1 //===- llvm/ModuleSummaryIndex.h - Module Summary Index ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// ModuleSummaryIndex.h This file contains the declarations the classes that
11 ///  hold the module index and summary for function importing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_MODULESUMMARYINDEX_H
16 #define LLVM_IR_MODULESUMMARYINDEX_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/TinyPtrVector.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/ScaledNumber.h"
32 #include "llvm/Support/StringSaver.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <array>
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <map>
40 #include <memory>
41 #include <set>
42 #include <string>
43 #include <utility>
44 #include <vector>
45 
46 namespace llvm {
47 
48 namespace yaml {
49 
50 template <typename T> struct MappingTraits;
51 
52 } // end namespace yaml
53 
54 /// Class to accumulate and hold information about a callee.
55 struct CalleeInfo {
56   enum class HotnessType : uint8_t {
57     Unknown = 0,
58     Cold = 1,
59     None = 2,
60     Hot = 3,
61     Critical = 4
62   };
63 
64   // The size of the bit-field might need to be adjusted if more values are
65   // added to HotnessType enum.
66   uint32_t Hotness : 3;
67 
68   /// The value stored in RelBlockFreq has to be interpreted as the digits of
69   /// a scaled number with a scale of \p -ScaleShift.
70   uint32_t RelBlockFreq : 29;
71   static constexpr int32_t ScaleShift = 8;
72   static constexpr uint64_t MaxRelBlockFreq = (1 << 29) - 1;
73 
74   CalleeInfo()
75       : Hotness(static_cast<uint32_t>(HotnessType::Unknown)), RelBlockFreq(0) {}
76   explicit CalleeInfo(HotnessType Hotness, uint64_t RelBF)
77       : Hotness(static_cast<uint32_t>(Hotness)), RelBlockFreq(RelBF) {}
78 
79   void updateHotness(const HotnessType OtherHotness) {
80     Hotness = std::max(Hotness, static_cast<uint32_t>(OtherHotness));
81   }
82 
83   HotnessType getHotness() const { return HotnessType(Hotness); }
84 
85   /// Update \p RelBlockFreq from \p BlockFreq and \p EntryFreq
86   ///
87   /// BlockFreq is divided by EntryFreq and added to RelBlockFreq. To represent
88   /// fractional values, the result is represented as a fixed point number with
89   /// scale of -ScaleShift.
90   void updateRelBlockFreq(uint64_t BlockFreq, uint64_t EntryFreq) {
91     if (EntryFreq == 0)
92       return;
93     using Scaled64 = ScaledNumber<uint64_t>;
94     Scaled64 Temp(BlockFreq, ScaleShift);
95     Temp /= Scaled64::get(EntryFreq);
96 
97     uint64_t Sum =
98         SaturatingAdd<uint64_t>(Temp.toInt<uint64_t>(), RelBlockFreq);
99     Sum = std::min(Sum, uint64_t(MaxRelBlockFreq));
100     RelBlockFreq = static_cast<uint32_t>(Sum);
101   }
102 };
103 
104 inline const char *getHotnessName(CalleeInfo::HotnessType HT) {
105   switch (HT) {
106   case CalleeInfo::HotnessType::Unknown:
107     return "unknown";
108   case CalleeInfo::HotnessType::Cold:
109     return "cold";
110   case CalleeInfo::HotnessType::None:
111     return "none";
112   case CalleeInfo::HotnessType::Hot:
113     return "hot";
114   case CalleeInfo::HotnessType::Critical:
115     return "critical";
116   }
117   llvm_unreachable("invalid hotness");
118 }
119 
120 class GlobalValueSummary;
121 
122 using GlobalValueSummaryList = std::vector<std::unique_ptr<GlobalValueSummary>>;
123 
124 struct alignas(8) GlobalValueSummaryInfo {
125   union NameOrGV {
126     NameOrGV(bool HaveGVs) {
127       if (HaveGVs)
128         GV = nullptr;
129       else
130         Name = "";
131     }
132 
133     /// The GlobalValue corresponding to this summary. This is only used in
134     /// per-module summaries and when the IR is available. E.g. when module
135     /// analysis is being run, or when parsing both the IR and the summary
136     /// from assembly.
