1 //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Instruction class, which is the
10 // base class for all of the LLVM instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_INSTRUCTION_H
15 #define LLVM_IR_INSTRUCTION_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Bitfields.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/SymbolTableListTraits.h"
24 #include "llvm/IR/User.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/AtomicOrdering.h"
27 #include <cstdint>
28 #include <utility>
29 
30 namespace llvm {
31 
32 class BasicBlock;
33 class FastMathFlags;
34 class MDNode;
35 class Module;
36 struct AAMDNodes;
37 
38 template <> struct ilist_alloc_traits<Instruction> {
39   static inline void deleteNode(Instruction *V);
40 };
41 
42 class Instruction : public User,
43                     public ilist_node_with_parent<Instruction, BasicBlock> {
44   BasicBlock *Parent;
45   DebugLoc DbgLoc;                         // 'dbg' Metadata cache.
46 
47   /// Relative order of this instruction in its parent basic block. Used for
48   /// O(1) local dominance checks between instructions.
49   mutable unsigned Order = 0;
50 
51 protected:
52   // The 15 first bits of `Value::SubclassData` are available for subclasses of
53   // `Instruction` to use.
54   using OpaqueField = Bitfield::Element<uint16_t, 0, 15>;
55 
56   // Template alias so that all Instruction storing alignment use the same
57   // definiton.
58   // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent =
59   // 2^32. We store them as Log2(Alignment), so we need 6 bits to encode the 33
60   // possible values.
61   template <unsigned Offset>
62   using AlignmentBitfieldElementT =
63       typename Bitfield::Element<unsigned, Offset, 6,
64                                  Value::MaxAlignmentExponent>;
65 
66   template <unsigned Offset>
67   using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>;
68 
69   template <unsigned Offset>
70   using AtomicOrderingBitfieldElementT =
71       typename Bitfield::Element<AtomicOrdering, Offset, 3,
72                                  AtomicOrdering::LAST>;
73 
74 private:
75   // The last bit is used to store whether the instruction has metadata attached
76   // or not.
77   using HasMetadataField = Bitfield::Element<bool, 15, 1>;
78 
79 protected:
80   ~Instruction(); // Use deleteValue() to delete a generic Instruction.
81 
82 public:
83   Instruction(const Instruction &) = delete;
84   Instruction &operator=(const Instruction &) = delete;
85 
86   /// Specialize the methods defined in Value, as we know that an instruction
87   /// can only be used by other instructions.
88   Instruction       *user_back()       { return cast<Instruction>(*user_begin());}
89   const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
90 
91   inline const BasicBlock *getParent() const { return Parent; }
92   inline       BasicBlock *getParent()       { return Parent; }
93 
94   /// Return the module owning the function this instruction belongs to
95   /// or nullptr it the function does not have a module.
96   ///
97   /// Note: this is undefined behavior if the instruction does not have a
98   /// parent, or the parent basic block does not have a parent function.
99   const Module *getModule() const;
100   Module *getModule() {
101     return const_cast<Module *>(
102                            static_cast<const Instruction *>(this)->getModule());
103   }
104 
105   /// Return the function this instruction belongs to.
106   ///
107   /// Note: it is undefined behavior to call this on an instruction not
108   /// currently inserted into a function.
109   const Function *getFunction() const;
110   Function *getFunction() {
111     return const_cast<Function *>(
112                          static_cast<const Instruction *>(this)->getFunction());
113   }
114 
115   /// This method unlinks 'this' from the containing basic block, but does not
116   /// delete it.
117   void removeFromParent();
118 
119   /// This method unlinks 'this' from the containing basic block and deletes it.
120   ///
121   /// \returns an iterator pointing to the element after the erased one
122   SymbolTableList<Instruction>::iterator eraseFromParent();
123 
124   /// Insert an unlinked instruction into a basic block immediately before
125   /// the specified instruction.
