1 //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Instruction class, which is the
10 // base class for all of the LLVM instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_INSTRUCTION_H
15 #define LLVM_IR_INSTRUCTION_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Bitfields.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/SymbolTableListTraits.h"
24 #include "llvm/IR/User.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/AtomicOrdering.h"
27 #include "llvm/Support/Casting.h"
28 #include <cstdint>
29 #include <utility>
30 
31 namespace llvm {
32 
33 class BasicBlock;
34 class FastMathFlags;
35 class MDNode;
36 class Module;
37 struct AAMDNodes;
38 
39 template <> struct ilist_alloc_traits<Instruction> {
40   static inline void deleteNode(Instruction *V);
41 };
42 
43 class Instruction : public User,
44                     public ilist_node_with_parent<Instruction, BasicBlock> {
45   BasicBlock *Parent;
46   DebugLoc DbgLoc;                         // 'dbg' Metadata cache.
47 
48   /// Relative order of this instruction in its parent basic block. Used for
49   /// O(1) local dominance checks between instructions.
50   mutable unsigned Order = 0;
51 
52 protected:
53   // The 15 first bits of `Value::SubclassData` are available for subclasses of
54   // `Instruction` to use.
55   using OpaqueField = Bitfield::Element<uint16_t, 0, 15>;
56 
57   // Template alias so that all Instruction storing alignment use the same
58   // definiton.
59   // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent =
60   // 2^32. We store them as Log2(Alignment), so we need 6 bits to encode the 33
61   // possible values.
62   template <unsigned Offset>
63   using AlignmentBitfieldElementT =
64       typename Bitfield::Element<unsigned, Offset, 6,
65                                  Value::MaxAlignmentExponent>;
66 
67   template <unsigned Offset>
68   using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>;
69 
70   template <unsigned Offset>
71   using AtomicOrderingBitfieldElementT =
72       typename Bitfield::Element<AtomicOrdering, Offset, 3,
73                                  AtomicOrdering::LAST>;
74 
75 private:
76   // The last bit is used to store whether the instruction has metadata attached
77   // or not.
78   using HasMetadataField = Bitfield::Element<bool, 15, 1>;
79 
80 protected:
81   ~Instruction(); // Use deleteValue() to delete a generic Instruction.
82 
83 public:
84   Instruction(const Instruction &) = delete;
85   Instruction &operator=(const Instruction &) = delete;
86 
87   /// Specialize the methods defined in Value, as we know that an instruction
88   /// can only be used by other instructions.
89   Instruction       *user_back()       { return cast<Instruction>(*user_begin());}
90   const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
91 
92   inline const BasicBlock *getParent() const { return Parent; }
93   inline       BasicBlock *getParent()       { return Parent; }
94 
95   /// Return the module owning the function this instruction belongs to
96   /// or nullptr it the function does not have a module.
97   ///
98   /// Note: this is undefined behavior if the instruction does not have a
99   /// parent, or the parent basic block does not have a parent function.
100   const Module *getModule() const;
101   Module *getModule() {
102     return const_cast<Module *>(
103                            static_cast<const Instruction *>(this)->getModule());
104   }
105 
106   /// Return the function this instruction belongs to.
107   ///
108   /// Note: it is undefined behavior to call this on an instruction not
109   /// currently inserted into a function.
110   const Function *getFunction() const;
111   Function *getFunction() {
112     return const_cast<Function *>(
113                          static_cast<const Instruction *>(this)->getFunction());
114   }
115 
116   /// This method unlinks 'this' from the containing basic block, but does not
117   /// delete it.
118   void removeFromParent();
119 
120   /// This method unlinks 'this' from the containing basic block and deletes it.
121   ///
122   /// \returns an iterator pointing to the element after the erased one
123   SymbolTableList<Instruction>::iterator eraseFromParent();
124 
125   /// Insert an unlinked instruction into a basic block immediately before
126   /// the specified instruction.
