FunctionPtrAlign = DL.FunctionPtrAlign;
211     TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
212     ProgramAddrSpace = DL.ProgramAddrSpace;
213     DefaultGlobalsAddrSpace = DL.DefaultGlobalsAddrSpace;
214     ManglingMode = DL.ManglingMode;
215     LegalIntWidths = DL.LegalIntWidths;
216     IntAlignments = DL.IntAlignments;
217     FloatAlignments = DL.FloatAlignments;
218     VectorAlignments = DL.VectorAlignments;
219     StructAlignment = DL.StructAlignment;
220     Pointers = DL.Pointers;
221     NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
222     return *this;
223   }
224 
225   bool operator==(const DataLayout &Other) const;
226   bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
227 
228   void init(const Module *M);
229 
230   /// Parse a data layout string (with fallback to default values).
231   void reset(StringRef LayoutDescription);
232 
233   /// Parse a data layout string and return the layout. Return an error
234   /// description on failure.
235   static Expected<DataLayout> parse(StringRef LayoutDescription);
236 
237   /// Layout endianness...
238   bool isLittleEndian() const { return !BigEndian; }
239   bool isBigEndian() const { return BigEndian; }
240 
241   /// Returns the string representation of the DataLayout.
242   ///
243   /// This representation is in the same format accepted by the string
244   /// constructor above. This should not be used to compare two DataLayout as
245   /// different string can represent the same layout.
246   const std::string &getStringRepresentation() const {
247     return StringRepresentation;
248   }
249 
250   /// Test if the DataLayout was constructed from an empty string.
251   bool isDefault() const { return StringRepresentation.empty(); }
252 
253   /// Returns true if the specified type is known to be a native integer
254   /// type supported by the CPU.
255   ///
256   /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
257   /// on any known one. This returns false if the integer width is not legal.
258   ///
259   /// The width is specified in bits.
260   bool isLegalInteger(uint64_t Width) const {
261     return llvm::is_contained(LegalIntWidths, Width);
262   }
263 
264   bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
265 
266   /// Returns true if the given alignment exceeds the natural stack alignment.
267   bool exceedsNaturalStackAlignment(Align Alignment) const {
268     return StackNaturalAlign && (Alignment > *StackNaturalAlign);
269   }
270 
271   Align getStackAlignment() const {
272     assert(StackNaturalAlign && "StackNaturalAlign must be defined");
273     return *StackNaturalAlign;
274   }
275 
276   unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
277 
278   /// Returns the alignment of function pointers, which may or may not be
279   /// related to the alignment of functions.
280   /// \see getFunctionPtrAlignType
281   MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
282 
283   /// Return the type of function pointer alignment.
284   /// \see getFunctionPtrAlign
285   FunctionPtrAlignType getFunctionPtrAlignType() const {
286     return TheFunctionPtrAlignType;
287   }
288 
289   unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
290   unsigned getDefaultGlobalsAddressSpace() const {
291     return DefaultGlobalsAddrSpace;
292   }
293 
294   bool hasMicrosoftFastStdCallMangling() const {
295     return ManglingMode == MM_WinCOFFX86;
296   }
297 
298   /// Returns true if symbols with leading question marks should not receive IR
299   /// mangling. True for Windows mangling modes.