126   void insertBefore(Instruction *InsertPos);
127 
128   /// Insert an unlinked instruction into a basic block immediately after the
129   /// specified instruction.
130   void insertAfter(Instruction *InsertPos);
131 
132   /// Unlink this instruction from its current basic block and insert it into
133   /// the basic block that MovePos lives in, right before MovePos.
134   void moveBefore(Instruction *MovePos);
135 
136   /// Unlink this instruction and insert into BB before I.
137   ///
138   /// \pre I is a valid iterator into BB.
139   void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
140 
141   /// Unlink this instruction from its current basic block and insert it into
142   /// the basic block that MovePos lives in, right after MovePos.
143   void moveAfter(Instruction *MovePos);
144 
145   /// Given an instruction Other in the same basic block as this instruction,
146   /// return true if this instruction comes before Other. In this worst case,
147   /// this takes linear time in the number of instructions in the block. The
148   /// results are cached, so in common cases when the block remains unmodified,
149   /// it takes constant time.
150   bool comesBefore(const Instruction *Other) const;
151 
152   //===--------------------------------------------------------------------===//
153   // Subclass classification.
154   //===--------------------------------------------------------------------===//
155 
156   /// Returns a member of one of the enums like Instruction::Add.
157   unsigned getOpcode() const { return getValueID() - InstructionVal; }
158 
159   const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
160   bool isTerminator() const { return isTerminator(getOpcode()); }
161   bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
162   bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
163   bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
164   bool isShift() const { return isShift(getOpcode()); }
165   bool isCast() const { return isCast(getOpcode()); }
166   bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
167   bool isExceptionalTerminator() const {
168     return isExceptionalTerminator(getOpcode());
169   }
170 
171   /// It checks if this instruction is the only user of at least one of
172   /// its operands.
173   bool isOnlyUserOfAnyOperand();
174 
175   static const char* getOpcodeName(unsigned OpCode);
176 
177   static inline bool isTerminator(unsigned OpCode) {
178     return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
179   }
180 
181   static inline bool isUnaryOp(unsigned Opcode) {
182     return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
183   }
184   static inline bool isBinaryOp(unsigned Opcode) {
185     return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
186   }
187 
188   static inline bool isIntDivRem(unsigned Opcode) {
189     return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
190   }
191 
192   /// Determine if the Opcode is one of the shift instructions.
193   static inline bool isShift(unsigned Opcode) {
194     return Opcode >= Shl && Opcode <= AShr;
195   }
196 
197   /// Return true if this is a logical shift left or a logical shift right.
198   inline bool isLogicalShift() const {
199     return getOpcode() == Shl || getOpcode() == LShr;
200   }
201 
202   /// Return true if this is an arithmetic shift right.
203   inline bool isArithmeticShift() const {
204     return getOpcode() == AShr;
205   }
206 
207   /// Determine if the Opcode is and/or/xor.
208   static inline bool isBitwiseLogicOp(unsigned Opcode) {
209     return Opcode == And || Opcode == Or || Opcode == Xor;
210   }
211 
212   /// Return true if this is and/or/xor.
213   inline bool isBitwiseLogicOp() const {
214     return isBitwiseLogicOp(getOpcode());
215   }
216 
217   /// Determine if the OpCode is one of the CastInst instructions.
218   static inline bool isCast(unsigned OpCode) {
219     return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
220   }
221 
222   /// Determine if the OpCode is one of the FuncletPadInst instructions.
223   static inline bool isFuncletPad(unsigned OpCode) {
224     return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
225   }
226 
227   /// Returns true if the OpCode is a terminator related to exception handling.
228   static inline bool isExceptionalTerminator(unsigned OpCode) {
229     switch (OpCode) {
230     case Instruction::CatchSwitch:
231     case Instruction::CatchRet:
232     case Instruction::CleanupRet:
233     case Instruction::Invoke:
234     case Instruction::Resume:
235       return true;
236     default:
237       return false;
238     }
239   }
240 
241   //===--------------------------------------------------------------------===//
242   // Metadata manipulation.