127   void insertBefore(Instruction *InsertPos);
128 
129   /// Insert an unlinked instruction into a basic block immediately after the
130   /// specified instruction.
131   void insertAfter(Instruction *InsertPos);
132 
133   /// Unlink this instruction from its current basic block and insert it into
134   /// the basic block that MovePos lives in, right before MovePos.
135   void moveBefore(Instruction *MovePos);
136 
137   /// Unlink this instruction and insert into BB before I.
138   ///
139   /// \pre I is a valid iterator into BB.
140   void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
141 
142   /// Unlink this instruction from its current basic block and insert it into
143   /// the basic block that MovePos lives in, right after MovePos.
144   void moveAfter(Instruction *MovePos);
145 
146   /// Given an instruction Other in the same basic block as this instruction,
147   /// return true if this instruction comes before Other. In this worst case,
148   /// this takes linear time in the number of instructions in the block. The
149   /// results are cached, so in common cases when the block remains unmodified,
150   /// it takes constant time.
151   bool comesBefore(const Instruction *Other) const;
152 
153   //===--------------------------------------------------------------------===//
154   // Subclass classification.
155   //===--------------------------------------------------------------------===//
156 
157   /// Returns a member of one of the enums like Instruction::Add.
158   unsigned getOpcode() const { return getValueID() - InstructionVal; }
159 
160   const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
161   bool isTerminator() const { return isTerminator(getOpcode()); }
162   bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
163   bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
164   bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
165   bool isShift() const { return isShift(getOpcode()); }
166   bool isCast() const { return isCast(getOpcode()); }
167   bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
168   bool isExceptionalTerminator() const {
169     return isExceptionalTerminator(getOpcode());
170   }
171 
172   /// It checks if this instruction is the only user of at least one of
173   /// its operands.
174   bool isOnlyUserOfAnyOperand();
175 
176   bool isIndirectTerminator() const {
177     return isIndirectTerminator(getOpcode());
178   }
179 
180   static const char* getOpcodeName(unsigned OpCode);
181 
182   static inline bool isTerminator(unsigned OpCode) {
183     return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
184   }
185 
186   static inline bool isUnaryOp(unsigned Opcode) {
187     return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
188   }
189   static inline bool isBinaryOp(unsigned Opcode) {
190     return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
191   }
192 
193   static inline bool isIntDivRem(unsigned Opcode) {
194     return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
195   }
196 
197   /// Determine if the Opcode is one of the shift instructions.
198   static inline bool isShift(unsigned Opcode) {
199     return Opcode >= Shl && Opcode <= AShr;
200   }
201 
202   /// Return true if this is a logical shift left or a logical shift right.
203   inline bool isLogicalShift() const {
204     return getOpcode() == Shl || getOpcode() == LShr;
205   }
206 
207   /// Return true if this is an arithmetic shift right.
208   inline bool isArithmeticShift() const {
209     return getOpcode() == AShr;
210   }
211 
212   /// Determine if the Opcode is and/or/xor.
213   static inline bool isBitwiseLogicOp(unsigned Opcode) {
214     return Opcode == And || Opcode == Or || Opcode == Xor;
215   }
216 
217   /// Return true if this is and/or/xor.
218   inline bool isBitwiseLogicOp() const {
219     return isBitwiseLogicOp(getOpcode());
220   }
221 
222   /// Determine if the OpCode is one of the CastInst instructions.
223   static inline bool isCast(unsigned OpCode) {
224     return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
225   }
226 
227   /// Determine if the OpCode is one of the FuncletPadInst instructions.
228   static inline bool isFuncletPad(unsigned OpCode) {
229     return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
230   }
231 
232   /// Returns true if the OpCode is a terminator related to exception handling.
233   static inline bool isExceptionalTerminator(unsigned OpCode) {
234     switch (OpCode) {
235     case Instruction::CatchSwitch:
236     case Instruction::CatchRet:
237     case Instruction::CleanupRet:
238     case Instruction::Invoke:
239     case Instruction::Resume:
240       return true;
241     default:
242       return false;
243     }
244   }
245 
246   /// Returns true if the OpCode is a terminator with indirect targets.
