1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for metadata subclasses.
11 /// They represent the different flavors of metadata that live in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_METADATA_H
16 #define LLVM_IR_METADATA_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/PointerUnion.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/ilist_node.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/Support/CBindingWrapping.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <iterator>
37 #include <memory>
38 #include <string>
39 #include <type_traits>
40 #include <utility>
41 
42 namespace llvm {
43 
44 class Module;
45 class ModuleSlotTracker;
46 class raw_ostream;
47 template <typename T> class StringMapEntry;
48 template <typename ValueTy> class StringMapEntryStorage;
49 class Type;
50 
51 enum LLVMConstants : uint32_t {
52   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53 };
54 
55 /// Magic number in the value profile metadata showing a target has been
56 /// promoted for the instruction and shouldn't be promoted again.
57 const uint64_t NOMORE_ICP_MAGICNUM = -1;
58 
59 /// Root of the metadata hierarchy.
60 ///
61 /// This is a root class for typeless data in the IR.
62 class Metadata {
63   friend class ReplaceableMetadataImpl;
64 
65   /// RTTI.
66   const unsigned char SubclassID;
67 
68 protected:
69   /// Active type of storage.
70   enum StorageType { Uniqued, Distinct, Temporary };
71 
72   /// Storage flag for non-uniqued, otherwise unowned, metadata.
73   unsigned char Storage : 7;
74 
75   unsigned char SubclassData1 : 1;
76   unsigned short SubclassData16 = 0;
77   unsigned SubclassData32 = 0;
78 
79 public:
80   enum MetadataKind {
81 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
82 #include "llvm/IR/Metadata.def"
83   };
84 
85 protected:
86   Metadata(unsigned ID, StorageType Storage)
87       : SubclassID(ID), Storage(Storage), SubclassData1(false) {
88     static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
89   }
90 
91   ~Metadata() = default;
92 
93   /// Default handling of a changed operand, which asserts.
94   ///
95   /// If subclasses pass themselves in as owners to a tracking node reference,
96   /// they must provide an implementation of this method.
97   void handleChangedOperand(void *, Metadata *) {
98     llvm_unreachable("Unimplemented in Metadata subclass");
99   }
100 
101 public:
102   unsigned getMetadataID() const { return SubclassID; }
103 
104   /// User-friendly dump.
105   ///
106   /// If \c M is provided, metadata nodes will be numbered canonically;
107   /// otherwise, pointer addresses are substituted.
108   ///
109   /// Note: this uses an explicit overload instead of default arguments so that
110   /// the nullptr version is easy to call from a debugger.
111   ///
112   /// @{
113   void dump() const;
114   void dump(const Module *M) const;
115   /// @}
116 
117   /// Print.
118   ///
119   /// Prints definition of \c this.
120   ///
121   /// If \c M is provided, metadata nodes will be numbered canonically;
122   /// otherwise, pointer addresses are substituted.
123   /// @{
124   void print(raw_ostream &OS, const Module *M = nullptr,
125              bool IsForDebug = false) const;
126   void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
127              bool IsForDebug = false) const;
128   /// @}
129 
130   /// Print as operand.
131   ///
132   /// Prints reference of \c this.
133   ///
134   /// If \c M is provided, metadata nodes will be numbered canonically;
135   /// otherwise, pointer addresses are substituted.
136   /// @{
137   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
138   void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
139                       const Module *M = nullptr) const;
140   /// @}
141 };
142 
143 // Create wrappers for C Binding types (see CBindingWrapping.h).
144 DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
145 
146 // Specialized opaque metadata conversions.
147 inline Metadata **unwrap(LLVMMetadataRef *MDs) {
148   return reinterpret_cast<Metadata**>(MDs);
149 }
150 
151 #define HANDLE_METADATA(CLASS) class CLASS;
152 #include "llvm/IR/Metadata.def"
153 
154 // Provide specializations of isa so that we don't need definitions of
155 // subclasses to see if the metadata is a subclass.
156 #define HANDLE_METADATA_LEAF(CLASS)                                            \
157   template <> struct isa_impl<CLASS, Metadata> {                               \
158     static inline bool doit(const Metadata &MD) {                              \
159       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
160     }                                                                          \
161   };
162 #include "llvm/IR/Metadata.def"
163 
164 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
165   MD.print(OS);
166   return OS;
167 }
168 
169 /// Metadata wrapper in the Value hierarchy.
170 ///
171 /// A member of the \a Value hierarchy to represent a reference to metadata.
172 /// This allows, e.g., intrinsics to have metadata as operands.
173 ///
174 /// Notably, this is the only thing in either hierarchy that is allowed to
175 /// reference \a LocalAsMetadata.
176 class MetadataAsValue : public Value {
177   friend class ReplaceableMetadataImpl;
178   friend class LLVMContextImpl;
179 
180   Metadata *MD;
181 
182   MetadataAsValue(Type *Ty, Metadata *MD);
183 
184   /// Drop use of metadata (during teardown).
185   void dropUse() { MD = nullptr; }
186 
187 public:
188   ~MetadataAsValue();
189 
190   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
191   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
192 
193   Metadata *getMetadata() const { return MD; }
194 
195   static bool classof(const Value *V) {
196     return V->getValueID() == MetadataAsValueVal;
197   }
198 
199 private:
200   void handleChangedMetadata(Metadata *MD);
201   void track();
202   void untrack();
203 };
204 
205 /// API for tracking metadata references through RAUW and deletion.
206 ///
207 /// Shared API for updating \a Metadata pointers in subclasses that support
208 /// RAUW.
209 ///
210 /// This API is not meant to be used directly.  See \a TrackingMDRef for a
211 /// user-friendly tracking reference.
212 class MetadataTracking {
213 public:
214   /// Track the reference to metadata.
215   ///
216   /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
217   /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
218   /// deleted, \c MD will be set to \c nullptr.
219   ///
220   /// If tracking isn't supported, \c *MD will not change.
221   ///
222   /// \return true iff tracking is supported by \c MD.
223   static bool track(Metadata *&MD) {
224     return track(&MD, *MD, static_cast<Metadata *>(nullptr));
225   }
226 
227   /// Track the reference to metadata for \a Metadata.
228   ///
229   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
230   /// tell it that its operand changed.  This could trigger \c Owner being
231   /// re-uniqued.
232   static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
233     return track(Ref, MD, &Owner);
234   }
235 
236   /// Track the reference to metadata for \a MetadataAsValue.
237   ///
238   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
239   /// tell it that its operand changed.  This could trigger \c Owner being
240   /// re-uniqued.
241   static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
242     return track(Ref, MD, &Owner);
243   }
244 
245   /// Stop tracking a reference to metadata.