243   //===--------------------------------------------------------------------===//
244 
245   /// Return true if this instruction has any metadata attached to it.
246   bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); }
247 
248   /// Return true if this instruction has metadata attached to it other than a
249   /// debug location.
250   bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); }
251 
252   /// Return true if this instruction has the given type of metadata attached.
253   bool hasMetadata(unsigned KindID) const {
254     return getMetadata(KindID) != nullptr;
255   }
256 
257   /// Return true if this instruction has the given type of metadata attached.
258   bool hasMetadata(StringRef Kind) const {
259     return getMetadata(Kind) != nullptr;
260   }
261 
262   /// Get the metadata of given kind attached to this Instruction.
263   /// If the metadata is not found then return null.
264   MDNode *getMetadata(unsigned KindID) const {
265     if (!hasMetadata()) return nullptr;
266     return getMetadataImpl(KindID);
267   }
268 
269   /// Get the metadata of given kind attached to this Instruction.
270   /// If the metadata is not found then return null.
271   MDNode *getMetadata(StringRef Kind) const {
272     if (!hasMetadata()) return nullptr;
273     return getMetadataImpl(Kind);
274   }
275 
276   /// Get all metadata attached to this Instruction. The first element of each
277   /// pair returned is the KindID, the second element is the metadata value.
278   /// This list is returned sorted by the KindID.
279   void
280   getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
281     if (hasMetadata())
282       getAllMetadataImpl(MDs);
283   }
284 
285   /// This does the same thing as getAllMetadata, except that it filters out the
286   /// debug location.
287   void getAllMetadataOtherThanDebugLoc(
288       SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
289     Value::getAllMetadata(MDs);
290   }
291 
292   /// Set the metadata of the specified kind to the specified node. This updates
293   /// or replaces metadata if already present, or removes it if Node is null.
294   void setMetadata(unsigned KindID, MDNode *Node);
295   void setMetadata(StringRef Kind, MDNode *Node);
296 
297   /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
298   /// specifies the list of meta data that needs to be copied. If \p WL is
299   /// empty, all meta data will be copied.
300   void copyMetadata(const Instruction &SrcInst,
301                     ArrayRef<unsigned> WL = ArrayRef<unsigned>());
302 
303   /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
304   /// has three operands (including name string), swap the order of the
305   /// metadata.
306   void swapProfMetadata();
307 
308   /// Drop all unknown metadata except for debug locations.
309   /// @{
310   /// Passes are required to drop metadata they don't understand. This is a
311   /// convenience method for passes to do so.
312   /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of
313   /// this API if the Instruction being modified is a call.
314   void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
315   void dropUnknownNonDebugMetadata() {
316     return dropUnknownNonDebugMetadata(None);
317   }
318   void dropUnknownNonDebugMetadata(unsigned ID1) {
319     return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
320   }
321   void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
322     unsigned IDs[] = {ID1, ID2};
323     return dropUnknownNonDebugMetadata(IDs);
324   }
325   /// @}
326 
327   /// Adds an !annotation metadata node with \p Annotation to this instruction.
328   /// If this instruction already has !annotation metadata, append \p Annotation
329   /// to the existing node.
330   void addAnnotationMetadata(StringRef Annotation);
331 
332   /// Returns the AA metadata for this instruction.
333   AAMDNodes getAAMetadata() const;
334 
335   /// Sets the AA metadata on this instruction from the AAMDNodes structure.
336   void setAAMetadata(const AAMDNodes &N);
337 
338   /// Retrieve the raw weight values of a conditional branch or select.
339   /// Returns true on success with profile weights filled in.
340   /// Returns false if no metadata or invalid metadata was found.
341   bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
342 
343   /// Retrieve total raw weight values of a branch.
344   /// Returns true on success with profile total weights filled in.
345   /// Returns false if no metadata was found.