247   static inline bool isIndirectTerminator(unsigned OpCode) {
248     switch (OpCode) {
249     case Instruction::IndirectBr:
250     case Instruction::CallBr:
251       return true;
252     default:
253       return false;
254     }
255   }
256 
257   //===--------------------------------------------------------------------===//
258   // Metadata manipulation.
259   //===--------------------------------------------------------------------===//
260 
261   /// Return true if this instruction has any metadata attached to it.
262   bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); }
263 
264   /// Return true if this instruction has metadata attached to it other than a
265   /// debug location.
266   bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); }
267 
268   /// Return true if this instruction has the given type of metadata attached.
269   bool hasMetadata(unsigned KindID) const {
270     return getMetadata(KindID) != nullptr;
271   }
272 
273   /// Return true if this instruction has the given type of metadata attached.
274   bool hasMetadata(StringRef Kind) const {
275     return getMetadata(Kind) != nullptr;
276   }
277 
278   /// Get the metadata of given kind attached to this Instruction.
279   /// If the metadata is not found then return null.
280   MDNode *getMetadata(unsigned KindID) const {
281     if (!hasMetadata()) return nullptr;
282     return getMetadataImpl(KindID);
283   }
284 
285   /// Get the metadata of given kind attached to this Instruction.
286   /// If the metadata is not found then return null.
287   MDNode *getMetadata(StringRef Kind) const {
288     if (!hasMetadata()) return nullptr;
289     return getMetadataImpl(Kind);
290   }
291 
292   /// Get all metadata attached to this Instruction. The first element of each
293   /// pair returned is the KindID, the second element is the metadata value.
294   /// This list is returned sorted by the KindID.
295   void
296   getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
297     if (hasMetadata())
298       getAllMetadataImpl(MDs);
299   }
300 
301   /// This does the same thing as getAllMetadata, except that it filters out the
302   /// debug location.
303   void getAllMetadataOtherThanDebugLoc(
304       SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
305     Value::getAllMetadata(MDs);
306   }
307 
308   /// Set the metadata of the specified kind to the specified node. This updates
309   /// or replaces metadata if already present, or removes it if Node is null.
310   void setMetadata(unsigned KindID, MDNode *Node);
311   void setMetadata(StringRef Kind, MDNode *Node);
312 
313   /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
314   /// specifies the list of meta data that needs to be copied. If \p WL is
315   /// empty, all meta data will be copied.
316   void copyMetadata(const Instruction &SrcInst,
317                     ArrayRef<unsigned> WL = ArrayRef<unsigned>());
318 
319   /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
320   /// has three operands (including name string), swap the order of the
321   /// metadata.
322   void swapProfMetadata();
323 
324   /// Drop all unknown metadata except for debug locations.
325   /// @{
326   /// Passes are required to drop metadata they don't understand. This is a
327   /// convenience method for passes to do so.
328   /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of
329   /// this API if the Instruction being modified is a call.
330   void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
331   void dropUnknownNonDebugMetadata() {
332     return dropUnknownNonDebugMetadata(None);
333   }
334   void dropUnknownNonDebugMetadata(unsigned ID1) {
335     return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
336   }
337   void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
338     unsigned IDs[] = {ID1, ID2};
339     return dropUnknownNonDebugMetadata(IDs);
340   }
341   /// @}
342 
343   /// Adds an !annotation metadata node with \p Annotation to this instruction.
344   /// If this instruction already has !annotation metadata, append \p Annotation
345   /// to the existing node.
346   void addAnnotationMetadata(StringRef Annotation);
347 
348   /// Returns the AA metadata for this instruction.
349   AAMDNodes getAAMetadata() const;
350 
351   /// Sets the AA metadata on this instruction from the AAMDNodes structure.
352   void setAAMetadata(const AAMDNodes &N);
353 
354   /// Retrieve the raw weight values of a conditional branch or select.
