1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declarations of classes that represent "derived
10 // types".  These are things like "arrays of x" or "structure of x, y, z" or
11 // "function returning x taking (y,z) as parameters", etc...
12 //
13 // The implementations of these classes live in the Type.cpp file.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_IR_DERIVEDTYPES_H
18 #define LLVM_IR_DERIVEDTYPES_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/TypeSize.h"
27 #include <cassert>
28 #include <cstdint>
29 
30 namespace llvm {
31 
32 class Value;
33 class APInt;
34 class LLVMContext;
35 
36 /// Class to represent integer types. Note that this class is also used to
37 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38 /// Int64Ty.
39 /// Integer representation type
40 class IntegerType : public Type {
41   friend class LLVMContextImpl;
42 
43 protected:
44   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45     setSubclassData(NumBits);
46   }
47 
48 public:
49   /// This enum is just used to hold constants we need for IntegerType.
50   enum {
51     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
52     MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
53       ///< Note that bit width is stored in the Type classes SubclassData field
54       ///< which has 24 bits. This yields a maximum bit width of 16,777,215
55       ///< bits.
56   };
57 
58   /// This static method is the primary way of constructing an IntegerType.
59   /// If an IntegerType with the same NumBits value was previously instantiated,
60   /// that instance will be returned. Otherwise a new one will be created. Only
61   /// one instance with a given NumBits value is ever created.
62   /// Get or create an IntegerType instance.
63   static IntegerType *get(LLVMContext &C, unsigned NumBits);
64 
65   /// Returns type twice as wide the input type.
66   IntegerType *getExtendedType() const {
67     return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
68   }
69 
70   /// Get the number of bits in this IntegerType
71   unsigned getBitWidth() const { return getSubclassData(); }
72 
73   /// Return a bitmask with ones set for all of the bits that can be set by an
74   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
75   uint64_t getBitMask() const {
76     return ~uint64_t(0UL) >> (64-getBitWidth());
77   }
78 
79   /// Return a uint64_t with just the most significant bit set (the sign bit, if
80   /// the value is treated as a signed number).
81   uint64_t getSignBit() const {
82     return 1ULL << (getBitWidth()-1);
83   }
84 
85   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
86   /// @returns a bit mask with ones set for all the bits of this type.
87   /// Get a bit mask for this type.
88   APInt getMask() const;
89 
90   /// This method determines if the width of this IntegerType is a power-of-2
91   /// in terms of 8 bit bytes.
92   /// @returns true if this is a power-of-2 byte width.
93   /// Is this a power-of-2 byte-width IntegerType ?
94   bool isPowerOf2ByteWidth() const;
95 
96   /// Methods for support type inquiry through isa, cast, and dyn_cast.
97   static bool classof(const Type *T) {
98     return T->getTypeID() == IntegerTyID;
99   }
100 };
101 
102 unsigned Type::getIntegerBitWidth() const {
103   return cast<IntegerType>(this)->getBitWidth();
104 }
105 
106 /// Class to represent function types
107 ///
108 class FunctionType : public Type {
109   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
110 
111 public:
112   FunctionType(const FunctionType &) = delete;
113   FunctionType &operator=(const FunctionType &) = delete;
114 
115   /// This static method is the primary way of constructing a FunctionType.
116   static FunctionType *get(Type *Result,
117                            ArrayRef<Type*> Params, bool isVarArg);
118 
119   /// Create a FunctionType taking no parameters.
120   static FunctionType *get(Type *Result, bool isVarArg);
121 
122   /// Return true if the specified type is valid as a return type.
123   static bool isValidReturnType(Type *RetTy);
124 
125   /// Return true if the specified type is valid as an argument type.
126   static bool isValidArgumentType(Type *ArgTy);
127 
128   bool isVarArg() const { return getSubclassData()!=0; }
129   Type *getReturnType() const { return ContainedTys[0]; }
130 
131   using param_iterator = Type::subtype_iterator;
132 
133   param_iterator param_begin() const { return ContainedTys + 1; }
134   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
135   ArrayRef<Type *> params() const {
136     return makeArrayRef(param_begin(), param_end());
137   }
138 
139   /// Parameter type accessors.
140   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
141 
142   /// Return the number of fixed parameters this function type requires.
143   /// This does not consider varargs.
144   unsigned getNumParams() const { return NumContainedTys - 1; }
145 
146   /// Methods for support type inquiry through isa, cast, and dyn_cast.