246   ///
247   /// Stops \c *MD from tracking \c MD.
248   static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
249   static void untrack(void *Ref, Metadata &MD);
250 
251   /// Move tracking from one reference to another.
252   ///
253   /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
254   /// except that ownership callbacks are maintained.
255   ///
256   /// Note: it is an error if \c *MD does not equal \c New.
257   ///
258   /// \return true iff tracking is supported by \c MD.
259   static bool retrack(Metadata *&MD, Metadata *&New) {
260     return retrack(&MD, *MD, &New);
261   }
262   static bool retrack(void *Ref, Metadata &MD, void *New);
263 
264   /// Check whether metadata is replaceable.
265   static bool isReplaceable(const Metadata &MD);
266 
267   using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
268 
269 private:
270   /// Track a reference to metadata for an owner.
271   ///
272   /// Generalized version of tracking.
273   static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
274 };
275 
276 /// Shared implementation of use-lists for replaceable metadata.
277 ///
278 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
279 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
280 /// and \a TempMDNode).
281 class ReplaceableMetadataImpl {
282   friend class MetadataTracking;
283 
284 public:
285   using OwnerTy = MetadataTracking::OwnerTy;
286 
287 private:
288   LLVMContext &Context;
289   uint64_t NextIndex = 0;
290   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
291 
292 public:
293   ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
294 
295   ~ReplaceableMetadataImpl() {
296     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
297   }
298 
299   LLVMContext &getContext() const { return Context; }
300 
301   /// Replace all uses of this with MD.
302   ///
303   /// Replace all uses of this with \c MD, which is allowed to be null.
304   void replaceAllUsesWith(Metadata *MD);
305    /// Replace all uses of the constant with Undef in debug info metadata
306   static void SalvageDebugInfo(const Constant &C);
307   /// Returns the list of all DIArgList users of this.
308   SmallVector<Metadata *> getAllArgListUsers();
309 
310   /// Resolve all uses of this.
311   ///
312   /// Resolve all uses of this, turning off RAUW permanently.  If \c
313   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
314   /// is resolved.
315   void resolveAllUses(bool ResolveUsers = true);
316 
317 private:
318   void addRef(void *Ref, OwnerTy Owner);
319   void dropRef(void *Ref);
320   void moveRef(void *Ref, void *New, const Metadata &MD);
321 
322   /// Lazily construct RAUW support on MD.
323   ///
324   /// If this is an unresolved MDNode, RAUW support will be created on-demand.
325   /// ValueAsMetadata always has RAUW support.
326   static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
327 
328   /// Get RAUW support on MD, if it exists.
329   static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
330 
331   /// Check whether this node will support RAUW.
332   ///
333   /// Returns \c true unless getOrCreate() would return null.
334   static bool isReplaceable(const Metadata &MD);
335 };
336 
337 /// Value wrapper in the Metadata hierarchy.
338 ///
339 /// This is a custom value handle that allows other metadata to refer to
340 /// classes in the Value hierarchy.
341 ///
342 /// Because of full uniquing support, each value is only wrapped by a single \a
343 /// ValueAsMetadata object, so the lookup maps are far more efficient than
344 /// those using ValueHandleBase.
345 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
346   friend class ReplaceableMetadataImpl;
347   friend class LLVMContextImpl;
348 
349   Value *V;
350 
351   /// Drop users without RAUW (during teardown).
352   void dropUsers() {
353     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
354   }
355 
356 protected:
357   ValueAsMetadata(unsigned ID, Value *V)
358       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
359     assert(V && "Expected valid value");
360   }
361 
362   ~ValueAsMetadata() = default;
363 
364 public:
365   static ValueAsMetadata *get(Value *V);
366 
367   static ConstantAsMetadata *getConstant(Value *C) {
368     return cast<ConstantAsMetadata>(get(C));
369   }
370 
371   static LocalAsMetadata *getLocal(Value *Local) {
372     return cast<LocalAsMetadata>(get(Local));
373   }
374 
375   static ValueAsMetadata *getIfExists(Value *V);
376 
377   static ConstantAsMetadata *getConstantIfExists(Value *C) {
378     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
379   }
380 
381   static LocalAsMetadata *getLocalIfExists(Value *Local) {
382     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
383   }
384 
385   Value *getValue() const { return V; }
386   Type *getType() const { return V->getType(); }
387   LLVMContext &getContext() const { return V->getContext(); }
388 
389   SmallVector<Metadata *> getAllArgListUsers() {
390     return ReplaceableMetadataImpl::getAllArgListUsers();
391   }
392 
393   static void handleDeletion(Value *V);
394   static void handleRAUW(Value *From, Value *To);
395 
396 protected:
397   /// Handle collisions after \a Value::replaceAllUsesWith().
398   ///
399   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
400   /// \a Value gets RAUW'ed and the target already exists, this is used to
401   /// merge the two metadata nodes.
402   void replaceAllUsesWith(Metadata *MD) {
403     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
404   }
405 
406 public:
407   static bool classof(const Metadata *MD) {
408     return MD->getMetadataID() == LocalAsMetadataKind ||
409            MD->getMetadataID() == ConstantAsMetadataKind;
410   }
411 };
412 
413 class ConstantAsMetadata : public ValueAsMetadata {
414   friend class ValueAsMetadata;
415 
416   ConstantAsMetadata(Constant *C)
417       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
418 
419 public:
420   static ConstantAsMetadata *get(Constant *C) {
421     return ValueAsMetadata::getConstant(C);
422   }
423 
424   static ConstantAsMetadata *getIfExists(Constant *C) {
425     return ValueAsMetadata::getConstantIfExists(C);
426   }
427 
428   Constant *getValue() const {
429     return cast<Constant>(ValueAsMetadata::getValue());
430   }
431 
432   static bool classof(const Metadata *MD) {
433     return MD->getMetadataID() == ConstantAsMetadataKind;
434   }
435 };
436 
437 class LocalAsMetadata : public ValueAsMetadata {
438   friend class ValueAsMetadata;
439 
440   LocalAsMetadata(Value *Local)
441       : ValueAsMetadata(LocalAsMetadataKind, Local) {
442     assert(!isa<Constant>(Local) && "Expected local value");
443   }
444 
445 public:
446   static LocalAsMetadata *get(Value *Local) {
447     return ValueAsMetadata::getLocal(Local);
448   }
449 
450   static LocalAsMetadata *getIfExists(Value *Local) {
451     return ValueAsMetadata::getLocalIfExists(Local);
452   }
453 
454   static bool classof(const Metadata *MD) {
455     return MD->getMetadataID() == LocalAsMetadataKind;
456   }
457 };
458 
459 /// Transitional API for extracting constants from Metadata.