355   /// Returns true on success with profile weights filled in.
356   /// Returns false if no metadata or invalid metadata was found.
357   bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
358 
359   /// Retrieve total raw weight values of a branch.
360   /// Returns true on success with profile total weights filled in.
361   /// Returns false if no metadata was found.
362   bool extractProfTotalWeight(uint64_t &TotalVal) const;
363 
364   /// Set the debug location information for this instruction.
365   void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
366 
367   /// Return the debug location for this node as a DebugLoc.
368   const DebugLoc &getDebugLoc() const { return DbgLoc; }
369 
370   /// Set or clear the nuw flag on this instruction, which must be an operator
371   /// which supports this flag. See LangRef.html for the meaning of this flag.
372   void setHasNoUnsignedWrap(bool b = true);
373 
374   /// Set or clear the nsw flag on this instruction, which must be an operator
375   /// which supports this flag. See LangRef.html for the meaning of this flag.
376   void setHasNoSignedWrap(bool b = true);
377 
378   /// Set or clear the exact flag on this instruction, which must be an operator
379   /// which supports this flag. See LangRef.html for the meaning of this flag.
380   void setIsExact(bool b = true);
381 
382   /// Determine whether the no unsigned wrap flag is set.
383   bool hasNoUnsignedWrap() const;
384 
385   /// Determine whether the no signed wrap flag is set.
386   bool hasNoSignedWrap() const;
387 
388   /// Return true if this operator has flags which may cause this instruction
389   /// to evaluate to poison despite having non-poison inputs.
390   bool hasPoisonGeneratingFlags() const;
391 
392   /// Drops flags that may cause this instruction to evaluate to poison despite
393   /// having non-poison inputs.
394   void dropPoisonGeneratingFlags();
395 
396   /// This function drops non-debug unknown metadata (through
397   /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and
398   /// return attributes that can cause undefined behaviour. Both of these should
399   /// be done by passes which move instructions in IR.
400   void
401   dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {});
402 
403   /// Determine whether the exact flag is set.
404   bool isExact() const;
405 
406   /// Set or clear all fast-math-flags on this instruction, which must be an
407   /// operator which supports this flag. See LangRef.html for the meaning of
408   /// this flag.
409   void setFast(bool B);
410 
411   /// Set or clear the reassociation flag on this instruction, which must be
412   /// an operator which supports this flag. See LangRef.html for the meaning of
413   /// this flag.
414   void setHasAllowReassoc(bool B);
415 
416   /// Set or clear the no-nans flag on this instruction, which must be an
417   /// operator which supports this flag. See LangRef.html for the meaning of
418   /// this flag.
419   void setHasNoNaNs(bool B);
420 
421   /// Set or clear the no-infs flag on this instruction, which must be an
422   /// operator which supports this flag. See LangRef.html for the meaning of
423   /// this flag.
424   void setHasNoInfs(bool B);
425 
426   /// Set or clear the no-signed-zeros flag on this instruction, which must be
427   /// an operator which supports this flag. See LangRef.html for the meaning of
428   /// this flag.
429   void setHasNoSignedZeros(bool B);
430 
431   /// Set or clear the allow-reciprocal flag on this instruction, which must be
432   /// an operator which supports this flag. See LangRef.html for the meaning of
433   /// this flag.
434   void setHasAllowReciprocal(bool B);
435 
436   /// Set or clear the allow-contract flag on this instruction, which must be
437   /// an operator which supports this flag. See LangRef.html for the meaning of
438   /// this flag.
439   void setHasAllowContract(bool B);
440 
441   /// Set or clear the approximate-math-functions flag on this instruction,
442   /// which must be an operator which supports this flag. See LangRef.html for
443   /// the meaning of this flag.
444   void setHasApproxFunc(bool B);
445 
446   /// Convenience function for setting multiple fast-math flags on this
447   /// instruction, which must be an operator which supports these flags. See
448   /// LangRef.html for the meaning of these flags.
