1 //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines layout properties related to datatype size/offset/alignment
10 // information.  It uses lazy annotations to cache information about how
11 // structure types are laid out and used.
12 //
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&.  None of the members functions
15 // require modification to the object.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_IR_DATALAYOUT_H
20 #define LLVM_IR_DATALAYOUT_H
21 
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Alignment.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/TrailingObjects.h"
34 #include "llvm/Support/TypeSize.h"
35 #include <cassert>
36 #include <cstdint>
37 #include <string>
38 
39 // This needs to be outside of the namespace, to avoid conflict with llvm-c
40 // decl.
41 using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
42 
43 namespace llvm {
44 
45 class GlobalVariable;
46 class LLVMContext;
47 class Module;
48 class StructLayout;
49 class Triple;
50 class Value;
51 
52 /// Enum used to categorize the alignment types stored by LayoutAlignElem
53 enum AlignTypeEnum {
54   INVALID_ALIGN = 0,
55   INTEGER_ALIGN = 'i',
56   VECTOR_ALIGN = 'v',
57   FLOAT_ALIGN = 'f',
58   AGGREGATE_ALIGN = 'a'
59 };
60 
61 // FIXME: Currently the DataLayout string carries a "preferred alignment"
62 // for types. As the DataLayout is module/global, this should likely be
63 // sunk down to an FTTI element that is queried rather than a global
64 // preference.
65 
66 /// Layout alignment element.
67 ///
68 /// Stores the alignment data associated with a given alignment type (integer,
69 /// vector, float) and type bit width.
70 ///
71 /// \note The unusual order of elements in the structure attempts to reduce
72 /// padding and make the structure slightly more cache friendly.
73 struct LayoutAlignElem {
74   /// Alignment type from \c AlignTypeEnum
75   unsigned AlignType : 8;
76   unsigned TypeBitWidth : 24;
77   Align ABIAlign;
78   Align PrefAlign;
79 
80   static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align,
81                              Align pref_align, uint32_t bit_width);
82 
83   bool operator==(const LayoutAlignElem &rhs) const;
84 };
85 
86 /// Layout pointer alignment element.
87 ///
88 /// Stores the alignment data associated with a given pointer and address space.
89 ///
90 /// \note The unusual order of elements in the structure attempts to reduce
91 /// padding and make the structure slightly more cache friendly.
92 struct PointerAlignElem {
93   Align ABIAlign;
94   Align PrefAlign;
95   uint32_t TypeBitWidth;
96   uint32_t AddressSpace;
97   uint32_t IndexBitWidth;
98 
99   /// Initializer
100   static PointerAlignElem getInBits(uint32_t AddressSpace, Align ABIAlign,
101                                     Align PrefAlign, uint32_t TypeBitWidth,
102                                     uint32_t IndexBitWidth);
103 
104   bool operator==(const PointerAlignElem &rhs) const;
105 };
106 
107 /// A parsed version of the target data layout string in and methods for
108 /// querying it.
109 ///
110 /// The target data layout string is specified *by the target* - a frontend
111 /// generating LLVM IR is required to generate the right target data for the
112 /// target being codegen'd to.
113 class DataLayout {
114 public:
115   enum class FunctionPtrAlignType {
116     /// The function pointer alignment is independent of the function alignment.
117     Independent,
118     /// The function pointer alignment is a multiple of the function alignment.
119     MultipleOfFunctionAlign,
120   };
121 private:
122   /// Defaults to false.
123   bool BigEndian;
124 
125   unsigned AllocaAddrSpace;
126   MaybeAlign StackNaturalAlign;
127   unsigned ProgramAddrSpace;
128   unsigned DefaultGlobalsAddrSpace;
129 
130   MaybeAlign FunctionPtrAlign;
131   FunctionPtrAlignType TheFunctionPtrAlignType;
132 
133   enum ManglingModeT {
134     MM_None,
135     MM_ELF,
136     MM_MachO,
137     MM_WinCOFF,
138     MM_WinCOFFX86,
139     MM_GOFF,
140     MM_Mips,
141     MM_XCOFF
142   };
143   ManglingModeT ManglingMode;
144 
145   SmallVector<unsigned char, 8> LegalIntWidths;
146 
147   /// Primitive type alignment data. This is sorted by type and bit
148   /// width during construction.