460 ///
461 /// This namespace contains transitional functions for metadata that points to
462 /// \a Constants.
463 ///
464 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
465 /// operands could refer to any \a Value.  There's was a lot of code like this:
466 ///
467 /// \code
468 ///     MDNode *N = ...;
469 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
470 /// \endcode
471 ///
472 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
473 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
474 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
475 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
476 /// requires subtle control flow changes.
477 ///
478 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
479 /// so that metadata can refer to numbers without traversing a bridge to the \a
480 /// Value hierarchy.  In this final state, the code above would look like this:
481 ///
482 /// \code
483 ///     MDNode *N = ...;
484 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
485 /// \endcode
486 ///
487 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
488 /// yet, and even once it does, changing each metadata schema to use it is its
489 /// own mini-project.  In the meantime this API prevents us from introducing
490 /// complex and bug-prone control flow that will disappear in the end.  In
491 /// particular, the above code looks like this:
492 ///
493 /// \code
494 ///     MDNode *N = ...;
495 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
496 /// \endcode
497 ///
498 /// The full set of provided functions includes:
499 ///
500 ///   mdconst::hasa                <=> isa
501 ///   mdconst::extract             <=> cast
502 ///   mdconst::extract_or_null     <=> cast_or_null
503 ///   mdconst::dyn_extract         <=> dyn_cast
504 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
505 ///
506 /// The target of the cast must be a subclass of \a Constant.
507 namespace mdconst {
508 
509 namespace detail {
510 
511 template <class T> T &make();
512 template <class T, class Result> struct HasDereference {
513   using Yes = char[1];
514   using No = char[2];
515   template <size_t N> struct SFINAE {};
516 
517   template <class U, class V>
518   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
519   template <class U, class V> static No &hasDereference(...);
520 
521   static const bool value =
522       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
523 };
524 template <class V, class M> struct IsValidPointer {
525   static const bool value = std::is_base_of<Constant, V>::value &&
526                             HasDereference<M, const Metadata &>::value;
527 };
528 template <class V, class M> struct IsValidReference {
529   static const bool value = std::is_base_of<Constant, V>::value &&
530                             std::is_convertible<M, const Metadata &>::value;
531 };
532 
533 } // end namespace detail
534 
535 /// Check whether Metadata has a Value.
536 ///
537 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
538 /// type \c X.
539 template <class X, class Y>
540 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
541 hasa(Y &&MD) {
542   assert(MD && "Null pointer sent into hasa");
543   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
544     return isa<X>(V->getValue());
545   return false;
546 }
547 template <class X, class Y>
548 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
549 hasa(Y &MD) {
550   return hasa(&MD);
551 }
552 
553 /// Extract a Value from Metadata.
554 ///
555 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
556 template <class X, class Y>
557 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
558 extract(Y &&MD) {
559   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
560 }
561 template <class X, class Y>
562 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
563 extract(Y &MD) {
564   return extract(&MD);
565 }
566 
567 /// Extract a Value from Metadata, allowing null.
568 ///
569 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
570 /// from \c MD, allowing \c MD to be null.
571 template <class X, class Y>
572 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
573 extract_or_null(Y &&MD) {
574   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
575     return cast<X>(V->getValue());
576   return nullptr;
577 }
578 
579 /// Extract a Value from Metadata, if any.
580 ///
581 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
582 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
583 /// Value it does contain is of the wrong subclass.
584 template <class X, class Y>
585 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
586 dyn_extract(Y &&MD) {
587   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
588     return dyn_cast<X>(V->getValue());
589   return nullptr;
590 }
591 
592 /// Extract a Value from Metadata, if any, allowing null.
593 ///
594 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
595 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
596 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
597 template <class X, class Y>
598 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
599 dyn_extract_or_null(Y &&MD) {
600   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
601     return dyn_cast<X>(V->getValue());
602   return nullptr;
603 }
604 
605 } // end namespace mdconst
606 
607 //===----------------------------------------------------------------------===//
608 /// A single uniqued string.
609 ///
610 /// These are used to efficiently contain a byte sequence for metadata.
611 /// MDString is always unnamed.
612 class MDString : public Metadata {
613   friend class StringMapEntryStorage<MDString>;
614 
615   StringMapEntry<MDString> *Entry = nullptr;
616 
617   MDString() : Metadata(MDStringKind, Uniqued) {}
618 
619 public:
620   MDString(const MDString &) = delete;
621   MDString &operator=(MDString &&) = delete;
622   MDString &operator=(const MDString &) = delete;
623 
624   static MDString *get(LLVMContext &Context, StringRef Str);
625   static MDString *get(LLVMContext &Context, const char *Str) {
626     return get(Context, Str ? StringRef(Str) : StringRef());
627   }
628 
629   StringRef getString() const;
630 
631   unsigned getLength() const { return (unsigned)getString().size(); }
632 
633   using iterator = StringRef::iterator;
634 
635   /// Pointer to the first byte of the string.
636   iterator begin() const { return getString().begin(); }
637 
638   /// Pointer to one byte past the end of the string.
639   iterator end() const { return getString().end(); }
640 
641   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
642   const unsigned char *bytes_end() const { return getString().bytes_end(); }
643 
644   /// Methods for support type inquiry through isa, cast, and dyn_cast.
645   static bool classof(const Metadata *MD) {
646     return MD->getMetadataID() == MDStringKind;
647   }
648 };
649 
650 /// A collection of metadata nodes that might be associated with a
651 /// memory access used by the alias-analysis infrastructure.
652 struct AAMDNodes {
653   explicit AAMDNodes() = default;
654   explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
655       : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
656 
657   bool operator==(const AAMDNodes &A) const {
658     return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
659            NoAlias == A.NoAlias;
660   }
661 
662   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
663 
664   explicit operator bool() const {
665     return TBAA || TBAAStruct || Scope || NoAlias;
666   }
667 
668   /// The tag for type-based alias analysis.
669   MDNode *TBAA = nullptr;
670 
671   /// The tag for type-based alias analysis (tbaa struct).
672   MDNode *TBAAStruct = nullptr;
673 
674   /// The tag for alias scope specification (used with noalias).
675   MDNode *Scope = nullptr;
676 
677   /// The tag specifying the noalias scope.
678   MDNode *NoAlias = nullptr;
679 
680   // Shift tbaa Metadata node to start off bytes later
681   static MDNode *shiftTBAA(MDNode *M, size_t off);
682 
683   // Shift tbaa.struct Metadata node to start off bytes later
684   static MDNode *shiftTBAAStruct(MDNode *M, size_t off);
685 
686   // Extend tbaa Metadata node to apply to a series of bytes of length len.