449   void setFastMathFlags(FastMathFlags FMF);
450 
451   /// Convenience function for transferring all fast-math flag values to this
452   /// instruction, which must be an operator which supports these flags. See
453   /// LangRef.html for the meaning of these flags.
454   void copyFastMathFlags(FastMathFlags FMF);
455 
456   /// Determine whether all fast-math-flags are set.
457   bool isFast() const;
458 
459   /// Determine whether the allow-reassociation flag is set.
460   bool hasAllowReassoc() const;
461 
462   /// Determine whether the no-NaNs flag is set.
463   bool hasNoNaNs() const;
464 
465   /// Determine whether the no-infs flag is set.
466   bool hasNoInfs() const;
467 
468   /// Determine whether the no-signed-zeros flag is set.
469   bool hasNoSignedZeros() const;
470 
471   /// Determine whether the allow-reciprocal flag is set.
472   bool hasAllowReciprocal() const;
473 
474   /// Determine whether the allow-contract flag is set.
475   bool hasAllowContract() const;
476 
477   /// Determine whether the approximate-math-functions flag is set.
478   bool hasApproxFunc() const;
479 
480   /// Convenience function for getting all the fast-math flags, which must be an
481   /// operator which supports these flags. See LangRef.html for the meaning of
482   /// these flags.
483   FastMathFlags getFastMathFlags() const;
484 
485   /// Copy I's fast-math flags
486   void copyFastMathFlags(const Instruction *I);
487 
488   /// Convenience method to copy supported exact, fast-math, and (optionally)
489   /// wrapping flags from V to this instruction.
490   void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
491 
492   /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
493   /// V and this instruction.
494   void andIRFlags(const Value *V);
495 
496   /// Merge 2 debug locations and apply it to the Instruction. If the
497   /// instruction is a CallIns, we need to traverse the inline chain to find
498   /// the common scope. This is not efficient for N-way merging as each time
499   /// you merge 2 iterations, you need to rebuild the hashmap to find the
500   /// common scope. However, we still choose this API because:
501   ///  1) Simplicity: it takes 2 locations instead of a list of locations.
502   ///  2) In worst case, it increases the complexity from O(N*I) to
503   ///     O(2*N*I), where N is # of Instructions to merge, and I is the
504   ///     maximum level of inline stack. So it is still linear.
505   ///  3) Merging of call instructions should be extremely rare in real
506   ///     applications, thus the N-way merging should be in code path.
507   /// The DebugLoc attached to this instruction will be overwritten by the
508   /// merged DebugLoc.
509   void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
510 
511   /// Updates the debug location given that the instruction has been hoisted
512   /// from a block to a predecessor of that block.
513   /// Note: it is undefined behavior to call this on an instruction not
514   /// currently inserted into a function.
515   void updateLocationAfterHoist();
516 
517   /// Drop the instruction's debug location. This does not guarantee removal
518   /// of the !dbg source location attachment, as it must set a line 0 location
519   /// with scope information attached on call instructions. To guarantee
520   /// removal of the !dbg attachment, use the \ref setDebugLoc() API.
521   /// Note: it is undefined behavior to call this on an instruction not
522   /// currently inserted into a function.
523   void dropLocation();
524 
525 private:
526   // These are all implemented in Metadata.cpp.
527   MDNode *getMetadataImpl(unsigned KindID) const;
528   MDNode *getMetadataImpl(StringRef Kind) const;
529   void
530   getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
531 
532 public:
533   //===--------------------------------------------------------------------===//
534   // Predicates and helper methods.
535   //===--------------------------------------------------------------------===//
536 
537   /// Return true if the instruction is associative:
538   ///
539   ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
540   ///
541   /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
542   ///
543   bool isAssociative() const LLVM_READONLY;
544   static bool isAssociative(unsigned Opcode) {
545     return Opcode == And || Opcode == Or || Opcode == Xor ||
546            Opcode == Add || Opcode == Mul;
547   }
548 
549   /// Return true if the instruction is commutative:
550   ///
551   ///   Commutative operators satisfy: (x op y) === (y op x)
552   ///
553   /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
554   /// applied to any type.
