1 //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Instruction class, which is the
10 // base class for all of the LLVM instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_INSTRUCTION_H
15 #define LLVM_IR_INSTRUCTION_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/ilist_node.h"
21 #include "llvm/IR/DebugLoc.h"
22 #include "llvm/IR/SymbolTableListTraits.h"
23 #include "llvm/IR/User.h"
24 #include "llvm/IR/Value.h"
25 #include "llvm/Support/Casting.h"
26 #include <algorithm>
27 #include <cassert>
28 #include <cstdint>
29 #include <utility>
30 
31 namespace llvm {
32 
33 class BasicBlock;
34 class FastMathFlags;
35 class MDNode;
36 class Module;
37 struct AAMDNodes;
38 
39 template <> struct ilist_alloc_traits<Instruction> {
40   static inline void deleteNode(Instruction *V);
41 };
42 
43 class Instruction : public User,
44                     public ilist_node_with_parent<Instruction, BasicBlock> {
45   BasicBlock *Parent;
46   DebugLoc DbgLoc;                         // 'dbg' Metadata cache.
47 
48   enum {
49     /// This is a bit stored in the SubClassData field which indicates whether
50     /// this instruction has metadata attached to it or not.
51     HasMetadataBit = 1 << 15
52   };
53 
54 protected:
55   ~Instruction(); // Use deleteValue() to delete a generic Instruction.
56 
57 public:
58   Instruction(const Instruction &) = delete;
59   Instruction &operator=(const Instruction &) = delete;
60 
61   /// Specialize the methods defined in Value, as we know that an instruction
62   /// can only be used by other instructions.
63   Instruction       *user_back()       { return cast<Instruction>(*user_begin());}
64   const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
65 
66   inline const BasicBlock *getParent() const { return Parent; }
67   inline       BasicBlock *getParent()       { return Parent; }
68 
69   /// Return the module owning the function this instruction belongs to
70   /// or nullptr it the function does not have a module.
71   ///
72   /// Note: this is undefined behavior if the instruction does not have a
73   /// parent, or the parent basic block does not have a parent function.
74   const Module *getModule() const;
75   Module *getModule() {
76     return const_cast<Module *>(
77                            static_cast<const Instruction *>(this)->getModule());
78   }
79 
80   /// Return the function this instruction belongs to.
81   ///
82   /// Note: it is undefined behavior to call this on an instruction not
83   /// currently inserted into a function.
84   const Function *getFunction() const;
85   Function *getFunction() {
86     return const_cast<Function *>(
87                          static_cast<const Instruction *>(this)->getFunction());
88   }
89 
90   /// This method unlinks 'this' from the containing basic block, but does not
91   /// delete it.
92   void removeFromParent();
93 
94   /// This method unlinks 'this' from the containing basic block and deletes it.
95   ///
96   /// \returns an iterator pointing to the element after the erased one
97   SymbolTableList<Instruction>::iterator eraseFromParent();
98 
99   /// Insert an unlinked instruction into a basic block immediately before
100   /// the specified instruction.
101   void insertBefore(Instruction *InsertPos);
102 
103   /// Insert an unlinked instruction into a basic block immediately after the
104   /// specified instruction.
105   void insertAfter(Instruction *InsertPos);
106 
107   /// Unlink this instruction from its current basic block and insert it into
108   /// the basic block that MovePos lives in, right before MovePos.
109   void moveBefore(Instruction *MovePos);
110 
111   /// Unlink this instruction and insert into BB before I.
112   ///
113   /// \pre I is a valid iterator into BB.
114   void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
115 
116   /// Unlink this instruction from its current basic block and insert it into
117   /// the basic block that MovePos lives in, right after MovePos.
118   void moveAfter(Instruction *MovePos);
119 
120   //===--------------------------------------------------------------------===//
121   // Subclass classification.
122   //===--------------------------------------------------------------------===//
123 
124   /// Returns a member of one of the enums like Instruction::Add.