149   using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
150   AlignmentsTy Alignments;
151 
152   AlignmentsTy::const_iterator
153   findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
154     return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
155                                                                    BitWidth);
156   }
157 
158   AlignmentsTy::iterator
159   findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
160 
161   /// The string representation used to create this DataLayout
162   std::string StringRepresentation;
163 
164   using PointersTy = SmallVector<PointerAlignElem, 8>;
165   PointersTy Pointers;
166 
167   const PointerAlignElem &getPointerAlignElem(uint32_t AddressSpace) const;
168 
169   // The StructType -> StructLayout map.
170   mutable void *LayoutMap = nullptr;
171 
172   /// Pointers in these address spaces are non-integral, and don't have a
173   /// well-defined bitwise representation.
174   SmallVector<unsigned, 8> NonIntegralAddressSpaces;
175 
176   /// Attempts to set the alignment of the given type. Returns an error
177   /// description on failure.
178   Error setAlignment(AlignTypeEnum align_type, Align abi_align,
179                      Align pref_align, uint32_t bit_width);
180 
181   /// Attempts to set the alignment of a pointer in the given address space.
182   /// Returns an error description on failure.
183   Error setPointerAlignmentInBits(uint32_t AddrSpace, Align ABIAlign,
184                                   Align PrefAlign, uint32_t TypeBitWidth,
185                                   uint32_t IndexBitWidth);
186 
187   /// Internal helper to get alignment for integer of given bitwidth.
188   Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const;
189 
190   /// Internal helper method that returns requested alignment for type.
191   Align getAlignment(Type *Ty, bool abi_or_pref) const;
192 
193   /// Attempts to parse a target data specification string and reports an error
194   /// if the string is malformed.
195   Error parseSpecifier(StringRef Desc);
196 
197   // Free all internal data structures.
198   void clear();
199 
200 public:
201   /// Constructs a DataLayout from a specification string. See reset().
202   explicit DataLayout(StringRef LayoutDescription) {
203     reset(LayoutDescription);
204   }
205 
206   /// Initialize target data from properties stored in the module.
207   explicit DataLayout(const Module *M);
208 
209   DataLayout(const DataLayout &DL) { *this = DL; }
210 
211   ~DataLayout(); // Not virtual, do not subclass this class
212 
213   DataLayout &operator=(const DataLayout &DL) {
214     clear();
215     StringRepresentation = DL.StringRepresentation;
216     BigEndian = DL.isBigEndian();
217     AllocaAddrSpace = DL.AllocaAddrSpace;
218     StackNaturalAlign = DL.StackNaturalAlign;
219     FunctionPtrAlign = DL.FunctionPtrAlign;
220     TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
221     ProgramAddrSpace = DL.ProgramAddrSpace;
222     DefaultGlobalsAddrSpace = DL.DefaultGlobalsAddrSpace;
223     ManglingMode = DL.ManglingMode;
224     LegalIntWidths = DL.LegalIntWidths;
225     Alignments = DL.Alignments;
226     Pointers = DL.Pointers;
227     NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
228     return *this;
229   }
230 
231   bool operator==(const DataLayout &Other) const;
232   bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
233 
234   void init(const Module *M);
235 
236   /// Parse a data layout string (with fallback to default values).
237   void reset(StringRef LayoutDescription);
238 
239   /// Parse a data layout string and return the layout. Return an error
240   /// description on failure.
241   static Expected<DataLayout> parse(StringRef LayoutDescription);
242 
243   /// Layout endianness...
244   bool isLittleEndian() const { return !BigEndian; }
245   bool isBigEndian() const { return BigEndian; }
246 
247   /// Returns the string representation of the DataLayout.
248   ///
249   /// This representation is in the same format accepted by the string
250   /// constructor above. This should not be used to compare two DataLayout as
251   /// different string can represent the same layout.
252   const std::string &getStringRepresentation() const {
253     return StringRepresentation;
254   }
255 
256   /// Test if the DataLayout was constructed from an empty string.
257   bool isDefault() const { return StringRepresentation.empty(); }
258 
259   /// Returns true if the specified type is known to be a native integer
260   /// type supported by the CPU.
261   ///
262   /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
263   /// on any known one. This returns false if the integer width is not legal.
264   ///
265   /// The width is specified in bits.