555   ///
556   bool isCommutative() const LLVM_READONLY;
557   static bool isCommutative(unsigned Opcode) {
558     switch (Opcode) {
559     case Add: case FAdd:
560     case Mul: case FMul:
561     case And: case Or: case Xor:
562       return true;
563     default:
564       return false;
565   }
566   }
567 
568   /// Return true if the instruction is idempotent:
569   ///
570   ///   Idempotent operators satisfy:  x op x === x
571   ///
572   /// In LLVM, the And and Or operators are idempotent.
573   ///
574   bool isIdempotent() const { return isIdempotent(getOpcode()); }
575   static bool isIdempotent(unsigned Opcode) {
576     return Opcode == And || Opcode == Or;
577   }
578 
579   /// Return true if the instruction is nilpotent:
580   ///
581   ///   Nilpotent operators satisfy:  x op x === Id,
582   ///
583   ///   where Id is the identity for the operator, i.e. a constant such that
584   ///     x op Id === x and Id op x === x for all x.
585   ///
586   /// In LLVM, the Xor operator is nilpotent.
587   ///
588   bool isNilpotent() const { return isNilpotent(getOpcode()); }
589   static bool isNilpotent(unsigned Opcode) {
590     return Opcode == Xor;
591   }
592 
593   /// Return true if this instruction may modify memory.
594   bool mayWriteToMemory() const;
595 
596   /// Return true if this instruction may read memory.
597   bool mayReadFromMemory() const;
598 
599   /// Return true if this instruction may read or write memory.
600   bool mayReadOrWriteMemory() const {
601     return mayReadFromMemory() || mayWriteToMemory();
602   }
603 
604   /// Return true if this instruction has an AtomicOrdering of unordered or
605   /// higher.
606   bool isAtomic() const;
607 
608   /// Return true if this atomic instruction loads from memory.
609   bool hasAtomicLoad() const;
610 
611   /// Return true if this atomic instruction stores to memory.
612   bool hasAtomicStore() const;
613 
614   /// Return true if this instruction has a volatile memory access.
615   bool isVolatile() const;
616 
617   /// Return true if this instruction may throw an exception.
618   bool mayThrow() const;
619 
620   /// Return true if this instruction behaves like a memory fence: it can load
621   /// or store to memory location without being given a memory location.
622   bool isFenceLike() const {
623     switch (getOpcode()) {
624     default:
625       return false;
626     // This list should be kept in sync with the list in mayWriteToMemory for
627     // all opcodes which don't have a memory location.
628     case Instruction::Fence:
629     case Instruction::CatchPad:
630     case Instruction::CatchRet:
631     case Instruction::Call:
632     case Instruction::Invoke:
633       return true;
634     }
635   }
636 
637   /// Return true if the instruction may have side effects.
638   ///
639   /// Side effects are:
640   ///  * Writing to memory.
641   ///  * Unwinding.
642   ///  * Not returning (e.g. an infinite loop).
643   ///
644   /// Note that this does not consider malloc and alloca to have side
645   /// effects because the newly allocated memory is completely invisible to
646   /// instructions which don't use the returned value.  For cases where this
647   /// matters, isSafeToSpeculativelyExecute may be more appropriate.
648   bool mayHaveSideEffects() const;
649 
650   /// Return true if the instruction can be removed if the result is unused.
651   ///
652   /// When constant folding some instructions cannot be removed even if their
653   /// results are unused. Specifically terminator instructions and calls that
654   /// may have side effects cannot be removed without semantically changing the
655   /// generated program.
656   bool isSafeToRemove() const;
657 
658   /// Return true if the instruction will return (unwinding is considered as
659   /// a form of returning control flow here).
660   bool willReturn() const;
661 
662   /// Return true if the instruction is a variety of EH-block.