346   bool extractProfTotalWeight(uint64_t &TotalVal) const;
347 
348   /// Set the debug location information for this instruction.
349   void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
350 
351   /// Return the debug location for this node as a DebugLoc.
352   const DebugLoc &getDebugLoc() const { return DbgLoc; }
353 
354   /// Set or clear the nuw flag on this instruction, which must be an operator
355   /// which supports this flag. See LangRef.html for the meaning of this flag.
356   void setHasNoUnsignedWrap(bool b = true);
357 
358   /// Set or clear the nsw flag on this instruction, which must be an operator
359   /// which supports this flag. See LangRef.html for the meaning of this flag.
360   void setHasNoSignedWrap(bool b = true);
361 
362   /// Set or clear the exact flag on this instruction, which must be an operator
363   /// which supports this flag. See LangRef.html for the meaning of this flag.
364   void setIsExact(bool b = true);
365 
366   /// Determine whether the no unsigned wrap flag is set.
367   bool hasNoUnsignedWrap() const;
368 
369   /// Determine whether the no signed wrap flag is set.
370   bool hasNoSignedWrap() const;
371 
372   /// Return true if this operator has flags which may cause this instruction
373   /// to evaluate to poison despite having non-poison inputs.
374   bool hasPoisonGeneratingFlags() const;
375 
376   /// Drops flags that may cause this instruction to evaluate to poison despite
377   /// having non-poison inputs.
378   void dropPoisonGeneratingFlags();
379 
380   /// This function drops non-debug unknown metadata (through
381   /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and
382   /// return attributes that can cause undefined behaviour. Both of these should
383   /// be done by passes which move instructions in IR.
384   void
385   dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {});
386 
387   /// Determine whether the exact flag is set.
388   bool isExact() const;
389 
390   /// Set or clear all fast-math-flags on this instruction, which must be an
391   /// operator which supports this flag. See LangRef.html for the meaning of
392   /// this flag.
393   void setFast(bool B);
394 
395   /// Set or clear the reassociation flag on this instruction, which must be
396   /// an operator which supports this flag. See LangRef.html for the meaning of
397   /// this flag.
398   void setHasAllowReassoc(bool B);
399 
400   /// Set or clear the no-nans flag on this instruction, which must be an
401   /// operator which supports this flag. See LangRef.html for the meaning of
402   /// this flag.
403   void setHasNoNaNs(bool B);
404 
405   /// Set or clear the no-infs flag on this instruction, which must be an
406   /// operator which supports this flag. See LangRef.html for the meaning of
407   /// this flag.
408   void setHasNoInfs(bool B);
409 
410   /// Set or clear the no-signed-zeros flag on this instruction, which must be
411   /// an operator which supports this flag. See LangRef.html for the meaning of
412   /// this flag.
413   void setHasNoSignedZeros(bool B);
414 
415   /// Set or clear the allow-reciprocal flag on this instruction, which must be
416   /// an operator which supports this flag. See LangRef.html for the meaning of
417   /// this flag.
418   void setHasAllowReciprocal(bool B);
419 
420   /// Set or clear the allow-contract flag on this instruction, which must be
421   /// an operator which supports this flag. See LangRef.html for the meaning of
422   /// this flag.
423   void setHasAllowContract(bool B);
424 
425   /// Set or clear the approximate-math-functions flag on this instruction,
426   /// which must be an operator which supports this flag. See LangRef.html for
427   /// the meaning of this flag.
428   void setHasApproxFunc(bool B);
429 
430   /// Convenience function for setting multiple fast-math flags on this
431   /// instruction, which must be an operator which supports these flags. See
432   /// LangRef.html for the meaning of these flags.
433   void setFastMathFlags(FastMathFlags FMF);
434 
435   /// Convenience function for transferring all fast-math flag values to this
436   /// instruction, which must be an operator which supports these flags. See
437   /// LangRef.html for the meaning of these flags.