137     const GlobalValue *GV;
138 
139     /// Summary string representation. This StringRef points to BC module
140     /// string table and is valid until module data is stored in memory.
141     /// This is guaranteed to happen until runThinLTOBackend function is
142     /// called, so it is safe to use this field during thin link. This field
143     /// is only valid if summary index was loaded from BC file.
144     StringRef Name;
145   } U;
146 
147   GlobalValueSummaryInfo(bool HaveGVs) : U(HaveGVs) {}
148 
149   /// List of global value summary structures for a particular value held
150   /// in the GlobalValueMap. Requires a vector in the case of multiple
151   /// COMDAT values of the same name.
152   GlobalValueSummaryList SummaryList;
153 };
154 
155 /// Map from global value GUID to corresponding summary structures. Use a
156 /// std::map rather than a DenseMap so that pointers to the map's value_type
157 /// (which are used by ValueInfo) are not invalidated by insertion. Also it will
158 /// likely incur less overhead, as the value type is not very small and the size
159 /// of the map is unknown, resulting in inefficiencies due to repeated
160 /// insertions and resizing.
161 using GlobalValueSummaryMapTy =
162     std::map<GlobalValue::GUID, GlobalValueSummaryInfo>;
163 
164 /// Struct that holds a reference to a particular GUID in a global value
165 /// summary.
166 struct ValueInfo {
167   enum Flags { HaveGV = 1, ReadOnly = 2, WriteOnly = 4 };
168   PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 3, int>
169       RefAndFlags;
170 
171   ValueInfo() = default;
172   ValueInfo(bool HaveGVs, const GlobalValueSummaryMapTy::value_type *R) {
173     RefAndFlags.setPointer(R);
174     RefAndFlags.setInt(HaveGVs);
175   }
176 
177   explicit operator bool() const { return getRef(); }
178 
179   GlobalValue::GUID getGUID() const { return getRef()->first; }
180   const GlobalValue *getValue() const {
181     assert(haveGVs());
182     return getRef()->second.U.GV;
183   }
184 
185   ArrayRef<std::unique_ptr<GlobalValueSummary>> getSummaryList() const {
186     return getRef()->second.SummaryList;
187   }
188 
189   StringRef name() const {
190     return haveGVs() ? getRef()->second.U.GV->getName()
191                      : getRef()->second.U.Name;
192   }
193 
194   bool haveGVs() const { return RefAndFlags.getInt() & HaveGV; }
195   bool isReadOnly() const {
196     assert(isValidAccessSpecifier());
197     return RefAndFlags.getInt() & ReadOnly;
198   }
199   bool isWriteOnly() const {
200     assert(isValidAccessSpecifier());
201     return RefAndFlags.getInt() & WriteOnly;
202   }
203   unsigned getAccessSpecifier() const {
204     assert(isValidAccessSpecifier());
205     return RefAndFlags.getInt() & (ReadOnly | WriteOnly);
206   }
207   bool isValidAccessSpecifier() const {
208     unsigned BadAccessMask = ReadOnly | WriteOnly;
209     return (RefAndFlags.getInt() & BadAccessMask) != BadAccessMask;
210   }
211   void setReadOnly() {
212     // We expect ro/wo attribute to set only once during
213     // ValueInfo lifetime.
214     assert(getAccessSpecifier() == 0);
215     RefAndFlags.setInt(RefAndFlags.getInt() | ReadOnly);
216   }
217   void setWriteOnly() {
218     assert(getAccessSpecifier() == 0);
219     RefAndFlags.setInt(RefAndFlags.getInt() | WriteOnly);
220   }
221 
222   const GlobalValueSummaryMapTy::value_type *getRef() const {
223     return RefAndFlags.getPointer();
224   }
225 
226   bool isDSOLocal() const;
227 
228   /// Checks if all copies are eligible for auto-hiding (have flag set).