687   // A size of -1 denotes an unknown size.
688   static MDNode *extendToTBAA(MDNode *TBAA, ssize_t len);
689 
690   /// Given two sets of AAMDNodes that apply to the same pointer,
691   /// give the best AAMDNodes that are compatible with both (i.e. a set of
692   /// nodes whose allowable aliasing conclusions are a subset of those
693   /// allowable by both of the inputs). However, for efficiency
694   /// reasons, do not create any new MDNodes.
695   AAMDNodes intersect(const AAMDNodes &Other) const {
696     AAMDNodes Result;
697     Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
698     Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
699     Result.Scope = Other.Scope == Scope ? Scope : nullptr;
700     Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
701     return Result;
702   }
703 
704   /// Create a new AAMDNode that describes this AAMDNode after applying a
705   /// constant offset to the start of the pointer.
706   AAMDNodes shift(size_t Offset) const {
707     AAMDNodes Result;
708     Result.TBAA = TBAA ? shiftTBAA(TBAA, Offset) : nullptr;
709     Result.TBAAStruct =
710         TBAAStruct ? shiftTBAAStruct(TBAAStruct, Offset) : nullptr;
711     Result.Scope = Scope;
712     Result.NoAlias = NoAlias;
713     return Result;
714   }
715 
716   /// Create a new AAMDNode that describes this AAMDNode after extending it to
717   /// apply to a series of bytes of length Len. A size of -1 denotes an unknown
718   /// size.
719   AAMDNodes extendTo(ssize_t Len) const {
720     AAMDNodes Result;
721     Result.TBAA = TBAA ? extendToTBAA(TBAA, Len) : nullptr;
722     // tbaa.struct contains (offset, size, type) triples. Extending the length
723     // of the tbaa.struct doesn't require changing this (though more information
724     // could be provided by adding more triples at subsequent lengths).
725     Result.TBAAStruct = TBAAStruct;
726     Result.Scope = Scope;
727     Result.NoAlias = NoAlias;
728     return Result;
729   }
730 
731   /// Given two sets of AAMDNodes applying to potentially different locations,
732   /// determine the best AAMDNodes that apply to both.
733   AAMDNodes merge(const AAMDNodes &Other) const;
734 
735   /// Determine the best AAMDNodes after concatenating two different locations
736   /// together. Different from `merge`, where different locations should
737   /// overlap each other, `concat` puts non-overlapping locations together.
738   AAMDNodes concat(const AAMDNodes &Other) const;
739 };
740 
741 // Specialize DenseMapInfo for AAMDNodes.
742 template<>
743 struct DenseMapInfo<AAMDNodes> {
744   static inline AAMDNodes getEmptyKey() {
745     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
746                      nullptr, nullptr, nullptr);
747   }
748 
749   static inline AAMDNodes getTombstoneKey() {
750     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
751                      nullptr, nullptr, nullptr);
752   }
753 
754   static unsigned getHashValue(const AAMDNodes &Val) {
755     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
756            DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
757            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
758            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
759   }
760 
761   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
762     return LHS == RHS;
763   }
764 };
765 
766 /// Tracking metadata reference owned by Metadata.
767 ///
768 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
769 /// of \a Metadata, which has the option of registering itself for callbacks to
770 /// re-unique itself.
771 ///
772 /// In particular, this is used by \a MDNode.
773 class MDOperand {
774   Metadata *MD = nullptr;
775 
776 public:
777   MDOperand() = default;
778   MDOperand(const MDOperand &) = delete;
779   MDOperand(MDOperand &&Op) {
780     MD = Op.MD;
781     if (MD)
782       (void)MetadataTracking::retrack(Op.MD, MD);
783     Op.MD = nullptr;
784   }
785   MDOperand &operator=(const MDOperand &) = delete;
786   MDOperand &operator=(MDOperand &&Op) {
787     MD = Op.MD;
788     if (MD)
789       (void)MetadataTracking::retrack(Op.MD, MD);
790     Op.MD = nullptr;
791     return *this;
792   }
793   ~MDOperand() { untrack(); }
794 
795   Metadata *get() const { return MD; }
796   operator Metadata *() const { return get(); }
797   Metadata *operator->() const { return get(); }
798   Metadata &operator*() const { return *get(); }
799 
800   void reset() {
801     untrack();
802     MD = nullptr;
803   }
804   void reset(Metadata *MD, Metadata *Owner) {
805     untrack();
806     this->MD = MD;
807     track(Owner);
808   }
809 
810 private:
811   void track(Metadata *Owner) {
812     if (MD) {
813       if (Owner)
814         MetadataTracking::track(this, *MD, *Owner);
815       else
816         MetadataTracking::track(MD);
817     }
818   }
819 
820   void untrack() {
821     assert(static_cast<void *>(this) == &MD && "Expected same address");
822     if (MD)
823       MetadataTracking::untrack(MD);
824   }
825 };
826 
827 template <> struct simplify_type<MDOperand> {
828   using SimpleType = Metadata *;
829 
830   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
831 };
832 
833 template <> struct simplify_type<const MDOperand> {
834   using SimpleType = Metadata *;
835 
836   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
837 };
838 
839 /// Pointer to the context, with optional RAUW support.
840 ///
841 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
842 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
843 class ContextAndReplaceableUses {
844   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
845 
846 public:
847   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
848   ContextAndReplaceableUses(
849       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
850       : Ptr(ReplaceableUses.release()) {
851     assert(getReplaceableUses() && "Expected non-null replaceable uses");
852   }
853   ContextAndReplaceableUses() = delete;
854   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
855   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
856   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
857   ContextAndReplaceableUses &
858   operator=(const ContextAndReplaceableUses &) = delete;
859   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
860 
861   operator LLVMContext &() { return getContext(); }
862 
863   /// Whether this contains RAUW support.
864   bool hasReplaceableUses() const {
865     return Ptr.is<ReplaceableMetadataImpl *>();
866   }
867 
868   LLVMContext &getContext() const {
869     if (hasReplaceableUses())
870       return getReplaceableUses()->getContext();
871     return *Ptr.get<LLVMContext *>();
872   }
873 
874   ReplaceableMetadataImpl *getReplaceableUses() const {
875     if (hasReplaceableUses())
876       return Ptr.get<ReplaceableMetadataImpl *>();
877     return nullptr;
878   }
879 
880   /// Ensure that this has RAUW support, and then return it.
881   ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
882     if (!hasReplaceableUses())
883       makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
884     return getReplaceableUses();
885   }
886 
887   /// Assign RAUW support to this.
888   ///
889   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
890   /// not be null).