266   bool isLegalInteger(uint64_t Width) const {
267     return llvm::is_contained(LegalIntWidths, Width);
268   }
269 
270   bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
271 
272   /// Returns true if the given alignment exceeds the natural stack alignment.
273   bool exceedsNaturalStackAlignment(Align Alignment) const {
274     return StackNaturalAlign && (Alignment > *StackNaturalAlign);
275   }
276 
277   Align getStackAlignment() const {
278     assert(StackNaturalAlign && "StackNaturalAlign must be defined");
279     return *StackNaturalAlign;
280   }
281 
282   unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
283 
284   /// Returns the alignment of function pointers, which may or may not be
285   /// related to the alignment of functions.
286   /// \see getFunctionPtrAlignType
287   MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
288 
289   /// Return the type of function pointer alignment.
290   /// \see getFunctionPtrAlign
291   FunctionPtrAlignType getFunctionPtrAlignType() const {
292     return TheFunctionPtrAlignType;
293   }
294 
295   unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
296   unsigned getDefaultGlobalsAddressSpace() const {
297     return DefaultGlobalsAddrSpace;
298   }
299 
300   bool hasMicrosoftFastStdCallMangling() const {
301     return ManglingMode == MM_WinCOFFX86;
302   }
303 
304   /// Returns true if symbols with leading question marks should not receive IR
305   /// mangling. True for Windows mangling modes.
306   bool doNotMangleLeadingQuestionMark() const {
307     return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
308   }
309 
310   bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
311 
312   StringRef getLinkerPrivateGlobalPrefix() const {
313     if (ManglingMode == MM_MachO)
314       return "l";
315     return "";
316   }
317 
318   char getGlobalPrefix() const {
319     switch (ManglingMode) {
320     case MM_None:
321     case MM_ELF:
322     case MM_GOFF:
323     case MM_Mips:
324     case MM_WinCOFF:
325     case MM_XCOFF:
326       return '\0';
327     case MM_MachO:
328     case MM_WinCOFFX86:
329       return '_';
330     }
331     llvm_unreachable("invalid mangling mode");
332   }
333 
334   StringRef getPrivateGlobalPrefix() const {
335     switch (ManglingMode) {
336     case MM_None:
337       return "";
338     case MM_ELF:
339     case MM_WinCOFF:
340       return ".L";
341     case MM_GOFF:
342       return "@";
343     case MM_Mips:
344       return "$";
345     case MM_MachO:
346     case MM_WinCOFFX86:
347       return "L";
348     case MM_XCOFF:
349       return "L..";
350     }
351     llvm_unreachable("invalid mangling mode");
352   }
353 
354   static const char *getManglingComponent(const Triple &T);
355 
356   /// Returns true if the specified type fits in a native integer type
357   /// supported by the CPU.
358   ///
359   /// For example, if the CPU only supports i32 as a native integer type, then
360   /// i27 fits in a legal integer type but i45 does not.
361   bool fitsInLegalInteger(unsigned Width) const {
362     for (unsigned LegalIntWidth : LegalIntWidths)
363       if (Width <= LegalIntWidth)
364         return true;
365     return false;
366   }
367 
368   /// Layout pointer alignment
369   Align getPointerABIAlignment(unsigned AS) const;
370 
371   /// Return target's alignment for stack-based pointers
372   /// FIXME: The defaults need to be removed once all of
373   /// the backends/clients are updated.
374   Align getPointerPrefAlignment(unsigned AS = 0) const;
375 
376   /// Layout pointer size in bytes, rounded up to a whole
377   /// number of bytes.
378   /// FIXME: The defaults need to be removed once all of
379   /// the backends/clients are updated.
380   unsigned getPointerSize(unsigned AS = 0) const;
381 
382   /// Returns the maximum index size over all address spaces.
383   unsigned getMaxIndexSize() const;
384 
385   // Index size in bytes used for address calculation,
386   /// rounded up to a whole number of bytes.
387   unsigned getIndexSize(unsigned AS) const;
388 
389   /// Return the address spaces containing non-integral pointers.  Pointers in
390   /// this address space don't have a well-defined bitwise representation.