300   bool doNotMangleLeadingQuestionMark() const {
301     return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
302   }
303 
304   bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
305 
306   StringRef getLinkerPrivateGlobalPrefix() const {
307     if (ManglingMode == MM_MachO)
308       return "l";
309     return "";
310   }
311 
312   char getGlobalPrefix() const {
313     switch (ManglingMode) {
314     case MM_None:
315     case MM_ELF:
316     case MM_GOFF:
317     case MM_Mips:
318     case MM_WinCOFF:
319     case MM_XCOFF:
320       return '\0';
321     case MM_MachO:
322     case MM_WinCOFFX86:
323       return '_';
324     }
325     llvm_unreachable("invalid mangling mode");
326   }
327 
328   StringRef getPrivateGlobalPrefix() const {
329     switch (ManglingMode) {
330     case MM_None:
331       return "";
332     case MM_ELF:
333     case MM_WinCOFF:
334       return ".L";
335     case MM_GOFF:
336       return "@";
337     case MM_Mips:
338       return "$";
339     case MM_MachO:
340     case MM_WinCOFFX86:
341       return "L";
342     case MM_XCOFF:
343       return "L..";
344     }
345     llvm_unreachable("invalid mangling mode");
346   }
347 
348   static const char *getManglingComponent(const Triple &T);
349 
350   /// Returns true if the specified type fits in a native integer type
351   /// supported by the CPU.
352   ///
353   /// For example, if the CPU only supports i32 as a native integer type, then
354   /// i27 fits in a legal integer type but i45 does not.
355   bool fitsInLegalInteger(unsigned Width) const {
356     for (unsigned LegalIntWidth : LegalIntWidths)
357       if (Width <= LegalIntWidth)
358         return true;
359     return false;
360   }
361 
362   /// Layout pointer alignment
363   Align getPointerABIAlignment(unsigned AS) const;
364 
365   /// Return target's alignment for stack-based pointers
366   /// FIXME: The defaults need to be removed once all of
367   /// the backends/clients are updated.
368   Align getPointerPrefAlignment(unsigned AS = 0) const;
369 
370   /// Layout pointer size in bytes, rounded up to a whole
371   /// number of bytes.
372   /// FIXME: The defaults need to be removed once all of
373   /// the backends/clients are updated.
374   unsigned getPointerSize(unsigned AS = 0) const;
375 
376   /// Returns the maximum index size over all address spaces.
377   unsigned getMaxIndexSize() const;
378 
379   // Index size in bytes used for address calculation,
380   /// rounded up to a whole number of bytes.
381   unsigned getIndexSize(unsigned AS) const;
382 
383   /// Return the address spaces containing non-integral pointers.  Pointers in
384   /// this address space don't have a well-defined bitwise representation.
385   ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
386     return NonIntegralAddressSpaces;
387   }
388 
389   bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
390     ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
391     return is_contained(NonIntegralSpaces, AddrSpace);
392   }
393 
394   bool isNonIntegralPointerType(PointerType *PT) const {
395     return isNonIntegralAddressSpace(PT->getAddressSpace());
396   }
397 
398   bool isNonIntegralPointerType(Type *Ty) const {
399     auto *PTy = dyn_cast<PointerType>(Ty);
400     return PTy && isNonIntegralPointerType(PTy);
401   }
402 
403   /// Layout pointer size, in bits
404   /// FIXME: The defaults need to be removed once all of
405   /// the backends/clients are updated.
406   unsigned getPointerSizeInBits(unsigned AS = 0) const {
407     return getPointerAlignElem(AS).TypeBitWidth;
408   }
409 
410   /// Returns the maximum index size over all address spaces.
411   unsigned getMaxIndexSizeInBits() const {
412     return getMaxIndexSize() * 8;
413   }
414 
415   /// Size in bits of index used for address calculation in getelementptr.
416   unsigned getIndexSizeInBits(unsigned AS) const {
417     return getPointerAlignElem(AS).IndexBitWidth;
418   }
419 
420   /// Layout pointer size, in bits, based on the type.  If this function is
421   /// called with a pointer type, then the type size of the pointer is returned.
422   /// If this function is called with a vector of pointers, then the type size
423   /// of the pointer is returned.  This should only be called with a pointer or
424   /// vector of pointers.
425   unsigned getPointerTypeSizeInBits(Type *) const;
426 
427   /// Layout size of the index used in GEP calculation.
428   /// The function should be called with pointer or vector of pointers type.