125   unsigned getOpcode() const { return getValueID() - InstructionVal; }
126 
127   const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
128   bool isTerminator() const { return isTerminator(getOpcode()); }
129   bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
130   bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
131   bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
132   bool isShift() const { return isShift(getOpcode()); }
133   bool isCast() const { return isCast(getOpcode()); }
134   bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
135   bool isExceptionalTerminator() const {
136     return isExceptionalTerminator(getOpcode());
137   }
138   bool isIndirectTerminator() const {
139     return isIndirectTerminator(getOpcode());
140   }
141 
142   static const char* getOpcodeName(unsigned OpCode);
143 
144   static inline bool isTerminator(unsigned OpCode) {
145     return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
146   }
147 
148   static inline bool isUnaryOp(unsigned Opcode) {
149     return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
150   }
151   static inline bool isBinaryOp(unsigned Opcode) {
152     return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
153   }
154 
155   static inline bool isIntDivRem(unsigned Opcode) {
156     return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
157   }
158 
159   /// Determine if the Opcode is one of the shift instructions.
160   static inline bool isShift(unsigned Opcode) {
161     return Opcode >= Shl && Opcode <= AShr;
162   }
163 
164   /// Return true if this is a logical shift left or a logical shift right.
165   inline bool isLogicalShift() const {
166     return getOpcode() == Shl || getOpcode() == LShr;
167   }
168 
169   /// Return true if this is an arithmetic shift right.
170   inline bool isArithmeticShift() const {
171     return getOpcode() == AShr;
172   }
173 
174   /// Determine if the Opcode is and/or/xor.
175   static inline bool isBitwiseLogicOp(unsigned Opcode) {
176     return Opcode == And || Opcode == Or || Opcode == Xor;
177   }
178 
179   /// Return true if this is and/or/xor.
180   inline bool isBitwiseLogicOp() const {
181     return isBitwiseLogicOp(getOpcode());
182   }
183 
184   /// Determine if the OpCode is one of the CastInst instructions.
185   static inline bool isCast(unsigned OpCode) {
186     return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
187   }
188 
189   /// Determine if the OpCode is one of the FuncletPadInst instructions.
190   static inline bool isFuncletPad(unsigned OpCode) {
191     return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
192   }
193 
194   /// Returns true if the OpCode is a terminator related to exception handling.
195   static inline bool isExceptionalTerminator(unsigned OpCode) {
196     switch (OpCode) {
197     case Instruction::CatchSwitch:
198     case Instruction::CatchRet:
199     case Instruction::CleanupRet:
200     case Instruction::Invoke:
201     case Instruction::Resume:
202       return true;
203     default:
204       return false;
205     }
206   }
207 
208   /// Returns true if the OpCode is a terminator with indirect targets.
209   static inline bool isIndirectTerminator(unsigned OpCode) {
210     switch (OpCode) {
211     case Instruction::IndirectBr:
212     case Instruction::CallBr:
213       return true;
214     default:
215       return false;
216     }
217   }
218 
219   //===--------------------------------------------------------------------===//
220   // Metadata manipulation.
221   //===--------------------------------------------------------------------===//
222 
223   /// Return true if this instruction has any metadata attached to it.
224   bool hasMetadata() const { return DbgLoc || hasMetadataHashEntry(); }
225 
226   /// Return true if this instruction has metadata attached to it other than a
227   /// debug location.
228   bool hasMetadataOtherThanDebugLoc() const {
229     return hasMetadataHashEntry();
230   }
231 
232   /// Return true if this instruction has the given type of metadata attached.
233   bool hasMetadata(unsigned KindID) const {
234     return getMetadata(KindID) != nullptr;
235   }
236 
237   /// Return true if this instruction has the given type of metadata attached.
238   bool hasMetadata(StringRef Kind) const {
239     return getMetadata(Kind) != nullptr;
240   }
241 
242   /// Get the metadata of given kind attached to this Instruction.
243   /// If the metadata is not found then return null.
244   MDNode *getMetadata(unsigned KindID) const {
245     if (!hasMetadata()) return nullptr;
246     return getMetadataImpl(KindID);
247   }
248 
249   /// Get the metadata of given kind attached to this Instruction.
250   /// If the metadata is not found then return null.