891   void
892   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
893     assert(ReplaceableUses && "Expected non-null replaceable uses");
894     assert(&ReplaceableUses->getContext() == &getContext() &&
895            "Expected same context");
896     delete getReplaceableUses();
897     Ptr = ReplaceableUses.release();
898   }
899 
900   /// Drop RAUW support.
901   ///
902   /// Cede ownership of RAUW support, returning it.
903   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
904     assert(hasReplaceableUses() && "Expected to own replaceable uses");
905     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
906         getReplaceableUses());
907     Ptr = &ReplaceableUses->getContext();
908     return ReplaceableUses;
909   }
910 };
911 
912 struct TempMDNodeDeleter {
913   inline void operator()(MDNode *Node) const;
914 };
915 
916 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
917   using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
918 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
919 #include "llvm/IR/Metadata.def"
920 
921 /// Metadata node.
922 ///
923 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
924 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
925 /// until forward references are known.  The basic metadata node is an \a
926 /// MDTuple.
927 ///
928 /// There is limited support for RAUW at construction time.  At construction
929 /// time, if any operand is a temporary node (or an unresolved uniqued node,
930 /// which indicates a transitive temporary operand), the node itself will be
931 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
932 /// support permanently.
933 ///
934 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
935 /// to be called on some member of the cycle once all temporary nodes have been
936 /// replaced.
937 ///
938 /// MDNodes can be large or small, as well as resizable or non-resizable.
939 /// Large MDNodes' operands are allocated in a separate storage vector,
940 /// whereas small MDNodes' operands are co-allocated. Distinct and temporary
941 /// MDnodes are resizable, but only MDTuples support this capability.
942 ///
943 /// Clients can add operands to resizable MDNodes using push_back().
944 class MDNode : public Metadata {
945   friend class ReplaceableMetadataImpl;
946   friend class LLVMContextImpl;
947   friend class DIArgList;
948 
949   /// The header that is coallocated with an MDNode along with its "small"
950   /// operands. It is located immediately before the main body of the node.
951   /// The operands are in turn located immediately before the header.
952   /// For resizable MDNodes, the space for the storage vector is also allocated
953   /// immediately before the header, overlapping with the operands.
954   struct Header {
955     bool IsResizable : 1;
956     bool IsLarge : 1;
957     size_t SmallSize : 4;
958     size_t SmallNumOps : 4;
959     size_t : sizeof(size_t) * CHAR_BIT - 10;
960 
961     unsigned NumUnresolved = 0;
962     using LargeStorageVector = SmallVector<MDOperand, 0>;
963 
964     static constexpr size_t NumOpsFitInVector =
965         sizeof(LargeStorageVector) / sizeof(MDOperand);
966     static_assert(
967         NumOpsFitInVector * sizeof(MDOperand) == sizeof(LargeStorageVector),
968         "sizeof(LargeStorageVector) must be a multiple of sizeof(MDOperand)");
969 
970     static constexpr size_t MaxSmallSize = 15;
971 
972     static constexpr size_t getOpSize(unsigned NumOps) {
973       return sizeof(MDOperand) * NumOps;
974     }
975     /// Returns the number of operands the node has space for based on its
976     /// allocation characteristics.
977     static size_t getSmallSize(size_t NumOps, bool IsResizable, bool IsLarge) {
978       return IsLarge ? NumOpsFitInVector
979                      : std::max(NumOps, NumOpsFitInVector * IsResizable);
980     }
981     /// Returns the number of bytes allocated for operands and header.
982     static size_t getAllocSize(StorageType Storage, size_t NumOps) {
983       return getOpSize(
984                  getSmallSize(NumOps, isResizable(Storage), isLarge(NumOps))) +
985              sizeof(Header);
986     }
987 
988     /// Only temporary and distinct nodes are resizable.
989     static bool isResizable(StorageType Storage) { return Storage != Uniqued; }
990     static bool isLarge(size_t NumOps) { return NumOps > MaxSmallSize; }
991 
992     size_t getAllocSize() const {
993       return getOpSize(SmallSize) + sizeof(Header);
994     }
995     void *getAllocation() {
996       return reinterpret_cast<char *>(this + 1) -
997              alignTo(getAllocSize(), alignof(uint64_t));
998     }
999 
1000     void *getLargePtr() const;
1001     void *getSmallPtr();
1002 
1003     LargeStorageVector &getLarge() {
1004       assert(IsLarge);
1005       return *reinterpret_cast<LargeStorageVector *>(getLargePtr());
1006     }
1007 
1008     const LargeStorageVector &getLarge() const {
1009       assert(IsLarge);
1010       return *reinterpret_cast<const LargeStorageVector *>(getLargePtr());
1011     }
1012 
1013     void resizeSmall(size_t NumOps);
1014     void resizeSmallToLarge(size_t NumOps);
1015     void resize(size_t NumOps);
1016 
1017     explicit Header(size_t NumOps, StorageType Storage);
1018     ~Header();
1019 
1020     MutableArrayRef<MDOperand> operands() {
1021       if (IsLarge)
1022         return getLarge();
1023       return makeMutableArrayRef(
1024           reinterpret_cast<MDOperand *>(this) - SmallSize, SmallNumOps);
1025     }
1026 
1027     ArrayRef<MDOperand> operands() const {
1028       if (IsLarge)
1029         return getLarge();
1030       return makeArrayRef(reinterpret_cast<const MDOperand *>(this) - SmallSize,
1031                           SmallNumOps);
1032     }
1033   };
1034 
1035   Header &getHeader() { return *(reinterpret_cast<Header *>(this) - 1); }
1036 
1037   const Header &getHeader() const {
1038     return *(reinterpret_cast<const Header *>(this) - 1);
1039   }
1040 
1041   ContextAndReplaceableUses Context;
1042 
1043 protected:
1044   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
1045          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
1046   ~MDNode() = default;
1047 
1048   void *operator new(size_t Size, size_t NumOps, StorageType Storage);
1049   void operator delete(void *Mem);
1050 
1051   /// Required by std, but never called.
1052   void operator delete(void *, unsigned) {
1053     llvm_unreachable("Constructor throws?");
1054   }
1055 
1056   /// Required by std, but never called.