391   ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
392     return NonIntegralAddressSpaces;
393   }
394 
395   bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
396     ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
397     return is_contained(NonIntegralSpaces, AddrSpace);
398   }
399 
400   bool isNonIntegralPointerType(PointerType *PT) const {
401     return isNonIntegralAddressSpace(PT->getAddressSpace());
402   }
403 
404   bool isNonIntegralPointerType(Type *Ty) const {
405     auto *PTy = dyn_cast<PointerType>(Ty);
406     return PTy && isNonIntegralPointerType(PTy);
407   }
408 
409   /// Layout pointer size, in bits
410   /// FIXME: The defaults need to be removed once all of
411   /// the backends/clients are updated.
412   unsigned getPointerSizeInBits(unsigned AS = 0) const {
413     return getPointerAlignElem(AS).TypeBitWidth;
414   }
415 
416   /// Returns the maximum index size over all address spaces.
417   unsigned getMaxIndexSizeInBits() const {
418     return getMaxIndexSize() * 8;
419   }
420 
421   /// Size in bits of index used for address calculation in getelementptr.
422   unsigned getIndexSizeInBits(unsigned AS) const {
423     return getPointerAlignElem(AS).IndexBitWidth;
424   }
425 
426   /// Layout pointer size, in bits, based on the type.  If this function is
427   /// called with a pointer type, then the type size of the pointer is returned.
428   /// If this function is called with a vector of pointers, then the type size
429   /// of the pointer is returned.  This should only be called with a pointer or
430   /// vector of pointers.
431   unsigned getPointerTypeSizeInBits(Type *) const;
432 
433   /// Layout size of the index used in GEP calculation.
434   /// The function should be called with pointer or vector of pointers type.
435   unsigned getIndexTypeSizeInBits(Type *Ty) const;
436 
437   unsigned getPointerTypeSize(Type *Ty) const {
438     return getPointerTypeSizeInBits(Ty) / 8;
439   }
440 
441   /// Size examples:
442   ///
443   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
444   /// ----        ----------  ---------------  ---------------
445   ///  i1            1           8                8
446   ///  i8            8           8                8
447   ///  i19          19          24               32
448   ///  i32          32          32               32
449   ///  i100        100         104              128
450   ///  i128        128         128              128
451   ///  Float        32          32               32
452   ///  Double       64          64               64
453   ///  X86_FP80     80          80               96
454   ///
455   /// [*] The alloc size depends on the alignment, and thus on the target.
456   ///     These values are for x86-32 linux.
457 
458   /// Returns the number of bits necessary to hold the specified type.
459   ///
460   /// If Ty is a scalable vector type, the scalable property will be set and
461   /// the runtime size will be a positive integer multiple of the base size.
462   ///
463   /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
464   /// have a size (Type::isSized() must return true).
465   TypeSize getTypeSizeInBits(Type *Ty) const;
466 
467   /// Returns the maximum number of bytes that may be overwritten by
468   /// storing the specified type.
469   ///
470   /// If Ty is a scalable vector type, the scalable property will be set and
471   /// the runtime size will be a positive integer multiple of the base size.
472   ///
473   /// For example, returns 5 for i36 and 10 for x86_fp80.
474   TypeSize getTypeStoreSize(Type *Ty) const {
475     TypeSize BaseSize = getTypeSizeInBits(Ty);
476     return {divideCeil(BaseSize.getKnownMinSize(), 8), BaseSize.isScalable()};
477   }
478 
479   /// Returns the maximum number of bits that may be overwritten by
480   /// storing the specified type; always a multiple of 8.
481   ///
482   /// If Ty is a scalable vector type, the scalable property will be set and
483   /// the runtime size will be a positive integer multiple of the base size.
484   ///
485   /// For example, returns 40 for i36 and 80 for x86_fp80.
486   TypeSize getTypeStoreSizeInBits(Type *Ty) const {
487     return 8 * getTypeStoreSize(Ty);
488   }
489 
490   /// Returns true if no extra padding bits are needed when storing the
491   /// specified type.
492   ///
493   /// For example, returns false for i19 that has a 24-bit store size.
494   bool typeSizeEqualsStoreSize(Type *Ty) const {
495     return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
496   }
497 
498   /// Returns the offset in bytes between successive objects of the
499   /// specified type, including alignment padding.
500   ///
501   /// If Ty is a scalable vector type, the scalable property will be set and
502   /// the runtime size will be a positive integer multiple of the base size.
503   ///
504   /// This is the amount that alloca reserves for this type. For example,
505   /// returns 12 or 16 for x86_fp80, depending on alignment.