429   unsigned getIndexTypeSizeInBits(Type *Ty) const;
430 
431   unsigned getPointerTypeSize(Type *Ty) const {
432     return getPointerTypeSizeInBits(Ty) / 8;
433   }
434 
435   /// Size examples:
436   ///
437   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
438   /// ----        ----------  ---------------  ---------------
439   ///  i1            1           8                8
440   ///  i8            8           8                8
441   ///  i19          19          24               32
442   ///  i32          32          32               32
443   ///  i100        100         104              128
444   ///  i128        128         128              128
445   ///  Float        32          32               32
446   ///  Double       64          64               64
447   ///  X86_FP80     80          80               96
448   ///
449   /// [*] The alloc size depends on the alignment, and thus on the target.
450   ///     These values are for x86-32 linux.
451 
452   /// Returns the number of bits necessary to hold the specified type.
453   ///
454   /// If Ty is a scalable vector type, the scalable property will be set and
455   /// the runtime size will be a positive integer multiple of the base size.
456   ///
457   /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
458   /// have a size (Type::isSized() must return true).
459   TypeSize getTypeSizeInBits(Type *Ty) const;
460 
461   /// Returns the maximum number of bytes that may be overwritten by
462   /// storing the specified type.
463   ///
464   /// If Ty is a scalable vector type, the scalable property will be set and
465   /// the runtime size will be a positive integer multiple of the base size.
466   ///
467   /// For example, returns 5 for i36 and 10 for x86_fp80.
468   TypeSize getTypeStoreSize(Type *Ty) const {
469     TypeSize BaseSize = getTypeSizeInBits(Ty);
470     return {divideCeil(BaseSize.getKnownMinValue(), 8), BaseSize.isScalable()};
471   }
472 
473   /// Returns the maximum number of bits that may be overwritten by
474   /// storing the specified type; always a multiple of 8.
475   ///
476   /// If Ty is a scalable vector type, the scalable property will be set and
477   /// the runtime size will be a positive integer multiple of the base size.
478   ///
479   /// For example, returns 40 for i36 and 80 for x86_fp80.
480   TypeSize getTypeStoreSizeInBits(Type *Ty) const {
481     return 8 * getTypeStoreSize(Ty);
482   }
483 
484   /// Returns true if no extra padding bits are needed when storing the
485   /// specified type.
486   ///
487   /// For example, returns false for i19 that has a 24-bit store size.
488   bool typeSizeEqualsStoreSize(Type *Ty) const {
489     return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
490   }
491 
492   /// Returns the offset in bytes between successive objects of the
493   /// specified type, including alignment padding.
494   ///
495   /// If Ty is a scalable vector type, the scalable property will be set and
496   /// the runtime size will be a positive integer multiple of the base size.
497   ///
498   /// This is the amount that alloca reserves for this type. For example,
499   /// returns 12 or 16 for x86_fp80, depending on alignment.
500   TypeSize getTypeAllocSize(Type *Ty) const {
501     // Round up to the next alignment boundary.
502     return alignTo(getTypeStoreSize(Ty), getABITypeAlign(Ty).value());
503   }
504 
505   /// Returns the offset in bits between successive objects of the
506   /// specified type, including alignment padding; always a multiple of 8.
507   ///
508   /// If Ty is a scalable vector type, the scalable property will be set and
509   /// the runtime size will be a positive integer multiple of the base size.
510   ///
511   /// This is the amount that alloca reserves for this type. For example,
512   /// returns 96 or 128 for x86_fp80, depending on alignment.
513   TypeSize getTypeAllocSizeInBits(Type *Ty) const {
514     return 8 * getTypeAllocSize(Ty);
515   }
516 
517   /// Returns the minimum ABI-required alignment for the specified type.
518   Align getABITypeAlign(Type *Ty) const;
519 
520   /// Helper function to return `Alignment` if it's set or the result of
521   /// `getABITypeAlign(Ty)`, in any case the result is a valid alignment.
522   inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
523                                           Type *Ty) const {
524     return Alignment ? *Alignment : getABITypeAlign(Ty);
525   }
526 
527   /// Returns the minimum ABI-required alignment for an integer type of
528   /// the specified bitwidth.