438   void copyFastMathFlags(FastMathFlags FMF);
439 
440   /// Determine whether all fast-math-flags are set.
441   bool isFast() const;
442 
443   /// Determine whether the allow-reassociation flag is set.
444   bool hasAllowReassoc() const;
445 
446   /// Determine whether the no-NaNs flag is set.
447   bool hasNoNaNs() const;
448 
449   /// Determine whether the no-infs flag is set.
450   bool hasNoInfs() const;
451 
452   /// Determine whether the no-signed-zeros flag is set.
453   bool hasNoSignedZeros() const;
454 
455   /// Determine whether the allow-reciprocal flag is set.
456   bool hasAllowReciprocal() const;
457 
458   /// Determine whether the allow-contract flag is set.
459   bool hasAllowContract() const;
460 
461   /// Determine whether the approximate-math-functions flag is set.
462   bool hasApproxFunc() const;
463 
464   /// Convenience function for getting all the fast-math flags, which must be an
465   /// operator which supports these flags. See LangRef.html for the meaning of
466   /// these flags.
467   FastMathFlags getFastMathFlags() const;
468 
469   /// Copy I's fast-math flags
470   void copyFastMathFlags(const Instruction *I);
471 
472   /// Convenience method to copy supported exact, fast-math, and (optionally)
473   /// wrapping flags from V to this instruction.
474   void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
475 
476   /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
477   /// V and this instruction.
478   void andIRFlags(const Value *V);
479 
480   /// Merge 2 debug locations and apply it to the Instruction. If the
481   /// instruction is a CallIns, we need to traverse the inline chain to find
482   /// the common scope. This is not efficient for N-way merging as each time
483   /// you merge 2 iterations, you need to rebuild the hashmap to find the
484   /// common scope. However, we still choose this API because:
485   ///  1) Simplicity: it takes 2 locations instead of a list of locations.
486   ///  2) In worst case, it increases the complexity from O(N*I) to
487   ///     O(2*N*I), where N is # of Instructions to merge, and I is the
488   ///     maximum level of inline stack. So it is still linear.
489   ///  3) Merging of call instructions should be extremely rare in real
490   ///     applications, thus the N-way merging should be in code path.
491   /// The DebugLoc attached to this instruction will be overwritten by the
492   /// merged DebugLoc.
493   void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
494 
495   /// Updates the debug location given that the instruction has been hoisted
496   /// from a block to a predecessor of that block.
497   /// Note: it is undefined behavior to call this on an instruction not
498   /// currently inserted into a function.
499   void updateLocationAfterHoist();
500 
501   /// Drop the instruction's debug location. This does not guarantee removal
502   /// of the !dbg source location attachment, as it must set a line 0 location
503   /// with scope information attached on call instructions. To guarantee
504   /// removal of the !dbg attachment, use the \ref setDebugLoc() API.
505   /// Note: it is undefined behavior to call this on an instruction not
506   /// currently inserted into a function.
507   void dropLocation();
508 
509 private:
510   // These are all implemented in Metadata.cpp.
511   MDNode *getMetadataImpl(unsigned KindID) const;
512   MDNode *getMetadataImpl(StringRef Kind) const;
513   void
514   getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
515 
516 public:
517   //===--------------------------------------------------------------------===//
518   // Predicates and helper methods.
519   //===--------------------------------------------------------------------===//
520 
521   /// Return true if the instruction is associative:
522   ///
523   ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
524   ///
525   /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
526   ///
527   bool isAssociative() const LLVM_READONLY;
528   static bool isAssociative(unsigned Opcode) {
529     return Opcode == And || Opcode == Or || Opcode == Xor ||
530            Opcode == Add || Opcode == Mul;
531   }
532 
533   /// Return true if the instruction is commutative:
534   ///
535   ///   Commutative operators satisfy: (x op y) === (y op x)
536   ///
537   /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
538   /// applied to any type.