1057   void operator delete(void *, unsigned, bool) {
1058     llvm_unreachable("Constructor throws?");
1059   }
1060 
1061   void dropAllReferences();
1062 
1063   MDOperand *mutable_begin() { return getHeader().operands().begin(); }
1064   MDOperand *mutable_end() { return getHeader().operands().end(); }
1065 
1066   using mutable_op_range = iterator_range<MDOperand *>;
1067 
1068   mutable_op_range mutable_operands() {
1069     return mutable_op_range(mutable_begin(), mutable_end());
1070   }
1071 
1072 public:
1073   MDNode(const MDNode &) = delete;
1074   void operator=(const MDNode &) = delete;
1075   void *operator new(size_t) = delete;
1076 
1077   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
1078   static inline MDTuple *getIfExists(LLVMContext &Context,
1079                                      ArrayRef<Metadata *> MDs);
1080   static inline MDTuple *getDistinct(LLVMContext &Context,
1081                                      ArrayRef<Metadata *> MDs);
1082   static inline TempMDTuple getTemporary(LLVMContext &Context,
1083                                          ArrayRef<Metadata *> MDs);
1084 
1085   /// Create a (temporary) clone of this.
1086   TempMDNode clone() const;
1087 
1088   /// Deallocate a node created by getTemporary.
1089   ///
1090   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
1091   /// references will be reset.
1092   static void deleteTemporary(MDNode *N);
1093 
1094   LLVMContext &getContext() const { return Context.getContext(); }
1095 
1096   /// Replace a specific operand.
1097   void replaceOperandWith(unsigned I, Metadata *New);
1098 
1099   /// Check if node is fully resolved.
1100   ///
1101   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
1102   /// this always returns \c true.
1103   ///
1104   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
1105   /// support (because all operands are resolved).
1106   ///
1107   /// As forward declarations are resolved, their containers should get
1108   /// resolved automatically.  However, if this (or one of its operands) is
1109   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
1110   bool isResolved() const { return !isTemporary() && !getNumUnresolved(); }
1111 
1112   bool isUniqued() const { return Storage == Uniqued; }
1113   bool isDistinct() const { return Storage == Distinct; }
1114   bool isTemporary() const { return Storage == Temporary; }
1115 
1116   /// RAUW a temporary.
1117   ///
1118   /// \pre \a isTemporary() must be \c true.
1119   void replaceAllUsesWith(Metadata *MD) {
1120     assert(isTemporary() && "Expected temporary node");
1121     if (Context.hasReplaceableUses())
1122       Context.getReplaceableUses()->replaceAllUsesWith(MD);
1123   }
1124 
1125   /// Resolve cycles.
1126   ///
1127   /// Once all forward declarations have been resolved, force cycles to be
1128   /// resolved.
1129   ///
1130   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
1131   void resolveCycles();
1132 
1133   /// Resolve a unique, unresolved node.
1134   void resolve();
1135 
1136   /// Replace a temporary node with a permanent one.
1137   ///
1138   /// Try to create a uniqued version of \c N -- in place, if possible -- and
1139   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
1140   template <class T>
1141   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1142   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
1143     return cast<T>(N.release()->replaceWithPermanentImpl());
1144   }
1145 
1146   /// Replace a temporary node with a uniqued one.
1147   ///
1148   /// Create a uniqued version of \c N -- in place, if possible -- and return
1149   /// it.  Takes ownership of the temporary node.
1150   ///
1151   /// \pre N does not self-reference.
1152   template <class T>
1153   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1154   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
1155     return cast<T>(N.release()->replaceWithUniquedImpl());
1156   }
1157 
1158   /// Replace a temporary node with a distinct one.
1159   ///
1160   /// Create a distinct version of \c N -- in place, if possible -- and return
1161   /// it.  Takes ownership of the temporary node.
1162   template <class T>
1163   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1164   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1165     return cast<T>(N.release()->replaceWithDistinctImpl());
1166   }
1167 
1168   /// Print in tree shape.
1169   ///
1170   /// Prints definition of \c this in tree shape.
1171   ///
1172   /// If \c M is provided, metadata nodes will be numbered canonically;
1173   /// otherwise, pointer addresses are substituted.
1174   /// @{
1175   void printTree(raw_ostream &OS, const Module *M = nullptr) const;
1176   void printTree(raw_ostream &OS, ModuleSlotTracker &MST,
1177                  const Module *M = nullptr) const;
1178   /// @}
1179 
1180   /// User-friendly dump in tree shape.
1181   ///
1182   /// If \c M is provided, metadata nodes will be numbered canonically;
1183   /// otherwise, pointer addresses are substituted.
1184   ///
1185   /// Note: this uses an explicit overload instead of default arguments so that
1186   /// the nullptr version is easy to call from a debugger.
1187   ///
1188   /// @{
1189   void dumpTree() const;
1190   void dumpTree(const Module *M) const;
1191   /// @}
1192 
1193 private:
1194   MDNode *replaceWithPermanentImpl();
1195   MDNode *replaceWithUniquedImpl();
1196   MDNode *replaceWithDistinctImpl();
1197 
1198 protected:
1199   /// Set an operand.
1200   ///
1201   /// Sets the operand directly, without worrying about uniquing.
1202   void setOperand(unsigned I, Metadata *New);
1203 
1204   unsigned getNumUnresolved() const { return getHeader().NumUnresolved; }
1205 
1206   void setNumUnresolved(unsigned N) { getHeader().NumUnresolved = N; }
1207   void storeDistinctInContext();
1208   template <class T, class StoreT>
1209   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1210   template <class T> static T *storeImpl(T *N, StorageType Storage);
1211 
1212   /// Resize the node to hold \a NumOps operands.
1213   ///
1214   /// \pre \a isTemporary() or \a isDistinct()
1215   /// \pre MetadataID == MDTupleKind
1216   void resize(size_t NumOps) {
1217     assert(!isUniqued() && "Resizing is not supported for uniqued nodes");
1218     assert(getMetadataID() == MDTupleKind &&
1219            "Resizing is not supported for this node kind");
1220     getHeader().resize(NumOps);
1221   }
1222 
1223 private:
1224   void handleChangedOperand(void *Ref, Metadata *New);
1225 
1226   /// Drop RAUW support, if any.
1227   void dropReplaceableUses();
1228 
1229   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1230   void decrementUnresolvedOperandCount();
1231   void countUnresolvedOperands();
1232 
1233   /// Mutate this to be "uniqued".
1234   ///
1235   /// Mutate this so that \a isUniqued().
1236   /// \pre \a isTemporary().
1237   /// \pre already added to uniquing set.
1238   void makeUniqued();
1239 
1240   /// Mutate this to be "distinct".
1241   ///
1242   /// Mutate this so that \a isDistinct().
1243   /// \pre \a isTemporary().