251   MDNode *getMetadata(StringRef Kind) const {
252     if (!hasMetadata()) return nullptr;
253     return getMetadataImpl(Kind);
254   }
255 
256   /// Get all metadata attached to this Instruction. The first element of each
257   /// pair returned is the KindID, the second element is the metadata value.
258   /// This list is returned sorted by the KindID.
259   void
260   getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
261     if (hasMetadata())
262       getAllMetadataImpl(MDs);
263   }
264 
265   /// This does the same thing as getAllMetadata, except that it filters out the
266   /// debug location.
267   void getAllMetadataOtherThanDebugLoc(
268       SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
269     if (hasMetadataOtherThanDebugLoc())
270       getAllMetadataOtherThanDebugLocImpl(MDs);
271   }
272 
273   /// Fills the AAMDNodes structure with AA metadata from this instruction.
274   /// When Merge is true, the existing AA metadata is merged with that from this
275   /// instruction providing the most-general result.
276   void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
277 
278   /// Set the metadata of the specified kind to the specified node. This updates
279   /// or replaces metadata if already present, or removes it if Node is null.
280   void setMetadata(unsigned KindID, MDNode *Node);
281   void setMetadata(StringRef Kind, MDNode *Node);
282 
283   /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
284   /// specifies the list of meta data that needs to be copied. If \p WL is
285   /// empty, all meta data will be copied.
286   void copyMetadata(const Instruction &SrcInst,
287                     ArrayRef<unsigned> WL = ArrayRef<unsigned>());
288 
289   /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
290   /// has three operands (including name string), swap the order of the
291   /// metadata.
292   void swapProfMetadata();
293 
294   /// Drop all unknown metadata except for debug locations.
295   /// @{
296   /// Passes are required to drop metadata they don't understand. This is a
297   /// convenience method for passes to do so.
298   void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
299   void dropUnknownNonDebugMetadata() {
300     return dropUnknownNonDebugMetadata(None);
301   }
302   void dropUnknownNonDebugMetadata(unsigned ID1) {
303     return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
304   }
305   void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
306     unsigned IDs[] = {ID1, ID2};
307     return dropUnknownNonDebugMetadata(IDs);
308   }
309   /// @}
310 
311   /// Sets the metadata on this instruction from the AAMDNodes structure.
312   void setAAMetadata(const AAMDNodes &N);
313 
314   /// Retrieve the raw weight values of a conditional branch or select.
315   /// Returns true on success with profile weights filled in.
316   /// Returns false if no metadata or invalid metadata was found.
317   bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
318 
319   /// Retrieve total raw weight values of a branch.
320   /// Returns true on success with profile total weights filled in.
321   /// Returns false if no metadata was found.
322   bool extractProfTotalWeight(uint64_t &TotalVal) const;
323 
324   /// Sets the branch_weights metadata to \p W for CallInst.
325   void setProfWeight(uint64_t W);
326 
327   /// Set the debug location information for this instruction.
328   void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
329 
330   /// Return the debug location for this node as a DebugLoc.
331   const DebugLoc &getDebugLoc() const { return DbgLoc; }
332 
333   /// Set or clear the nuw flag on this instruction, which must be an operator
334   /// which supports this flag. See LangRef.html for the meaning of this flag.
335   void setHasNoUnsignedWrap(bool b = true);
336 
337   /// Set or clear the nsw flag on this instruction, which must be an operator
338   /// which supports this flag. See LangRef.html for the meaning of this flag.
339   void setHasNoSignedWrap(bool b = true);
340 
341   /// Set or clear the exact flag on this instruction, which must be an operator
342   /// which supports this flag. See LangRef.html for the meaning of this flag.
343   void setIsExact(bool b = true);
344 
345   /// Determine whether the no unsigned wrap flag is set.
346   bool hasNoUnsignedWrap() const;
347 
348   /// Determine whether the no signed wrap flag is set.
349   bool hasNoSignedWrap() const;
350 
351   /// Drops flags that may cause this instruction to evaluate to poison despite
352   /// having non-poison inputs.
353   void dropPoisonGeneratingFlags();
354 
355   /// Determine whether the exact flag is set.