539   ///
540   bool isCommutative() const LLVM_READONLY;
541   static bool isCommutative(unsigned Opcode) {
542     switch (Opcode) {
543     case Add: case FAdd:
544     case Mul: case FMul:
545     case And: case Or: case Xor:
546       return true;
547     default:
548       return false;
549   }
550   }
551 
552   /// Return true if the instruction is idempotent:
553   ///
554   ///   Idempotent operators satisfy:  x op x === x
555   ///
556   /// In LLVM, the And and Or operators are idempotent.
557   ///
558   bool isIdempotent() const { return isIdempotent(getOpcode()); }
559   static bool isIdempotent(unsigned Opcode) {
560     return Opcode == And || Opcode == Or;
561   }
562 
563   /// Return true if the instruction is nilpotent:
564   ///
565   ///   Nilpotent operators satisfy:  x op x === Id,
566   ///
567   ///   where Id is the identity for the operator, i.e. a constant such that
568   ///     x op Id === x and Id op x === x for all x.
569   ///
570   /// In LLVM, the Xor operator is nilpotent.
571   ///
572   bool isNilpotent() const { return isNilpotent(getOpcode()); }
573   static bool isNilpotent(unsigned Opcode) {
574     return Opcode == Xor;
575   }
576 
577   /// Return true if this instruction may modify memory.
578   bool mayWriteToMemory() const;
579 
580   /// Return true if this instruction may read memory.
581   bool mayReadFromMemory() const;
582 
583   /// Return true if this instruction may read or write memory.
584   bool mayReadOrWriteMemory() const {
585     return mayReadFromMemory() || mayWriteToMemory();
586   }
587 
588   /// Return true if this instruction has an AtomicOrdering of unordered or
589   /// higher.
590   bool isAtomic() const;
591 
592   /// Return true if this atomic instruction loads from memory.
593   bool hasAtomicLoad() const;
594 
595   /// Return true if this atomic instruction stores to memory.
596   bool hasAtomicStore() const;
597 
598   /// Return true if this instruction has a volatile memory access.
599   bool isVolatile() const;
600 
601   /// Return true if this instruction may throw an exception.
602   bool mayThrow() const;
603 
604   /// Return true if this instruction behaves like a memory fence: it can load
605   /// or store to memory location without being given a memory location.
606   bool isFenceLike() const {
607     switch (getOpcode()) {
608     default:
609       return false;
610     // This list should be kept in sync with the list in mayWriteToMemory for
611     // all opcodes which don't have a memory location.
612     case Instruction::Fence:
613     case Instruction::CatchPad:
614     case Instruction::CatchRet:
615     case Instruction::Call:
616     case Instruction::Invoke:
617       return true;
618     }
619   }
620 
621   /// Return true if the instruction may have side effects.
622   ///
623   /// Side effects are:
624   ///  * Writing to memory.
625   ///  * Unwinding.
626   ///  * Not returning (e.g. an infinite loop).
627   ///
628   /// Note that this does not consider malloc and alloca to have side
629   /// effects because the newly allocated memory is completely invisible to
630   /// instructions which don't use the returned value.  For cases where this
631   /// matters, isSafeToSpeculativelyExecute may be more appropriate.
632   bool mayHaveSideEffects() const;
633 
634   /// Return true if the instruction can be removed if the result is unused.
635   ///
636   /// When constant folding some instructions cannot be removed even if their
637   /// results are unused. Specifically terminator instructions and calls that
638   /// may have side effects cannot be removed without semantically changing the
639   /// generated program.
640   bool isSafeToRemove() const;
641 
642   /// Return true if the instruction will return (unwinding is considered as
643   /// a form of returning control flow here).
644   bool willReturn() const;
645 
646   /// Return true if the instruction is a variety of EH-block.
647   bool isEHPad() const {
648     switch (getOpcode()) {
649     case Instruction::CatchSwitch:
650     case Instruction::CatchPad:
651     case Instruction::CleanupPad:
652     case Instruction::LandingPad:
653       return true;
654     default:
655       return false;
656     }
657   }
658 
659   /// Return true if the instruction is a llvm.lifetime.start or
660   /// llvm.lifetime.end marker.