1244   void makeDistinct();
1245 
1246   void deleteAsSubclass();
1247   MDNode *uniquify();
1248   void eraseFromStore();
1249 
1250   template <class NodeTy> struct HasCachedHash;
1251   template <class NodeTy>
1252   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1253     N->recalculateHash();
1254   }
1255   template <class NodeTy>
1256   static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1257   template <class NodeTy>
1258   static void dispatchResetHash(NodeTy *N, std::true_type) {
1259     N->setHash(0);
1260   }
1261   template <class NodeTy>
1262   static void dispatchResetHash(NodeTy *, std::false_type) {}
1263 
1264 public:
1265   using op_iterator = const MDOperand *;
1266   using op_range = iterator_range<op_iterator>;
1267 
1268   op_iterator op_begin() const {
1269     return const_cast<MDNode *>(this)->mutable_begin();
1270   }
1271 
1272   op_iterator op_end() const {
1273     return const_cast<MDNode *>(this)->mutable_end();
1274   }
1275 
1276   op_range operands() const { return op_range(op_begin(), op_end()); }
1277 
1278   const MDOperand &getOperand(unsigned I) const {
1279     assert(I < getNumOperands() && "Out of range");
1280     return getHeader().operands()[I];
1281   }
1282 
1283   /// Return number of MDNode operands.
1284   unsigned getNumOperands() const { return getHeader().operands().size(); }
1285 
1286   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1287   static bool classof(const Metadata *MD) {
1288     switch (MD->getMetadataID()) {
1289     default:
1290       return false;
1291 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1292   case CLASS##Kind:                                                            \
1293     return true;
1294 #include "llvm/IR/Metadata.def"
1295     }
1296   }
1297 
1298   /// Check whether MDNode is a vtable access.
1299   bool isTBAAVtableAccess() const;
1300 
1301   /// Methods for metadata merging.
1302   static MDNode *concatenate(MDNode *A, MDNode *B);
1303   static MDNode *intersect(MDNode *A, MDNode *B);
1304   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1305   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1306   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1307   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1308   static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1309 };
1310 
1311 /// Tuple of metadata.
1312 ///
1313 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1314 /// default based on their operands.
1315 class MDTuple : public MDNode {
1316   friend class LLVMContextImpl;
1317   friend class MDNode;
1318 
1319   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1320           ArrayRef<Metadata *> Vals)
1321       : MDNode(C, MDTupleKind, Storage, Vals) {
1322     setHash(Hash);
1323   }
1324 
1325   ~MDTuple() { dropAllReferences(); }
1326 
1327   void setHash(unsigned Hash) { SubclassData32 = Hash; }
1328   void recalculateHash();
1329 
1330   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1331                           StorageType Storage, bool ShouldCreate = true);
1332 
1333   TempMDTuple cloneImpl() const {
1334     return getTemporary(getContext(), SmallVector<Metadata *, 4>(operands()));
1335   }
1336 
1337 public:
1338   /// Get the hash, if any.
1339   unsigned getHash() const { return SubclassData32; }
1340 
1341   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1342     return getImpl(Context, MDs, Uniqued);
1343   }
1344 
1345   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1346     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1347   }
1348 
1349   /// Return a distinct node.
1350   ///
1351   /// Return a distinct node -- i.e., a node that is not uniqued.
1352   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1353     return getImpl(Context, MDs, Distinct);
1354   }
1355 
1356   /// Return a temporary node.
1357   ///
1358   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1359   /// not uniqued, may be RAUW'd, and must be manually deleted with
1360   /// deleteTemporary.
1361   static TempMDTuple getTemporary(LLVMContext &Context,
1362                                   ArrayRef<Metadata *> MDs) {
1363     return TempMDTuple(getImpl(Context, MDs, Temporary));
1364   }
1365 
1366   /// Return a (temporary) clone of this.
1367   TempMDTuple clone() const { return cloneImpl(); }
1368 
1369   /// Append an element to the tuple. This will resize the node.
1370   void push_back(Metadata *MD) {
1371     size_t NumOps = getNumOperands();
1372     resize(NumOps + 1);
1373     setOperand(NumOps, MD);
1374   }
1375 
1376   /// Shrink the operands by 1.
1377   void pop_back() { resize(getNumOperands() - 1); }
1378 
1379   static bool classof(const Metadata *MD) {
1380     return MD->getMetadataID() == MDTupleKind;
1381   }
1382 };
1383 
1384 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1385   return MDTuple::get(Context, MDs);
1386 }
1387 
1388 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1389   return MDTuple::getIfExists(Context, MDs);
1390 }
1391 
1392 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1393   return MDTuple::getDistinct(Context, MDs);
1394 }
1395 
1396 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1397                                  ArrayRef<Metadata *> MDs) {
1398   return MDTuple::getTemporary(Context, MDs);
1399 }
1400 
1401 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1402   MDNode::deleteTemporary(Node);
1403 }
1404 
1405 /// This is a simple wrapper around an MDNode which provides a higher-level
1406 /// interface by hiding the details of how alias analysis information is encoded
1407 /// in its operands.
1408 class AliasScopeNode {
1409   const MDNode *Node = nullptr;
1410 
1411 public:
1412   AliasScopeNode() = default;
1413   explicit AliasScopeNode(const MDNode *N) : Node(N) {}
1414 
1415   /// Get the MDNode for this AliasScopeNode.
1416   const MDNode *getNode() const { return Node; }
1417 
1418   /// Get the MDNode for this AliasScopeNode's domain.
1419   const MDNode *getDomain() const {
1420     if (Node->getNumOperands() < 2)
1421       return nullptr;
1422     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
1423   }
1424   StringRef getName() const {
1425     if (Node->getNumOperands() > 2)
1426       if (MDString *N = dyn_cast_or_null<MDString>(Node->getOperand(2)))
1427         return N->getString();
1428     return StringRef();
1429   }
1430 };
1431 
1432 /// Typed iterator through MDNode operands.
1433 ///
1434 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1435 /// particular Metadata subclass.
1436 template <class T> class TypedMDOperandIterator {
1437   MDNode::op_iterator I = nullptr;
1438 
1439 public:
1440   using iterator_category = std::input_iterator_tag;
1441   using value_type = T *;
1442   using difference_type = std::ptrdiff_t;
1443   using pointer = void;
1444   using reference = T *;
1445 
1446   TypedMDOperandIterator() = default;
1447   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1448 
1449   T *operator*() const { return cast_or_null<T>(*I); }
1450 
1451   TypedMDOperandIterator &operator++() {
1452     ++I;
1453     return *this;
1454   }
1455 
1456   TypedMDOperandIterator operator++(int) {
1457     TypedMDOperandIterator Temp(*this);
1458     ++I;
1459     return Temp;
1460   }
1461 
1462   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1463   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1464 };
1465 
1466 /// Typed, array-like tuple of metadata.
1467 ///
1468 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1469 /// particular type of metadata.