356   bool isExact() const;
357 
358   /// Set or clear all fast-math-flags on this instruction, which must be an
359   /// operator which supports this flag. See LangRef.html for the meaning of
360   /// this flag.
361   void setFast(bool B);
362 
363   /// Set or clear the reassociation flag on this instruction, which must be
364   /// an operator which supports this flag. See LangRef.html for the meaning of
365   /// this flag.
366   void setHasAllowReassoc(bool B);
367 
368   /// Set or clear the no-nans flag on this instruction, which must be an
369   /// operator which supports this flag. See LangRef.html for the meaning of
370   /// this flag.
371   void setHasNoNaNs(bool B);
372 
373   /// Set or clear the no-infs flag on this instruction, which must be an
374   /// operator which supports this flag. See LangRef.html for the meaning of
375   /// this flag.
376   void setHasNoInfs(bool B);
377 
378   /// Set or clear the no-signed-zeros flag on this instruction, which must be
379   /// an operator which supports this flag. See LangRef.html for the meaning of
380   /// this flag.
381   void setHasNoSignedZeros(bool B);
382 
383   /// Set or clear the allow-reciprocal flag on this instruction, which must be
384   /// an operator which supports this flag. See LangRef.html for the meaning of
385   /// this flag.
386   void setHasAllowReciprocal(bool B);
387 
388   /// Set or clear the approximate-math-functions flag on this instruction,
389   /// which must be an operator which supports this flag. See LangRef.html for
390   /// the meaning of this flag.
391   void setHasApproxFunc(bool B);
392 
393   /// Convenience function for setting multiple fast-math flags on this
394   /// instruction, which must be an operator which supports these flags. See
395   /// LangRef.html for the meaning of these flags.
396   void setFastMathFlags(FastMathFlags FMF);
397 
398   /// Convenience function for transferring all fast-math flag values to this
399   /// instruction, which must be an operator which supports these flags. See
400   /// LangRef.html for the meaning of these flags.
401   void copyFastMathFlags(FastMathFlags FMF);
402 
403   /// Determine whether all fast-math-flags are set.
404   bool isFast() const;
405 
406   /// Determine whether the allow-reassociation flag is set.
407   bool hasAllowReassoc() const;
408 
409   /// Determine whether the no-NaNs flag is set.
410   bool hasNoNaNs() const;
411 
412   /// Determine whether the no-infs flag is set.
413   bool hasNoInfs() const;
414 
415   /// Determine whether the no-signed-zeros flag is set.
416   bool hasNoSignedZeros() const;
417 
418   /// Determine whether the allow-reciprocal flag is set.
419   bool hasAllowReciprocal() const;
420 
421   /// Determine whether the allow-contract flag is set.
422   bool hasAllowContract() const;
423 
424   /// Determine whether the approximate-math-functions flag is set.
425   bool hasApproxFunc() const;
426 
427   /// Convenience function for getting all the fast-math flags, which must be an
428   /// operator which supports these flags. See LangRef.html for the meaning of
429   /// these flags.
430   FastMathFlags getFastMathFlags() const;
431 
432   /// Copy I's fast-math flags
433   void copyFastMathFlags(const Instruction *I);
434 
435   /// Convenience method to copy supported exact, fast-math, and (optionally)
436   /// wrapping flags from V to this instruction.
437   void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
438 
439   /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
440   /// V and this instruction.
441   void andIRFlags(const Value *V);
442 
443   /// Merge 2 debug locations and apply it to the Instruction. If the
444   /// instruction is a CallIns, we need to traverse the inline chain to find
445   /// the common scope. This is not efficient for N-way merging as each time
446   /// you merge 2 iterations, you need to rebuild the hashmap to find the
447   /// common scope. However, we still choose this API because:
448   ///  1) Simplicity: it takes 2 locations instead of a list of locations.
449   ///  2) In worst case, it increases the complexity from O(N*I) to
450   ///     O(2*N*I), where N is # of Instructions to merge, and I is the
451   ///     maximum level of inline stack. So it is still linear.