229   bool canAutoHide() const;
230 };
231 
232 inline raw_ostream &operator<<(raw_ostream &OS, const ValueInfo &VI) {
233   OS << VI.getGUID();
234   if (!VI.name().empty())
235     OS << " (" << VI.name() << ")";
236   return OS;
237 }
238 
239 inline bool operator==(const ValueInfo &A, const ValueInfo &B) {
240   assert(A.getRef() && B.getRef() &&
241          "Need ValueInfo with non-null Ref for comparison");
242   return A.getRef() == B.getRef();
243 }
244 
245 inline bool operator!=(const ValueInfo &A, const ValueInfo &B) {
246   assert(A.getRef() && B.getRef() &&
247          "Need ValueInfo with non-null Ref for comparison");
248   return A.getRef() != B.getRef();
249 }
250 
251 inline bool operator<(const ValueInfo &A, const ValueInfo &B) {
252   assert(A.getRef() && B.getRef() &&
253          "Need ValueInfo with non-null Ref to compare GUIDs");
254   return A.getGUID() < B.getGUID();
255 }
256 
257 template <> struct DenseMapInfo<ValueInfo> {
258   static inline ValueInfo getEmptyKey() {
259     return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
260   }
261 
262   static inline ValueInfo getTombstoneKey() {
263     return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-16);
264   }
265 
266   static inline bool isSpecialKey(ValueInfo V) {
267     return V == getTombstoneKey() || V == getEmptyKey();
268   }
269 
270   static bool isEqual(ValueInfo L, ValueInfo R) {
271     // We are not supposed to mix ValueInfo(s) with different HaveGVs flag
272     // in a same container.
273     assert(isSpecialKey(L) || isSpecialKey(R) || (L.haveGVs() == R.haveGVs()));
274     return L.getRef() == R.getRef();
275   }
276   static unsigned getHashValue(ValueInfo I) { return (uintptr_t)I.getRef(); }
277 };
278 
279 /// Function and variable summary information to aid decisions and
280 /// implementation of importing.
281 class GlobalValueSummary {
282 public:
283   /// Sububclass discriminator (for dyn_cast<> et al.)
284   enum SummaryKind : unsigned { AliasKind, FunctionKind, GlobalVarKind };
285 
286   /// Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
287   struct GVFlags {
288     /// The linkage type of the associated global value.
289     ///
290     /// One use is to flag values that have local linkage types and need to
291     /// have module identifier appended before placing into the combined
292     /// index, to disambiguate from other values with the same name.
293     /// In the future this will be used to update and optimize linkage
294     /// types based on global summary-based analysis.
295     unsigned Linkage : 4;
296 
297     /// Indicate if the global value cannot be imported (e.g. it cannot
298     /// be renamed or references something that can't be renamed).
299     unsigned NotEligibleToImport : 1;
300 
301     /// In per-module summary, indicate that the global value must be considered
302     /// a live root for index-based liveness analysis. Used for special LLVM
303     /// values such as llvm.global_ctors that the linker does not know about.
304     ///
305     /// In combined summary, indicate that the global value is live.
306     unsigned Live : 1;
307 
308     /// Indicates that the linker resolved the symbol to a definition from
309     /// within the same linkage unit.
310     unsigned DSOLocal : 1;
311 
312     /// In the per-module summary, indicates that the global value is
313     /// linkonce_odr and global unnamed addr (so eligible for auto-hiding
314     /// via hidden visibility). In the combined summary, indicates that the
315     /// prevailing linkonce_odr copy can be auto-hidden via hidden visibility
316     /// when it is upgraded to weak_odr in the backend. This is legal when
317     /// all copies are eligible for auto-hiding (i.e. all copies were
318     /// linkonce_odr global unnamed addr. If any copy is not (e.g. it was
319     /// originally weak_odr, we cannot auto-hide the prevailing copy as it
320     /// means the symbol was externally visible.