1470 template <class T> class MDTupleTypedArrayWrapper {
1471   const MDTuple *N = nullptr;
1472 
1473 public:
1474   MDTupleTypedArrayWrapper() = default;
1475   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1476 
1477   template <class U>
1478   MDTupleTypedArrayWrapper(
1479       const MDTupleTypedArrayWrapper<U> &Other,
1480       std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1481       : N(Other.get()) {}
1482 
1483   template <class U>
1484   explicit MDTupleTypedArrayWrapper(
1485       const MDTupleTypedArrayWrapper<U> &Other,
1486       std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1487       : N(Other.get()) {}
1488 
1489   explicit operator bool() const { return get(); }
1490   explicit operator MDTuple *() const { return get(); }
1491 
1492   MDTuple *get() const { return const_cast<MDTuple *>(N); }
1493   MDTuple *operator->() const { return get(); }
1494   MDTuple &operator*() const { return *get(); }
1495 
1496   // FIXME: Fix callers and remove condition on N.
1497   unsigned size() const { return N ? N->getNumOperands() : 0u; }
1498   bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1499   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1500 
1501   // FIXME: Fix callers and remove condition on N.
1502   using iterator = TypedMDOperandIterator<T>;
1503 
1504   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1505   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1506 };
1507 
1508 #define HANDLE_METADATA(CLASS)                                                 \
1509   using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1510 #include "llvm/IR/Metadata.def"
1511 
1512 /// Placeholder metadata for operands of distinct MDNodes.
1513 ///
1514 /// This is a lightweight placeholder for an operand of a distinct node.  It's
1515 /// purpose is to help track forward references when creating a distinct node.
1516 /// This allows distinct nodes involved in a cycle to be constructed before
1517 /// their operands without requiring a heavyweight temporary node with
1518 /// full-blown RAUW support.
1519 ///
1520 /// Each placeholder supports only a single MDNode user.  Clients should pass
1521 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1522 /// should be replaced with.
1523 ///
1524 /// While it would be possible to implement move operators, they would be
1525 /// fairly expensive.  Leave them unimplemented to discourage their use
1526 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1527 class DistinctMDOperandPlaceholder : public Metadata {
1528   friend class MetadataTracking;
1529 
1530   Metadata **Use = nullptr;
1531 
1532 public:
1533   explicit DistinctMDOperandPlaceholder(unsigned ID)
1534       : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1535     SubclassData32 = ID;
1536   }
1537 
1538   DistinctMDOperandPlaceholder() = delete;
1539   DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1540   DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1541 
1542   ~DistinctMDOperandPlaceholder() {
1543     if (Use)
1544       *Use = nullptr;
1545   }
1546 
1547   unsigned getID() const { return SubclassData32; }
1548 
1549   /// Replace the use of this with MD.
1550   void replaceUseWith(Metadata *MD) {
1551     if (!Use)
1552       return;
1553     *Use = MD;
1554 
1555     if (*Use)
1556       MetadataTracking::track(*Use);
1557 
1558     Metadata *T = cast<Metadata>(this);
1559     MetadataTracking::untrack(T);
1560     assert(!Use && "Use is still being tracked despite being untracked!");
1561   }
1562 };
1563 
1564 //===----------------------------------------------------------------------===//
1565 /// A tuple of MDNodes.
1566 ///
1567 /// Despite its name, a NamedMDNode isn't itself an MDNode.
1568 ///
1569 /// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1570 ///
1571 /// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1572 class NamedMDNode : public ilist_node<NamedMDNode> {
1573   friend class LLVMContextImpl;
1574   friend class Module;
1575 
1576   std::string Name;
1577   Module *Parent = nullptr;
1578   void *Operands; // SmallVector<TrackingMDRef, 4>
1579 
1580   void setParent(Module *M) { Parent = M; }
1581 
1582   explicit NamedMDNode(const Twine &N);
1583 
1584   template <class T1, class T2> class op_iterator_impl {
1585     friend class NamedMDNode;
1586 
1587     const NamedMDNode *Node = nullptr;
1588     unsigned Idx = 0;
1589 
1590     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1591 
1592   public:
1593     using iterator_category = std::bidirectional_iterator_tag;
1594     using value_type = T2;
1595     using difference_type = std::ptrdiff_t;
1596     using pointer = value_type *;
1597     using reference = value_type &;
1598 
1599     op_iterator_impl() = default;
1600 
1601     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1602     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1603 
1604     op_iterator_impl &operator++() {
1605       ++Idx;
1606       return *this;
1607     }
1608 
1609     op_iterator_impl operator++(int) {
1610       op_iterator_impl tmp(*this);
1611       operator++();
1612       return tmp;
1613     }
1614 
1615     op_iterator_impl &operator--() {
1616       --Idx;
1617       return *this;
1618     }
1619 
1620     op_iterator_impl operator--(int) {
1621       op_iterator_impl tmp(*this);
1622       operator--();
1623       return tmp;
1624     }
1625 
1626     T1 operator*() const { return Node->getOperand(Idx); }
1627   };
1628 
1629 public:
1630   NamedMDNode(const NamedMDNode &) = delete;
1631   ~NamedMDNode();
1632 
1633   /// Drop all references and remove the node from parent module.
1634   void eraseFromParent();
1635 
1636   /// Remove all uses and clear node vector.
1637   void dropAllReferences() { clearOperands(); }
1638   /// Drop all references to this node's operands.
1639   void clearOperands();
1640 
1641   /// Get the module that holds this named metadata collection.
1642   inline Module *getParent() { return Parent; }
1643   inline const Module *getParent() const { return Parent; }
1644 
1645   MDNode *getOperand(unsigned i) const;
1646   unsigned getNumOperands() const;
1647   void addOperand(MDNode *M);
1648   void setOperand(unsigned I, MDNode *New);
1649   StringRef getName() const;
1650   void print(raw_ostream &ROS, bool IsForDebug = false) const;
1651   void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1652              bool IsForDebug = false) const;
1653   void dump() const;
1654 
1655   // ---------------------------------------------------------------------------
1656   // Operand Iterator interface...
1657   //
1658   using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1659 
1660   op_iterator op_begin() { return op_iterator(this, 0); }
1661   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1662 
1663   using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1664 
1665   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1666   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1667 
1668   inline iterator_range<op_iterator>  operands() {
1669     return make_range(op_begin(), op_end());
1670   }
1671   inline iterator_range<const_op_iterator> operands() const {
1672     return make_range(op_begin(), op_end());
1673   }
1674 };
1675 
1676 // Create wrappers for C Binding types (see CBindingWrapping.h).
1677 DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1678 
1679 } // end namespace llvm
1680 
1681 #endif // LLVM_IR_METADATA_H
1682