529   Align getABIIntegerTypeAlignment(unsigned BitWidth) const {
530     return getIntegerAlignment(BitWidth, /* abi_or_pref */ true);
531   }
532 
533   /// Returns the preferred stack/global alignment for the specified
534   /// type.
535   ///
536   /// This is always at least as good as the ABI alignment.
537   /// FIXME: Deprecate this function once migration to Align is over.
538   LLVM_DEPRECATED("use getPrefTypeAlign instead", "getPrefTypeAlign")
539   uint64_t getPrefTypeAlignment(Type *Ty) const;
540 
541   /// Returns the preferred stack/global alignment for the specified
542   /// type.
543   ///
544   /// This is always at least as good as the ABI alignment.
545   Align getPrefTypeAlign(Type *Ty) const;
546 
547   /// Returns an integer type with size at least as big as that of a
548   /// pointer in the given address space.
549   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
550 
551   /// Returns an integer (vector of integer) type with size at least as
552   /// big as that of a pointer of the given pointer (vector of pointer) type.
553   Type *getIntPtrType(Type *) const;
554 
555   /// Returns the smallest integer type with size at least as big as
556   /// Width bits.
557   Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
558 
559   /// Returns the largest legal integer type, or null if none are set.
560   Type *getLargestLegalIntType(LLVMContext &C) const {
561     unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
562     return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
563   }
564 
565   /// Returns the size of largest legal integer type size, or 0 if none
566   /// are set.
567   unsigned getLargestLegalIntTypeSizeInBits() const;
568 
569   /// Returns the type of a GEP index in AddressSpace.
570   /// If it was not specified explicitly, it will be the integer type of the
571   /// pointer width - IntPtrType.
572   IntegerType *getIndexType(LLVMContext &C, unsigned AddressSpace) const;
573 
574   /// Returns the type of a GEP index.
575   /// If it was not specified explicitly, it will be the integer type of the
576   /// pointer width - IntPtrType.
577   Type *getIndexType(Type *PtrTy) const;
578 
579   /// Returns the offset from the beginning of the type for the specified
580   /// indices.
581   ///
582   /// Note that this takes the element type, not the pointer type.
583   /// This is used to implement getelementptr.
584   int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
585 
586   /// Get GEP indices to access Offset inside ElemTy. ElemTy is updated to be
587   /// the result element type and Offset to be the residual offset.
588   SmallVector<APInt> getGEPIndicesForOffset(Type *&ElemTy, APInt &Offset) const;
589 
590   /// Get single GEP index to access Offset inside ElemTy. Returns std::nullopt
591   /// if index cannot be computed, e.g. because the type is not an aggregate.
592   /// ElemTy is updated to be the result element type and Offset to be the
593   /// residual offset.
594   std::optional<APInt> getGEPIndexForOffset(Type *&ElemTy, APInt &Offset) const;
595 
596   /// Returns a StructLayout object, indicating the alignment of the
597   /// struct, its size, and the offsets of its fields.
598   ///
599   /// Note that this information is lazily cached.
600   const StructLayout *getStructLayout(StructType *Ty) const;
601 
602   /// Returns the preferred alignment of the specified global.
603   ///
604   /// This includes an explicitly requested alignment (if the global has one).
605   Align getPreferredAlign(const GlobalVariable *GV) const;
606 };
607 
608 inline DataLayout *unwrap(LLVMTargetDataRef P) {
609   return reinterpret_cast<DataLayout *>(P);
610 }
611 
612 inline LLVMTargetDataRef wrap(const DataLayout *P) {
613   return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
614 }
615 
616 /// Used to lazily calculate structure layout information for a target machine,
617 /// based on the DataLayout structure.