506   TypeSize getTypeAllocSize(Type *Ty) const {
507     // Round up to the next alignment boundary.
508     return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
509   }
510 
511   /// Returns the offset in bits between successive objects of the
512   /// specified type, including alignment padding; always a multiple of 8.
513   ///
514   /// If Ty is a scalable vector type, the scalable property will be set and
515   /// the runtime size will be a positive integer multiple of the base size.
516   ///
517   /// This is the amount that alloca reserves for this type. For example,
518   /// returns 96 or 128 for x86_fp80, depending on alignment.
519   TypeSize getTypeAllocSizeInBits(Type *Ty) const {
520     return 8 * getTypeAllocSize(Ty);
521   }
522 
523   /// Returns the minimum ABI-required alignment for the specified type.
524   /// FIXME: Deprecate this function once migration to Align is over.
525   uint64_t getABITypeAlignment(Type *Ty) const;
526 
527   /// Returns the minimum ABI-required alignment for the specified type.
528   Align getABITypeAlign(Type *Ty) const;
529 
530   /// Helper function to return `Alignment` if it's set or the result of
531   /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
532   inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
533                                           Type *Ty) const {
534     return Alignment ? *Alignment : getABITypeAlign(Ty);
535   }
536 
537   /// Returns the minimum ABI-required alignment for an integer type of
538   /// the specified bitwidth.
539   Align getABIIntegerTypeAlignment(unsigned BitWidth) const {
540     return getIntegerAlignment(BitWidth, /* abi_or_pref */ true);
541   }
542 
543   /// Returns the preferred stack/global alignment for the specified
544   /// type.
545   ///
546   /// This is always at least as good as the ABI alignment.
547   /// FIXME: Deprecate this function once migration to Align is over.
548   uint64_t getPrefTypeAlignment(Type *Ty) const;
549 
550   /// Returns the preferred stack/global alignment for the specified
551   /// type.
552   ///
553   /// This is always at least as good as the ABI alignment.
554   Align getPrefTypeAlign(Type *Ty) const;
555 
556   /// Returns an integer type with size at least as big as that of a
557   /// pointer in the given address space.
558   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
559 
560   /// Returns an integer (vector of integer) type with size at least as
561   /// big as that of a pointer of the given pointer (vector of pointer) type.
562   Type *getIntPtrType(Type *) const;
563 
564   /// Returns the smallest integer type with size at least as big as
565   /// Width bits.
566   Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
567 
568   /// Returns the largest legal integer type, or null if none are set.
569   Type *getLargestLegalIntType(LLVMContext &C) const {
570     unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
571     return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
572   }
573 
574   /// Returns the size of largest legal integer type size, or 0 if none
575   /// are set.
576   unsigned getLargestLegalIntTypeSizeInBits() const;
577 
578   /// Returns the type of a GEP index.
579   /// If it was not specified explicitly, it will be the integer type of the
580   /// pointer width - IntPtrType.
581   Type *getIndexType(Type *PtrTy) const;
582 
583   /// Returns the offset from the beginning of the type for the specified
584   /// indices.
585   ///
586   /// Note that this takes the element type, not the pointer type.
587   /// This is used to implement getelementptr.
588   int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
589 
590   /// Get GEP indices to access Offset inside ElemTy. ElemTy is updated to be
591   /// the result element type and Offset to be the residual offset.
592   SmallVector<APInt> getGEPIndicesForOffset(Type *&ElemTy, APInt &Offset) const;
593 
594   /// Get single GEP index to access Offset inside ElemTy. Returns None if
595   /// index cannot be computed, e.g. because the type is not an aggregate.
596   /// ElemTy is updated to be the result element type and Offset to be the
597   /// residual offset.
598   Optional<APInt> getGEPIndexForOffset(Type *&ElemTy, APInt &Offset) const;
599 
600   /// Returns a StructLayout object, indicating the alignment of the
601   /// struct, its size, and the offsets of its fields.
602   ///
603   /// Note that this information is lazily cached.
604   const StructLayout *getStructLayout(StructType *Ty) const;
605 
606   /// Returns the preferred alignment of the specified global.
607   ///
608   /// This includes an explicitly requested alignment (if the global has one).