147   static bool classof(const Type *T) {
148     return T->getTypeID() == FunctionTyID;
149   }
150 };
151 static_assert(alignof(FunctionType) >= alignof(Type *),
152               "Alignment sufficient for objects appended to FunctionType");
153 
154 bool Type::isFunctionVarArg() const {
155   return cast<FunctionType>(this)->isVarArg();
156 }
157 
158 Type *Type::getFunctionParamType(unsigned i) const {
159   return cast<FunctionType>(this)->getParamType(i);
160 }
161 
162 unsigned Type::getFunctionNumParams() const {
163   return cast<FunctionType>(this)->getNumParams();
164 }
165 
166 /// A handy container for a FunctionType+Callee-pointer pair, which can be
167 /// passed around as a single entity. This assists in replacing the use of
168 /// PointerType::getElementType() to access the function's type, since that's
169 /// slated for removal as part of the [opaque pointer types] project.
170 class FunctionCallee {
171 public:
172   // Allow implicit conversion from types which have a getFunctionType member
173   // (e.g. Function and InlineAsm).
174   template <typename T, typename U = decltype(&T::getFunctionType)>
175   FunctionCallee(T *Fn)
176       : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
177 
178   FunctionCallee(FunctionType *FnTy, Value *Callee)
179       : FnTy(FnTy), Callee(Callee) {
180     assert((FnTy == nullptr) == (Callee == nullptr));
181   }
182 
183   FunctionCallee(std::nullptr_t) {}
184 
185   FunctionCallee() = default;
186 
187   FunctionType *getFunctionType() { return FnTy; }
188 
189   Value *getCallee() { return Callee; }
190 
191   explicit operator bool() { return Callee; }
192 
193 private:
194   FunctionType *FnTy = nullptr;
195   Value *Callee = nullptr;
196 };
197 
198 /// Common super class of ArrayType, StructType and VectorType.
199 class CompositeType : public Type {
200 protected:
201   explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
202 
203 public:
204   /// Given an index value into the type, return the type of the element.
205   Type *getTypeAtIndex(const Value *V) const;
206   Type *getTypeAtIndex(unsigned Idx) const;
207   bool indexValid(const Value *V) const;
208   bool indexValid(unsigned Idx) const;
209 
210   /// Methods for support type inquiry through isa, cast, and dyn_cast.
211   static bool classof(const Type *T) {
212     return T->getTypeID() == ArrayTyID ||
213            T->getTypeID() == StructTyID ||
214            T->getTypeID() == VectorTyID;
215   }
216 };
217 
218 /// Class to represent struct types. There are two different kinds of struct
219 /// types: Literal structs and Identified structs.
220 ///
221 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
222 /// always have a body when created.  You can get one of these by using one of
223 /// the StructType::get() forms.
224 ///
225 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
226 /// uniqued.  The names for identified structs are managed at the LLVMContext
227 /// level, so there can only be a single identified struct with a given name in
228 /// a particular LLVMContext.  Identified structs may also optionally be opaque
229 /// (have no body specified).  You get one of these by using one of the
230 /// StructType::create() forms.
231 ///
232 /// Independent of what kind of struct you have, the body of a struct type are
233 /// laid out in memory consecutively with the elements directly one after the
234 /// other (if the struct is packed) or (if not packed) with padding between the
235 /// elements as defined by DataLayout (which is required to match what the code
236 /// generator for a target expects).
237 ///
238 class StructType : public CompositeType {
239   StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
240 
241   enum {
242     /// This is the contents of the SubClassData field.
243     SCDB_HasBody = 1,
244     SCDB_Packed = 2,
245     SCDB_IsLiteral = 4,
246     SCDB_IsSized = 8
247   };
248 
249   /// For a named struct that actually has a name, this is a pointer to the
250   /// symbol table entry (maintained by LLVMContext) for the struct.
251   /// This is null if the type is an literal struct or if it is a identified
252   /// type that has an empty name.
253   void *SymbolTableEntry = nullptr;
254 
255 public:
256   StructType(const StructType &) = delete;
257   StructType &operator=(const StructType &) = delete;
258 
259   /// This creates an identified struct.
260   static StructType *create(LLVMContext &Context, StringRef Name);
261   static StructType *create(LLVMContext &Context);
262 
263   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
264                             bool isPacked = false);
265   static StructType *create(ArrayRef<Type *> Elements);
266   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
267                             StringRef Name, bool isPacked = false);
268   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
269   template <class... Tys>
270   static typename std::enable_if<are_base_of<Type, Tys...>::value,
271                                  StructType *>::type
272   create(StringRef Name, Type *elt1, Tys *... elts) {
273     assert(elt1 && "Cannot create a struct type with no elements with this");
274     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
275     return create(StructFields, Name);
276   }
277 
278   /// This static method is the primary way to create a literal StructType.