618 class StructLayout final : public TrailingObjects<StructLayout, TypeSize> {
619   TypeSize StructSize;
620   Align StructAlignment;
621   unsigned IsPadded : 1;
622   unsigned NumElements : 31;
623 
624 public:
625   TypeSize getSizeInBytes() const { return StructSize; }
626 
627   TypeSize getSizeInBits() const { return 8 * StructSize; }
628 
629   Align getAlignment() const { return StructAlignment; }
630 
631   /// Returns whether the struct has padding or not between its fields.
632   /// NB: Padding in nested element is not taken into account.
633   bool hasPadding() const { return IsPadded; }
634 
635   /// Given a valid byte offset into the structure, returns the structure
636   /// index that contains it.
637   unsigned getElementContainingOffset(uint64_t FixedOffset) const;
638 
639   MutableArrayRef<TypeSize> getMemberOffsets() {
640     return llvm::MutableArrayRef(getTrailingObjects<TypeSize>(), NumElements);
641   }
642 
643   ArrayRef<TypeSize> getMemberOffsets() const {
644     return llvm::ArrayRef(getTrailingObjects<TypeSize>(), NumElements);
645   }
646 
647   TypeSize getElementOffset(unsigned Idx) const {
648     assert(Idx < NumElements && "Invalid element idx!");
649     return getMemberOffsets()[Idx];
650   }
651 
652   TypeSize getElementOffsetInBits(unsigned Idx) const {
653     return getElementOffset(Idx) * 8;
654   }
655 
656 private:
657   friend class DataLayout; // Only DataLayout can create this class
658 
659   StructLayout(StructType *ST, const DataLayout &DL);
660 
661   size_t numTrailingObjects(OverloadToken<TypeSize>) const {
662     return NumElements;
663   }
664 };
665 
666 // The implementation of this method is provided inline as it is particularly
667 // well suited to constant folding when called on a specific Type subclass.
668 inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
669   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
670   switch (Ty->getTypeID()) {
671   case Type::LabelTyID:
672     return TypeSize::Fixed(getPointerSizeInBits(0));
673   case Type::PointerTyID:
674     return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
675   case Type::ArrayTyID: {
676     ArrayType *ATy = cast<ArrayType>(Ty);
677     return ATy->getNumElements() *
678            getTypeAllocSizeInBits(ATy->getElementType());
679   }
680   case Type::StructTyID:
681     // Get the layout annotation... which is lazily created on demand.
682     return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
683   case Type::IntegerTyID:
684     return TypeSize::Fixed(Ty->getIntegerBitWidth());
685   case Type::HalfTyID:
686   case Type::BFloatTyID:
687     return TypeSize::Fixed(16);
688   case Type::FloatTyID:
689     return TypeSize::Fixed(32);
690   case Type::DoubleTyID:
691   case Type::X86_MMXTyID:
692     return TypeSize::Fixed(64);
693   case Type::PPC_FP128TyID:
694   case Type::FP128TyID:
695     return TypeSize::Fixed(128);
696   case Type::X86_AMXTyID:
697     return TypeSize::Fixed(8192);
698   // In memory objects this is always aligned to a higher boundary, but
699   // only 80 bits contain information.
700   case Type::X86_FP80TyID:
701     return TypeSize::Fixed(80);
702   case Type::FixedVectorTyID:
703   case Type::ScalableVectorTyID: {
704     VectorType *VTy = cast<VectorType>(Ty);
705     auto EltCnt = VTy->getElementCount();
706     uint64_t MinBits = EltCnt.getKnownMinValue() *
707                        getTypeSizeInBits(VTy->getElementType()).getFixedValue();
708     return TypeSize(MinBits, EltCnt.isScalable());
709   }
710   case Type::TargetExtTyID: {
711     Type *LayoutTy = cast<TargetExtType>(Ty)->getLayoutType();
712     return getTypeSizeInBits(LayoutTy);
713   }
714   default:
715     llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
716   }
717 }
718 
719 } // end namespace llvm
720 
721 #endif // LLVM_IR_DATALAYOUT_H
722