452   ///  3) Merging of call instructions should be extremely rare in real
453   ///     applications, thus the N-way merging should be in code path.
454   /// The DebugLoc attached to this instruction will be overwritten by the
455   /// merged DebugLoc.
456   void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
457 
458 private:
459   /// Return true if we have an entry in the on-the-side metadata hash.
460   bool hasMetadataHashEntry() const {
461     return (getSubclassDataFromValue() & HasMetadataBit) != 0;
462   }
463 
464   // These are all implemented in Metadata.cpp.
465   MDNode *getMetadataImpl(unsigned KindID) const;
466   MDNode *getMetadataImpl(StringRef Kind) const;
467   void
468   getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
469   void getAllMetadataOtherThanDebugLocImpl(
470       SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
471   /// Clear all hashtable-based metadata from this instruction.
472   void clearMetadataHashEntries();
473 
474 public:
475   //===--------------------------------------------------------------------===//
476   // Predicates and helper methods.
477   //===--------------------------------------------------------------------===//
478 
479   /// Return true if the instruction is associative:
480   ///
481   ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
482   ///
483   /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
484   ///
485   bool isAssociative() const LLVM_READONLY;
486   static bool isAssociative(unsigned Opcode) {
487     return Opcode == And || Opcode == Or || Opcode == Xor ||
488            Opcode == Add || Opcode == Mul;
489   }
490 
491   /// Return true if the instruction is commutative:
492   ///
493   ///   Commutative operators satisfy: (x op y) === (y op x)
494   ///
495   /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
496   /// applied to any type.
497   ///
498   bool isCommutative() const { return isCommutative(getOpcode()); }
499   static bool isCommutative(unsigned Opcode) {
500     switch (Opcode) {
501     case Add: case FAdd:
502     case Mul: case FMul:
503     case And: case Or: case Xor:
504       return true;
505     default:
506       return false;
507   }
508   }
509 
510   /// Return true if the instruction is idempotent:
511   ///
512   ///   Idempotent operators satisfy:  x op x === x
513   ///
514   /// In LLVM, the And and Or operators are idempotent.
515   ///
516   bool isIdempotent() const { return isIdempotent(getOpcode()); }
517   static bool isIdempotent(unsigned Opcode) {
518     return Opcode == And || Opcode == Or;
519   }
520 
521   /// Return true if the instruction is nilpotent:
522   ///
523   ///   Nilpotent operators satisfy:  x op x === Id,
524   ///
525   ///   where Id is the identity for the operator, i.e. a constant such that
526   ///     x op Id === x and Id op x === x for all x.
527   ///
528   /// In LLVM, the Xor operator is nilpotent.
529   ///
530   bool isNilpotent() const { return isNilpotent(getOpcode()); }
531   static bool isNilpotent(unsigned Opcode) {
532     return Opcode == Xor;
533   }
534 
535   /// Return true if this instruction may modify memory.
536   bool mayWriteToMemory() const;
537 
538   /// Return true if this instruction may read memory.
539   bool mayReadFromMemory() const;
540 
541   /// Return true if this instruction may read or write memory.
542   bool mayReadOrWriteMemory() const {
543     return mayReadFromMemory() || mayWriteToMemory();
544   }
545 
546   /// Return true if this instruction has an AtomicOrdering of unordered or
547   /// higher.
548   bool isAtomic() const;
549 
550   /// Return true if this atomic instruction loads from memory.
551   bool hasAtomicLoad() const;
552 
553   /// Return true if this atomic instruction stores to memory.
554   bool hasAtomicStore() const;
555 
556   /// Return true if this instruction may throw an exception.
557   bool mayThrow() const;
558 
559   /// Return true if this instruction behaves like a memory fence: it can load
560   /// or store to memory location without being given a memory location.
561   bool isFenceLike() const {
562     switch (getOpcode()) {
563     default:
564       return false;
565     // This list should be kept in sync with the list in mayWriteToMemory for
566     // all opcodes which don't have a memory location.
567     case Instruction::Fence:
568     case Instruction::CatchPad:
569     case Instruction::CatchRet:
570     case Instruction::Call:
571     case Instruction::Invoke:
572       return true;
573     }
574   }
575 
576   /// Return true if the instruction may have side effects.