279   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
280                          bool isPacked = false);
281 
282   /// Create an empty structure type.
283   static StructType *get(LLVMContext &Context, bool isPacked = false);
284 
285   /// This static method is a convenience method for creating structure types by
286   /// specifying the elements as arguments. Note that this method always returns
287   /// a non-packed struct, and requires at least one element type.
288   template <class... Tys>
289   static typename std::enable_if<are_base_of<Type, Tys...>::value,
290                                  StructType *>::type
291   get(Type *elt1, Tys *... elts) {
292     assert(elt1 && "Cannot create a struct type with no elements with this");
293     LLVMContext &Ctx = elt1->getContext();
294     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
295     return llvm::StructType::get(Ctx, StructFields);
296   }
297 
298   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
299 
300   /// Return true if this type is uniqued by structural equivalence, false if it
301   /// is a struct definition.
302   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
303 
304   /// Return true if this is a type with an identity that has no body specified
305   /// yet. These prints as 'opaque' in .ll files.
306   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
307 
308   /// isSized - Return true if this is a sized type.
309   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
310 
311   /// Return true if this is a named struct that has a non-empty name.
312   bool hasName() const { return SymbolTableEntry != nullptr; }
313 
314   /// Return the name for this struct type if it has an identity.
315   /// This may return an empty string for an unnamed struct type.  Do not call
316   /// this on an literal type.
317   StringRef getName() const;
318 
319   /// Change the name of this type to the specified name, or to a name with a
320   /// suffix if there is a collision. Do not call this on an literal type.
321   void setName(StringRef Name);
322 
323   /// Specify a body for an opaque identified type.
324   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
325 
326   template <typename... Tys>
327   typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
328   setBody(Type *elt1, Tys *... elts) {
329     assert(elt1 && "Cannot create a struct type with no elements with this");
330     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
331     setBody(StructFields);
332   }
333 
334   /// Return true if the specified type is valid as a element type.
335   static bool isValidElementType(Type *ElemTy);
336 
337   // Iterator access to the elements.
338   using element_iterator = Type::subtype_iterator;
339 
340   element_iterator element_begin() const { return ContainedTys; }
341   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
342   ArrayRef<Type *> const elements() const {
343     return makeArrayRef(element_begin(), element_end());
344   }
345 
346   /// Return true if this is layout identical to the specified struct.
347   bool isLayoutIdentical(StructType *Other) const;
348 
349   /// Random access to the elements
350   unsigned getNumElements() const { return NumContainedTys; }
351   Type *getElementType(unsigned N) const {
352     assert(N < NumContainedTys && "Element number out of range!");
353     return ContainedTys[N];
354   }
355 
356   /// Methods for support type inquiry through isa, cast, and dyn_cast.
357   static bool classof(const Type *T) {
358     return T->getTypeID() == StructTyID;
359   }
360 };
361 
362 StringRef Type::getStructName() const {
363   return cast<StructType>(this)->getName();
364 }
365 
366 unsigned Type::getStructNumElements() const {
367   return cast<StructType>(this)->getNumElements();
368 }
369 
370 Type *Type::getStructElementType(unsigned N) const {
371   return cast<StructType>(this)->getElementType(N);
372 }
373 
374 /// This is the superclass of the array and vector type classes. Both of these
375 /// represent "arrays" in memory. The array type represents a specifically sized
376 /// array, and the vector type represents a specifically sized array that allows
377 /// for use of SIMD instructions. SequentialType holds the common features of
378 /// both, which stem from the fact that both lay their components out in memory
379 /// identically.
380 class SequentialType : public CompositeType {
381   Type *ContainedType;               ///< Storage for the single contained type.
382   uint64_t NumElements;
383 
384 protected:
385   SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
386     : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
387       NumElements(NumElements) {
388     ContainedTys = &ContainedType;
389     NumContainedTys = 1;
390   }
391 
392 public:
393   SequentialType(const SequentialType &) = delete;
394   SequentialType &operator=(const SequentialType &) = delete;
395 
396   /// For scalable vectors, this will return the minimum number of elements
397   /// in the vector.