663   bool isEHPad() const {
664     switch (getOpcode()) {
665     case Instruction::CatchSwitch:
666     case Instruction::CatchPad:
667     case Instruction::CleanupPad:
668     case Instruction::LandingPad:
669       return true;
670     default:
671       return false;
672     }
673   }
674 
675   /// Return true if the instruction is a llvm.lifetime.start or
676   /// llvm.lifetime.end marker.
677   bool isLifetimeStartOrEnd() const;
678 
679   /// Return true if the instruction is a llvm.launder.invariant.group or
680   /// llvm.strip.invariant.group.
681   bool isLaunderOrStripInvariantGroup() const;
682 
683   /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst.
684   bool isDebugOrPseudoInst() const;
685 
686   /// Return a pointer to the next non-debug instruction in the same basic
687   /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
688   /// operations if \c SkipPseudoOp is true.
689   const Instruction *
690   getNextNonDebugInstruction(bool SkipPseudoOp = false) const;
691   Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) {
692     return const_cast<Instruction *>(
693         static_cast<const Instruction *>(this)->getNextNonDebugInstruction(
694             SkipPseudoOp));
695   }
696 
697   /// Return a pointer to the previous non-debug instruction in the same basic
698   /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
699   /// operations if \c SkipPseudoOp is true.
700   const Instruction *
701   getPrevNonDebugInstruction(bool SkipPseudoOp = false) const;
702   Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) {
703     return const_cast<Instruction *>(
704         static_cast<const Instruction *>(this)->getPrevNonDebugInstruction(
705             SkipPseudoOp));
706   }
707 
708   /// Create a copy of 'this' instruction that is identical in all ways except
709   /// the following:
710   ///   * The instruction has no parent
711   ///   * The instruction has no name
712   ///
713   Instruction *clone() const;
714 
715   /// Return true if the specified instruction is exactly identical to the
716   /// current one. This means that all operands match and any extra information
717   /// (e.g. load is volatile) agree.
718   bool isIdenticalTo(const Instruction *I) const;
719 
720   /// This is like isIdenticalTo, except that it ignores the
721   /// SubclassOptionalData flags, which may specify conditions under which the
722   /// instruction's result is undefined.
723   bool isIdenticalToWhenDefined(const Instruction *I) const;
724 
725   /// When checking for operation equivalence (using isSameOperationAs) it is
726   /// sometimes useful to ignore certain attributes.
727   enum OperationEquivalenceFlags {
728     /// Check for equivalence ignoring load/store alignment.
729     CompareIgnoringAlignment = 1<<0,
730     /// Check for equivalence treating a type and a vector of that type
731     /// as equivalent.
732     CompareUsingScalarTypes = 1<<1
733   };
734 
735   /// This function determines if the specified instruction executes the same
736   /// operation as the current one. This means that the opcodes, type, operand
737   /// types and any other factors affecting the operation must be the same. This
738   /// is similar to isIdenticalTo except the operands themselves don't have to
739   /// be identical.
740   /// @returns true if the specified instruction is the same operation as
741   /// the current one.
742   /// Determine if one instruction is the same operation as another.
743   bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
744 
745   /// Return true if there are any uses of this instruction in blocks other than
746   /// the specified block. Note that PHI nodes are considered to evaluate their
747   /// operands in the corresponding predecessor block.
748   bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
749 
750   /// Return the number of successors that this instruction has. The instruction
751   /// must be a terminator.
752   unsigned getNumSuccessors() const;
753 
754   /// Return the specified successor. This instruction must be a terminator.
755   BasicBlock *getSuccessor(unsigned Idx) const;
756 
757   /// Update the specified successor to point at the provided block. This
758   /// instruction must be a terminator.
759   void setSuccessor(unsigned Idx, BasicBlock *BB);
760 
761   /// Replace specified successor OldBB to point at the provided block.
762   /// This instruction must be a terminator.
763   void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
764 
765   /// Methods for support type inquiry through isa, cast, and dyn_cast:
766   static bool classof(const Value *V) {
767     return V->getValueID() >= Value::InstructionVal;
768   }
769 
770   //----------------------------------------------------------------------
771   // Exported enumerations.