577   ///
578   /// Note that this does not consider malloc and alloca to have side
579   /// effects because the newly allocated memory is completely invisible to
580   /// instructions which don't use the returned value.  For cases where this
581   /// matters, isSafeToSpeculativelyExecute may be more appropriate.
582   bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
583 
584   /// Return true if the instruction can be removed if the result is unused.
585   ///
586   /// When constant folding some instructions cannot be removed even if their
587   /// results are unused. Specifically terminator instructions and calls that
588   /// may have side effects cannot be removed without semantically changing the
589   /// generated program.
590   bool isSafeToRemove() const;
591 
592   /// Return true if the instruction is a variety of EH-block.
593   bool isEHPad() const {
594     switch (getOpcode()) {
595     case Instruction::CatchSwitch:
596     case Instruction::CatchPad:
597     case Instruction::CleanupPad:
598     case Instruction::LandingPad:
599       return true;
600     default:
601       return false;
602     }
603   }
604 
605   /// Return true if the instruction is a llvm.lifetime.start or
606   /// llvm.lifetime.end marker.
607   bool isLifetimeStartOrEnd() const;
608 
609   /// Return a pointer to the next non-debug instruction in the same basic
610   /// block as 'this', or nullptr if no such instruction exists.
611   const Instruction *getNextNonDebugInstruction() const;
612   Instruction *getNextNonDebugInstruction() {
613     return const_cast<Instruction *>(
614         static_cast<const Instruction *>(this)->getNextNonDebugInstruction());
615   }
616 
617   /// Return a pointer to the previous non-debug instruction in the same basic
618   /// block as 'this', or nullptr if no such instruction exists.
619   const Instruction *getPrevNonDebugInstruction() const;
620   Instruction *getPrevNonDebugInstruction() {
621     return const_cast<Instruction *>(
622         static_cast<const Instruction *>(this)->getPrevNonDebugInstruction());
623   }
624 
625   /// Create a copy of 'this' instruction that is identical in all ways except
626   /// the following:
627   ///   * The instruction has no parent
628   ///   * The instruction has no name
629   ///
630   Instruction *clone() const;
631 
632   /// Return true if the specified instruction is exactly identical to the
633   /// current one. This means that all operands match and any extra information
634   /// (e.g. load is volatile) agree.
635   bool isIdenticalTo(const Instruction *I) const;
636 
637   /// This is like isIdenticalTo, except that it ignores the
638   /// SubclassOptionalData flags, which may specify conditions under which the
639   /// instruction's result is undefined.
640   bool isIdenticalToWhenDefined(const Instruction *I) const;
641 
642   /// When checking for operation equivalence (using isSameOperationAs) it is
643   /// sometimes useful to ignore certain attributes.
644   enum OperationEquivalenceFlags {
645     /// Check for equivalence ignoring load/store alignment.
646     CompareIgnoringAlignment = 1<<0,
647     /// Check for equivalence treating a type and a vector of that type
648     /// as equivalent.
649     CompareUsingScalarTypes = 1<<1
650   };
651 
652   /// This function determines if the specified instruction executes the same
653   /// operation as the current one. This means that the opcodes, type, operand
654   /// types and any other factors affecting the operation must be the same. This
655   /// is similar to isIdenticalTo except the operands themselves don't have to
656   /// be identical.
657   /// @returns true if the specified instruction is the same operation as
658   /// the current one.
659   /// Determine if one instruction is the same operation as another.
660   bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
661 
662   /// Return true if there are any uses of this instruction in blocks other than
663   /// the specified block. Note that PHI nodes are considered to evaluate their
664   /// operands in the corresponding predecessor block.
665   bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
666 
667   /// Return the number of successors that this instruction has. The instruction
668   /// must be a terminator.
669   unsigned getNumSuccessors() const;
670 
671   /// Return the specified successor. This instruction must be a terminator.
672   BasicBlock *getSuccessor(unsigned Idx) const;
673 
674   /// Update the specified successor to point at the provided block. This
675   /// instruction must be a terminator.