398   uint64_t getNumElements() const { return NumElements; }
399   Type *getElementType() const { return ContainedType; }
400 
401   /// Methods for support type inquiry through isa, cast, and dyn_cast.
402   static bool classof(const Type *T) {
403     return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
404   }
405 };
406 
407 /// Class to represent array types.
408 class ArrayType : public SequentialType {
409   ArrayType(Type *ElType, uint64_t NumEl);
410 
411 public:
412   ArrayType(const ArrayType &) = delete;
413   ArrayType &operator=(const ArrayType &) = delete;
414 
415   /// This static method is the primary way to construct an ArrayType
416   static ArrayType *get(Type *ElementType, uint64_t NumElements);
417 
418   /// Return true if the specified type is valid as a element type.
419   static bool isValidElementType(Type *ElemTy);
420 
421   /// Methods for support type inquiry through isa, cast, and dyn_cast.
422   static bool classof(const Type *T) {
423     return T->getTypeID() == ArrayTyID;
424   }
425 };
426 
427 uint64_t Type::getArrayNumElements() const {
428   return cast<ArrayType>(this)->getNumElements();
429 }
430 
431 /// Class to represent vector types.
432 class VectorType : public SequentialType {
433   /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
434   /// minimum number of elements of type Ty contained within the vector, and
435   /// 'vscale x' indicates that the total element count is an integer multiple
436   /// of 'n', where the multiple is either guaranteed to be one, or is
437   /// statically unknown at compile time.
438   ///
439   /// If the multiple is known to be 1, then the extra term is discarded in
440   /// textual IR:
441   ///
442   /// <4 x i32>          - a vector containing 4 i32s
443   /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
444   ///                      of 4 i32s
445 
446   VectorType(Type *ElType, unsigned NumEl, bool Scalable = false);
447   VectorType(Type *ElType, ElementCount EC);
448 
449   // If true, the total number of elements is an unknown multiple of the
450   // minimum 'NumElements' from SequentialType. Otherwise the total number
451   // of elements is exactly equal to 'NumElements'.
452   bool Scalable;
453 
454 public:
455   VectorType(const VectorType &) = delete;
456   VectorType &operator=(const VectorType &) = delete;
457 
458   /// This static method is the primary way to construct an VectorType.
459   static VectorType *get(Type *ElementType, ElementCount EC);
460   static VectorType *get(Type *ElementType, unsigned NumElements,
461                          bool Scalable = false) {
462     return VectorType::get(ElementType, {NumElements, Scalable});
463   }
464 
465   /// This static method gets a VectorType with the same number of elements as
466   /// the input type, and the element type is an integer type of the same width
467   /// as the input element type.
468   static VectorType *getInteger(VectorType *VTy) {
469     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
470     assert(EltBits && "Element size must be of a non-zero size");
471     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
472     return VectorType::get(EltTy, VTy->getElementCount());
473   }
474 
475   /// This static method is like getInteger except that the element types are
476   /// twice as wide as the elements in the input type.
477   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
478     assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
479     auto *EltTy = cast<IntegerType>(VTy->getElementType());
480     return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
481   }
482 
483   // This static method gets a VectorType with the same number of elements as
484   // the input type, and the element type is an integer or float type which
485   // is half as wide as the elements in the input type.
486   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
487     Type *EltTy;
488     if (VTy->getElementType()->isFloatingPointTy()) {
489       switch(VTy->getElementType()->getTypeID()) {
490       case DoubleTyID:
491         EltTy = Type::getFloatTy(VTy->getContext());
492         break;
493       case FloatTyID:
494         EltTy = Type::getHalfTy(VTy->getContext());
495         break;
496       default:
497         llvm_unreachable("Cannot create narrower fp vector element type");
498       }
499     } else {
500       unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
501       assert((EltBits & 1) == 0 &&
502              "Cannot truncate vector element with odd bit-width");
503       EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
504     }
505     return VectorType::get(EltTy, VTy->getElementCount());
506   }
507 
508   // This static method returns a VectorType with a smaller number of elements
509   // of a larger type than the input element type. For example, a <16 x i8>
510   // subdivided twice would return <4 x i32>
511   static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
512     for (int i = 0; i < NumSubdivs; ++i) {
513       VTy = VectorType::getDoubleElementsVectorType(VTy);
514       VTy = VectorType::getTruncatedElementVectorType(VTy);
515     }
516     return VTy;
517   }
518 
519   /// This static method returns a VectorType with half as many elements as the
520   /// input type and the same element type.