609   Align getPreferredAlign(const GlobalVariable *GV) const;
610 };
611 
612 inline DataLayout *unwrap(LLVMTargetDataRef P) {
613   return reinterpret_cast<DataLayout *>(P);
614 }
615 
616 inline LLVMTargetDataRef wrap(const DataLayout *P) {
617   return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
618 }
619 
620 /// Used to lazily calculate structure layout information for a target machine,
621 /// based on the DataLayout structure.
622 class StructLayout final : public TrailingObjects<StructLayout, uint64_t> {
623   uint64_t StructSize;
624   Align StructAlignment;
625   unsigned IsPadded : 1;
626   unsigned NumElements : 31;
627 
628 public:
629   uint64_t getSizeInBytes() const { return StructSize; }
630 
631   uint64_t getSizeInBits() const { return 8 * StructSize; }
632 
633   Align getAlignment() const { return StructAlignment; }
634 
635   /// Returns whether the struct has padding or not between its fields.
636   /// NB: Padding in nested element is not taken into account.
637   bool hasPadding() const { return IsPadded; }
638 
639   /// Given a valid byte offset into the structure, returns the structure
640   /// index that contains it.
641   unsigned getElementContainingOffset(uint64_t Offset) const;
642 
643   MutableArrayRef<uint64_t> getMemberOffsets() {
644     return llvm::makeMutableArrayRef(getTrailingObjects<uint64_t>(),
645                                      NumElements);
646   }
647 
648   ArrayRef<uint64_t> getMemberOffsets() const {
649     return llvm::makeArrayRef(getTrailingObjects<uint64_t>(), NumElements);
650   }
651 
652   uint64_t getElementOffset(unsigned Idx) const {
653     assert(Idx < NumElements && "Invalid element idx!");
654     return getMemberOffsets()[Idx];
655   }
656 
657   uint64_t getElementOffsetInBits(unsigned Idx) const {
658     return getElementOffset(Idx) * 8;
659   }
660 
661 private:
662   friend class DataLayout; // Only DataLayout can create this class
663 
664   StructLayout(StructType *ST, const DataLayout &DL);
665 
666   size_t numTrailingObjects(OverloadToken<uint64_t>) const {
667     return NumElements;
668   }
669 };
670 
671 // The implementation of this method is provided inline as it is particularly
672 // well suited to constant folding when called on a specific Type subclass.
673 inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
674   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
675   switch (Ty->getTypeID()) {
676   case Type::LabelTyID:
677     return TypeSize::Fixed(getPointerSizeInBits(0));
678   case Type::PointerTyID:
679     return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
680   case Type::ArrayTyID: {
681     ArrayType *ATy = cast<ArrayType>(Ty);
682     return ATy->getNumElements() *
683            getTypeAllocSizeInBits(ATy->getElementType());
684   }
685   case Type::StructTyID:
686     // Get the layout annotation... which is lazily created on demand.
687     return TypeSize::Fixed(
688                         getStructLayout(cast<StructType>(Ty))->getSizeInBits());
689   case Type::IntegerTyID:
690     return TypeSize::Fixed(Ty->getIntegerBitWidth());
691   case Type::HalfTyID:
692   case Type::BFloatTyID:
693     return TypeSize::Fixed(16);
694   case Type::FloatTyID:
695     return TypeSize::Fixed(32);
696   case Type::DoubleTyID:
697   case Type::X86_MMXTyID:
698     return TypeSize::Fixed(64);
699   case Type::PPC_FP128TyID:
700   case Type::FP128TyID:
701     return TypeSize::Fixed(128);
702   case Type::X86_AMXTyID:
703     return TypeSize::Fixed(8192);
704   // In memory objects this is always aligned to a higher boundary, but
705   // only 80 bits contain information.
706   case Type::X86_FP80TyID:
707     return TypeSize::Fixed(80);
708   case Type::FixedVectorTyID:
709   case Type::ScalableVectorTyID: {
710     VectorType *VTy = cast<VectorType>(Ty);
711     auto EltCnt = VTy->getElementCount();
712     uint64_t MinBits = EltCnt.getKnownMinValue() *
713                        getTypeSizeInBits(VTy->getElementType()).getFixedSize();
714     return TypeSize(MinBits, EltCnt.isScalable());
715   }
716   default:
717     llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
718   }
719 }
720 
721 } // end namespace llvm
722 
723 #endif // LLVM_IR_DATALAYOUT_H
724