661   bool isLifetimeStartOrEnd() const;
662 
663   /// Return true if the instruction is a llvm.launder.invariant.group or
664   /// llvm.strip.invariant.group.
665   bool isLaunderOrStripInvariantGroup() const;
666 
667   /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst.
668   bool isDebugOrPseudoInst() const;
669 
670   /// Return a pointer to the next non-debug instruction in the same basic
671   /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
672   /// operations if \c SkipPseudoOp is true.
673   const Instruction *
674   getNextNonDebugInstruction(bool SkipPseudoOp = false) const;
675   Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) {
676     return const_cast<Instruction *>(
677         static_cast<const Instruction *>(this)->getNextNonDebugInstruction(
678             SkipPseudoOp));
679   }
680 
681   /// Return a pointer to the previous non-debug instruction in the same basic
682   /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
683   /// operations if \c SkipPseudoOp is true.
684   const Instruction *
685   getPrevNonDebugInstruction(bool SkipPseudoOp = false) const;
686   Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) {
687     return const_cast<Instruction *>(
688         static_cast<const Instruction *>(this)->getPrevNonDebugInstruction(
689             SkipPseudoOp));
690   }
691 
692   /// Create a copy of 'this' instruction that is identical in all ways except
693   /// the following:
694   ///   * The instruction has no parent
695   ///   * The instruction has no name
696   ///
697   Instruction *clone() const;
698 
699   /// Return true if the specified instruction is exactly identical to the
700   /// current one. This means that all operands match and any extra information
701   /// (e.g. load is volatile) agree.
702   bool isIdenticalTo(const Instruction *I) const;
703 
704   /// This is like isIdenticalTo, except that it ignores the
705   /// SubclassOptionalData flags, which may specify conditions under which the
706   /// instruction's result is undefined.
707   bool isIdenticalToWhenDefined(const Instruction *I) const;
708 
709   /// When checking for operation equivalence (using isSameOperationAs) it is
710   /// sometimes useful to ignore certain attributes.
711   enum OperationEquivalenceFlags {
712     /// Check for equivalence ignoring load/store alignment.
713     CompareIgnoringAlignment = 1<<0,
714     /// Check for equivalence treating a type and a vector of that type
715     /// as equivalent.
716     CompareUsingScalarTypes = 1<<1
717   };
718 
719   /// This function determines if the specified instruction executes the same
720   /// operation as the current one. This means that the opcodes, type, operand
721   /// types and any other factors affecting the operation must be the same. This
722   /// is similar to isIdenticalTo except the operands themselves don't have to
723   /// be identical.
724   /// @returns true if the specified instruction is the same operation as
725   /// the current one.
726   /// Determine if one instruction is the same operation as another.
727   bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
728 
729   /// Return true if there are any uses of this instruction in blocks other than
730   /// the specified block. Note that PHI nodes are considered to evaluate their
731   /// operands in the corresponding predecessor block.
732   bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
733 
734   /// Return the number of successors that this instruction has. The instruction
735   /// must be a terminator.
736   unsigned getNumSuccessors() const;
737 
738   /// Return the specified successor. This instruction must be a terminator.
739   BasicBlock *getSuccessor(unsigned Idx) const;
740 
741   /// Update the specified successor to point at the provided block. This
742   /// instruction must be a terminator.
743   void setSuccessor(unsigned Idx, BasicBlock *BB);
744 
745   /// Replace specified successor OldBB to point at the provided block.
746   /// This instruction must be a terminator.
747   void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
748 
749   /// Methods for support type inquiry through isa, cast, and dyn_cast:
750   static bool classof(const Value *V) {
751     return V->getValueID() >= Value::InstructionVal;
752   }
753 
754   //----------------------------------------------------------------------
755   // Exported enumerations.