321     unsigned CanAutoHide : 1;
322 
323     /// Convenience Constructors
324     explicit GVFlags(GlobalValue::LinkageTypes Linkage,
325                      bool NotEligibleToImport, bool Live, bool IsLocal,
326                      bool CanAutoHide)
327         : Linkage(Linkage), NotEligibleToImport(NotEligibleToImport),
328           Live(Live), DSOLocal(IsLocal), CanAutoHide(CanAutoHide) {}
329   };
330 
331 private:
332   /// Kind of summary for use in dyn_cast<> et al.
333   SummaryKind Kind;
334 
335   GVFlags Flags;
336 
337   /// This is the hash of the name of the symbol in the original file. It is
338   /// identical to the GUID for global symbols, but differs for local since the
339   /// GUID includes the module level id in the hash.
340   GlobalValue::GUID OriginalName = 0;
341 
342   /// Path of module IR containing value's definition, used to locate
343   /// module during importing.
344   ///
345   /// This is only used during parsing of the combined index, or when
346   /// parsing the per-module index for creation of the combined summary index,
347   /// not during writing of the per-module index which doesn't contain a
348   /// module path string table.
349   StringRef ModulePath;
350 
351   /// List of values referenced by this global value's definition
352   /// (either by the initializer of a global variable, or referenced
353   /// from within a function). This does not include functions called, which
354   /// are listed in the derived FunctionSummary object.
355   std::vector<ValueInfo> RefEdgeList;
356 
357 protected:
358   GlobalValueSummary(SummaryKind K, GVFlags Flags, std::vector<ValueInfo> Refs)
359       : Kind(K), Flags(Flags), RefEdgeList(std::move(Refs)) {
360     assert((K != AliasKind || Refs.empty()) &&
361            "Expect no references for AliasSummary");
362   }
363 
364 public:
365   virtual ~GlobalValueSummary() = default;
366 
367   /// Returns the hash of the original name, it is identical to the GUID for
368   /// externally visible symbols, but not for local ones.
369   GlobalValue::GUID getOriginalName() const { return OriginalName; }
370 
371   /// Initialize the original name hash in this summary.
372   void setOriginalName(GlobalValue::GUID Name) { OriginalName = Name; }
373 
374   /// Which kind of summary subclass this is.
375   SummaryKind getSummaryKind() const { return Kind; }
376 
377   /// Set the path to the module containing this function, for use in
378   /// the combined index.
379   void setModulePath(StringRef ModPath) { ModulePath = ModPath; }
380 
381   /// Get the path to the module containing this function.
382   StringRef modulePath() const { return ModulePath; }
383 
384   /// Get the flags for this GlobalValue (see \p struct GVFlags).
385   GVFlags flags() const { return Flags; }
386 
387   /// Return linkage type recorded for this global value.
388   GlobalValue::LinkageTypes linkage() const {
389     return static_cast<GlobalValue::LinkageTypes>(Flags.Linkage);
390   }
391 
392   /// Sets the linkage to the value determined by global summary-based
393   /// optimization. Will be applied in the ThinLTO backends.
394   void setLinkage(GlobalValue::LinkageTypes Linkage) {
395     Flags.Linkage = Linkage;
396   }
397 
398   /// Return true if this global value can't be imported.
399   bool notEligibleToImport() const { return Flags.NotEligibleToImport; }
400 
401   bool isLive() const { return Flags.Live; }
402 
403   void setLive(bool Live) { Flags.Live = Live; }
404 
405   void setDSOLocal(bool Local) { Flags.DSOLocal = Local; }
406 
407   bool isDSOLocal() const { return Flags.DSOLocal; }
408 
409   void setCanAutoHide(bool CanAutoHide) { Flags.CanAutoHide = CanAutoHide; }
410 
411   bool canAutoHide() const { return Flags.CanAutoHide; }
412 
413   /// Flag that this global value cannot be imported.
414   void setNotEligibleToImport() { Flags.NotEligibleToImport = true; }
415 
416   /// Return the list of values referenced by this global value definition.