772   //
773   enum TermOps {       // These terminate basic blocks
774 #define  FIRST_TERM_INST(N)             TermOpsBegin = N,
775 #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
776 #define   LAST_TERM_INST(N)             TermOpsEnd = N+1
777 #include "llvm/IR/Instruction.def"
778   };
779 
780   enum UnaryOps {
781 #define  FIRST_UNARY_INST(N)             UnaryOpsBegin = N,
782 #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
783 #define   LAST_UNARY_INST(N)             UnaryOpsEnd = N+1
784 #include "llvm/IR/Instruction.def"
785   };
786 
787   enum BinaryOps {
788 #define  FIRST_BINARY_INST(N)             BinaryOpsBegin = N,
789 #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
790 #define   LAST_BINARY_INST(N)             BinaryOpsEnd = N+1
791 #include "llvm/IR/Instruction.def"
792   };
793 
794   enum MemoryOps {
795 #define  FIRST_MEMORY_INST(N)             MemoryOpsBegin = N,
796 #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
797 #define   LAST_MEMORY_INST(N)             MemoryOpsEnd = N+1
798 #include "llvm/IR/Instruction.def"
799   };
800 
801   enum CastOps {
802 #define  FIRST_CAST_INST(N)             CastOpsBegin = N,
803 #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
804 #define   LAST_CAST_INST(N)             CastOpsEnd = N+1
805 #include "llvm/IR/Instruction.def"
806   };
807 
808   enum FuncletPadOps {
809 #define  FIRST_FUNCLETPAD_INST(N)             FuncletPadOpsBegin = N,
810 #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
811 #define   LAST_FUNCLETPAD_INST(N)             FuncletPadOpsEnd = N+1
812 #include "llvm/IR/Instruction.def"
813   };
814 
815   enum OtherOps {
816 #define  FIRST_OTHER_INST(N)             OtherOpsBegin = N,
817 #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
818 #define   LAST_OTHER_INST(N)             OtherOpsEnd = N+1
819 #include "llvm/IR/Instruction.def"
820   };
821 
822 private:
823   friend class SymbolTableListTraits<Instruction>;
824   friend class BasicBlock; // For renumbering.
825 
826   // Shadow Value::setValueSubclassData with a private forwarding method so that
827   // subclasses cannot accidentally use it.
828   void setValueSubclassData(unsigned short D) {
829     Value::setValueSubclassData(D);
830   }
831 
832   unsigned short getSubclassDataFromValue() const {
833     return Value::getSubclassDataFromValue();
834   }
835 
836   void setParent(BasicBlock *P);
837 
838 protected:
839   // Instruction subclasses can stick up to 15 bits of stuff into the
840   // SubclassData field of instruction with these members.
841 
842   template <typename BitfieldElement>
843   typename BitfieldElement::Type getSubclassData() const {
844     static_assert(
845         std::is_same<BitfieldElement, HasMetadataField>::value ||
846             !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
847         "Must not overlap with the metadata bit");
848     return Bitfield::get<BitfieldElement>(getSubclassDataFromValue());
849   }
850 
851   template <typename BitfieldElement>
852   void setSubclassData(typename BitfieldElement::Type Value) {
853     static_assert(
854         std::is_same<BitfieldElement, HasMetadataField>::value ||
855             !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
856         "Must not overlap with the metadata bit");
857     auto Storage = getSubclassDataFromValue();
858     Bitfield::set<BitfieldElement>(Storage, Value);
859     setValueSubclassData(Storage);
860   }
861 
862   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
863               Instruction *InsertBefore = nullptr);
864   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
865               BasicBlock *InsertAtEnd);
866 
867 private:
868   /// Create a copy of this instruction.
869   Instruction *cloneImpl() const;
870 };
871 
872 inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
873   V->deleteValue();
874 }
875 
876 } // end namespace llvm
877 
878 #endif // LLVM_IR_INSTRUCTION_H
879