676   void setSuccessor(unsigned Idx, BasicBlock *BB);
677 
678   /// Replace specified successor OldBB to point at the provided block.
679   /// This instruction must be a terminator.
680   void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
681 
682   /// Methods for support type inquiry through isa, cast, and dyn_cast:
683   static bool classof(const Value *V) {
684     return V->getValueID() >= Value::InstructionVal;
685   }
686 
687   //----------------------------------------------------------------------
688   // Exported enumerations.
689   //
690   enum TermOps {       // These terminate basic blocks
691 #define  FIRST_TERM_INST(N)             TermOpsBegin = N,
692 #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
693 #define   LAST_TERM_INST(N)             TermOpsEnd = N+1
694 #include "llvm/IR/Instruction.def"
695   };
696 
697   enum UnaryOps {
698 #define  FIRST_UNARY_INST(N)             UnaryOpsBegin = N,
699 #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
700 #define   LAST_UNARY_INST(N)             UnaryOpsEnd = N+1
701 #include "llvm/IR/Instruction.def"
702   };
703 
704   enum BinaryOps {
705 #define  FIRST_BINARY_INST(N)             BinaryOpsBegin = N,
706 #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
707 #define   LAST_BINARY_INST(N)             BinaryOpsEnd = N+1
708 #include "llvm/IR/Instruction.def"
709   };
710 
711   enum MemoryOps {
712 #define  FIRST_MEMORY_INST(N)             MemoryOpsBegin = N,
713 #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
714 #define   LAST_MEMORY_INST(N)             MemoryOpsEnd = N+1
715 #include "llvm/IR/Instruction.def"
716   };
717 
718   enum CastOps {
719 #define  FIRST_CAST_INST(N)             CastOpsBegin = N,
720 #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
721 #define   LAST_CAST_INST(N)             CastOpsEnd = N+1
722 #include "llvm/IR/Instruction.def"
723   };
724 
725   enum FuncletPadOps {
726 #define  FIRST_FUNCLETPAD_INST(N)             FuncletPadOpsBegin = N,
727 #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
728 #define   LAST_FUNCLETPAD_INST(N)             FuncletPadOpsEnd = N+1
729 #include "llvm/IR/Instruction.def"
730   };
731 
732   enum OtherOps {
733 #define  FIRST_OTHER_INST(N)             OtherOpsBegin = N,
734 #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
735 #define   LAST_OTHER_INST(N)             OtherOpsEnd = N+1
736 #include "llvm/IR/Instruction.def"
737   };
738 
739 private:
740   friend class SymbolTableListTraits<Instruction>;
741 
742   // Shadow Value::setValueSubclassData with a private forwarding method so that
743   // subclasses cannot accidentally use it.
744   void setValueSubclassData(unsigned short D) {
745     Value::setValueSubclassData(D);
746   }
747 
748   unsigned short getSubclassDataFromValue() const {
749     return Value::getSubclassDataFromValue();
750   }
751 
752   void setHasMetadataHashEntry(bool V) {
753     setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) |
754                          (V ? HasMetadataBit : 0));
755   }
756 
757   void setParent(BasicBlock *P);
758 
759 protected:
760   // Instruction subclasses can stick up to 15 bits of stuff into the
761   // SubclassData field of instruction with these members.
762 
763   // Verify that only the low 15 bits are used.
764   void setInstructionSubclassData(unsigned short D) {
765     assert((D & HasMetadataBit) == 0 && "Out of range value put into field");
766     setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D);
767   }
768 
769   unsigned getSubclassDataFromInstruction() const {
770     return getSubclassDataFromValue() & ~HasMetadataBit;
771   }
772 
773   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
774               Instruction *InsertBefore = nullptr);
775   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
776               BasicBlock *InsertAtEnd);
777 
778 private:
779   /// Create a copy of this instruction.
780   Instruction *cloneImpl() const;
781 };
782 
783 inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
784   V->deleteValue();
785 }
786 
787 } // end namespace llvm
788 
789 #endif // LLVM_IR_INSTRUCTION_H
790