756   //
757   enum TermOps {       // These terminate basic blocks
758 #define  FIRST_TERM_INST(N)             TermOpsBegin = N,
759 #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
760 #define   LAST_TERM_INST(N)             TermOpsEnd = N+1
761 #include "llvm/IR/Instruction.def"
762   };
763 
764   enum UnaryOps {
765 #define  FIRST_UNARY_INST(N)             UnaryOpsBegin = N,
766 #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
767 #define   LAST_UNARY_INST(N)             UnaryOpsEnd = N+1
768 #include "llvm/IR/Instruction.def"
769   };
770 
771   enum BinaryOps {
772 #define  FIRST_BINARY_INST(N)             BinaryOpsBegin = N,
773 #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
774 #define   LAST_BINARY_INST(N)             BinaryOpsEnd = N+1
775 #include "llvm/IR/Instruction.def"
776   };
777 
778   enum MemoryOps {
779 #define  FIRST_MEMORY_INST(N)             MemoryOpsBegin = N,
780 #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
781 #define   LAST_MEMORY_INST(N)             MemoryOpsEnd = N+1
782 #include "llvm/IR/Instruction.def"
783   };
784 
785   enum CastOps {
786 #define  FIRST_CAST_INST(N)             CastOpsBegin = N,
787 #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
788 #define   LAST_CAST_INST(N)             CastOpsEnd = N+1
789 #include "llvm/IR/Instruction.def"
790   };
791 
792   enum FuncletPadOps {
793 #define  FIRST_FUNCLETPAD_INST(N)             FuncletPadOpsBegin = N,
794 #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
795 #define   LAST_FUNCLETPAD_INST(N)             FuncletPadOpsEnd = N+1
796 #include "llvm/IR/Instruction.def"
797   };
798 
799   enum OtherOps {
800 #define  FIRST_OTHER_INST(N)             OtherOpsBegin = N,
801 #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
802 #define   LAST_OTHER_INST(N)             OtherOpsEnd = N+1
803 #include "llvm/IR/Instruction.def"
804   };
805 
806 private:
807   friend class SymbolTableListTraits<Instruction>;
808   friend class BasicBlock; // For renumbering.
809 
810   // Shadow Value::setValueSubclassData with a private forwarding method so that
811   // subclasses cannot accidentally use it.
812   void setValueSubclassData(unsigned short D) {
813     Value::setValueSubclassData(D);
814   }
815 
816   unsigned short getSubclassDataFromValue() const {
817     return Value::getSubclassDataFromValue();
818   }
819 
820   void setParent(BasicBlock *P);
821 
822 protected:
823   // Instruction subclasses can stick up to 15 bits of stuff into the
824   // SubclassData field of instruction with these members.
825 
826   template <typename BitfieldElement>
827   typename BitfieldElement::Type getSubclassData() const {
828     static_assert(
829         std::is_same<BitfieldElement, HasMetadataField>::value ||
830             !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
831         "Must not overlap with the metadata bit");
832     return Bitfield::get<BitfieldElement>(getSubclassDataFromValue());
833   }
834 
835   template <typename BitfieldElement>
836   void setSubclassData(typename BitfieldElement::Type Value) {
837     static_assert(
838         std::is_same<BitfieldElement, HasMetadataField>::value ||
839             !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
840         "Must not overlap with the metadata bit");
841     auto Storage = getSubclassDataFromValue();
842     Bitfield::set<BitfieldElement>(Storage, Value);
843     setValueSubclassData(Storage);
844   }
845 
846   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
847               Instruction *InsertBefore = nullptr);
848   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
849               BasicBlock *InsertAtEnd);
850 
851 private:
852   /// Create a copy of this instruction.
853   Instruction *cloneImpl() const;
854 };
855 
856 inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
857   V->deleteValue();
858 }
859 
860 } // end namespace llvm
861 
862 #endif // LLVM_IR_INSTRUCTION_H
863