521   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
522     auto EltCnt = VTy->getElementCount();
523     assert ((EltCnt.Min & 1) == 0 &&
524             "Cannot halve vector with odd number of elements.");
525     return VectorType::get(VTy->getElementType(), EltCnt/2);
526   }
527 
528   /// This static method returns a VectorType with twice as many elements as the
529   /// input type and the same element type.
530   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
531     auto EltCnt = VTy->getElementCount();
532     assert((VTy->getNumElements() * 2ull) <= UINT_MAX &&
533            "Too many elements in vector");
534     return VectorType::get(VTy->getElementType(), EltCnt*2);
535   }
536 
537   /// Return true if the specified type is valid as a element type.
538   static bool isValidElementType(Type *ElemTy);
539 
540   /// Return an ElementCount instance to represent the (possibly scalable)
541   /// number of elements in the vector.
542   ElementCount getElementCount() const {
543     uint64_t MinimumEltCnt = getNumElements();
544     assert(MinimumEltCnt <= UINT_MAX && "Too many elements in vector");
545     return { (unsigned)MinimumEltCnt, Scalable };
546   }
547 
548   /// Returns whether or not this is a scalable vector (meaning the total
549   /// element count is a multiple of the minimum).
550   bool isScalable() const {
551     return Scalable;
552   }
553 
554   /// Return the minimum number of bits in the Vector type.
555   /// Returns zero when the vector is a vector of pointers.
556   unsigned getBitWidth() const {
557     return getNumElements() * getElementType()->getPrimitiveSizeInBits();
558   }
559 
560   /// Methods for support type inquiry through isa, cast, and dyn_cast.
561   static bool classof(const Type *T) {
562     return T->getTypeID() == VectorTyID;
563   }
564 };
565 
566 unsigned Type::getVectorNumElements() const {
567   return cast<VectorType>(this)->getNumElements();
568 }
569 
570 bool Type::getVectorIsScalable() const {
571   return cast<VectorType>(this)->isScalable();
572 }
573 
574 ElementCount Type::getVectorElementCount() const {
575   return cast<VectorType>(this)->getElementCount();
576 }
577 
578 /// Class to represent pointers.
579 class PointerType : public Type {
580   explicit PointerType(Type *ElType, unsigned AddrSpace);
581 
582   Type *PointeeTy;
583 
584 public:
585   PointerType(const PointerType &) = delete;
586   PointerType &operator=(const PointerType &) = delete;
587 
588   /// This constructs a pointer to an object of the specified type in a numbered
589   /// address space.
590   static PointerType *get(Type *ElementType, unsigned AddressSpace);
591 
592   /// This constructs a pointer to an object of the specified type in the
593   /// generic address space (address space zero).
594   static PointerType *getUnqual(Type *ElementType) {
595     return PointerType::get(ElementType, 0);
596   }
597 
598   Type *getElementType() const { return PointeeTy; }
599 
600   /// Return true if the specified type is valid as a element type.
601   static bool isValidElementType(Type *ElemTy);
602 
603   /// Return true if we can load or store from a pointer to this type.
604   static bool isLoadableOrStorableType(Type *ElemTy);
605 
606   /// Return the address space of the Pointer type.
607   inline unsigned getAddressSpace() const { return getSubclassData(); }
608 
609   /// Implement support type inquiry through isa, cast, and dyn_cast.
610   static bool classof(const Type *T) {
611     return T->getTypeID() == PointerTyID;
612   }
613 };
614 
615 Type *Type::getExtendedType() const {
616   assert(
617       isIntOrIntVectorTy() &&
618       "Original type expected to be a vector of integers or a scalar integer.");
619   if (auto *VTy = dyn_cast<VectorType>(this))
620     return VectorType::getExtendedElementVectorType(
621         const_cast<VectorType *>(VTy));
622   return cast<IntegerType>(this)->getExtendedType();
623 }
624 
625 Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
626   assert(
627       isIntOrIntVectorTy() &&
628       "Original type expected to be a vector of integers or a scalar integer.");
629   Type *NewType = getIntNTy(getContext(), NewBitWidth);
630   if (isVectorTy())
631     NewType = VectorType::get(NewType, getVectorElementCount());
632   return NewType;
633 }
634 
635 unsigned Type::getPointerAddressSpace() const {
636   return cast<PointerType>(getScalarType())->getAddressSpace();
637 }
638 
639 } // end namespace llvm
640 
641 #endif // LLVM_IR_DERIVEDTYPES_H
642