417   ArrayRef<ValueInfo> refs() const { return RefEdgeList; }
418 
419   /// If this is an alias summary, returns the summary of the aliased object (a
420   /// global variable or function), otherwise returns itself.
421   GlobalValueSummary *getBaseObject();
422   const GlobalValueSummary *getBaseObject() const;
423 
424   friend class ModuleSummaryIndex;
425 };
426 
427 /// Alias summary information.
428 class AliasSummary : public GlobalValueSummary {
429   ValueInfo AliaseeValueInfo;
430 
431   /// This is the Aliasee in the same module as alias (could get from VI, trades
432   /// memory for time). Note that this pointer may be null (and the value info
433   /// empty) when we have a distributed index where the alias is being imported
434   /// (as a copy of the aliasee), but the aliasee is not.
435   GlobalValueSummary *AliaseeSummary;
436 
437 public:
438   AliasSummary(GVFlags Flags)
439       : GlobalValueSummary(AliasKind, Flags, ArrayRef<ValueInfo>{}),
440         AliaseeSummary(nullptr) {}
441 
442   /// Check if this is an alias summary.
443   static bool classof(const GlobalValueSummary *GVS) {
444     return GVS->getSummaryKind() == AliasKind;
445   }
446 
447   void setAliasee(ValueInfo &AliaseeVI, GlobalValueSummary *Aliasee) {
448     AliaseeValueInfo = AliaseeVI;
449     AliaseeSummary = Aliasee;
450   }
451 
452   bool hasAliasee() const {
453     assert(!!AliaseeSummary == (AliaseeValueInfo &&
454                                 !AliaseeValueInfo.getSummaryList().empty()) &&
455            "Expect to have both aliasee summary and summary list or neither");
456     return !!AliaseeSummary;
457   }
458 
459   const GlobalValueSummary &getAliasee() const {
460     assert(AliaseeSummary && "Unexpected missing aliasee summary");
461     return *AliaseeSummary;
462   }
463 
464   GlobalValueSummary &getAliasee() {
465     return const_cast<GlobalValueSummary &>(
466                          static_cast<const AliasSummary *>(this)->getAliasee());
467   }
468   ValueInfo getAliaseeVI() const {
469     assert(AliaseeValueInfo && "Unexpected missing aliasee");
470     return AliaseeValueInfo;
471   }
472   GlobalValue::GUID getAliaseeGUID() const {
473     assert(AliaseeValueInfo && "Unexpected missing aliasee");
474     return AliaseeValueInfo.getGUID();
475   }
476 };
477 
478 const inline GlobalValueSummary *GlobalValueSummary::getBaseObject() const {
479   if (auto *AS = dyn_cast<AliasSummary>(this))
480     return &AS->getAliasee();
481   return this;
482 }
483 
484 inline GlobalValueSummary *GlobalValueSummary::getBaseObject() {
485   if (auto *AS = dyn_cast<AliasSummary>(this))
486     return &AS->getAliasee();
487   return this;
488 }
489 
490 /// Function summary information to aid decisions and implementation of
491 /// importing.
492 class FunctionSummary : public GlobalValueSummary {
493 public:
494   /// <CalleeValueInfo, CalleeInfo> call edge pair.
495   using EdgeTy = std::pair<ValueInfo, CalleeInfo>;
496 
497   /// Types for -force-summary-edges-cold debugging option.
498   enum ForceSummaryHotnessType : unsigned {
499     FSHT_None,
500     FSHT_AllNonCritical,
501     FSHT_All
502   };
503 
504   /// An "identifier" for a virtual function. This contains the type identifier
505   /// represented as a GUID and the offset from the address point to the virtual
506   /// function pointer, where "address point" is as defined in the Itanium ABI:
507   /// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general
508   struct VFuncId {
509     GlobalValue::GUID GUID;
510     uint64_t Offset;
511   };
512 
513   /// A specification for a virtual function call with all constant integer
514   /// arguments. This is used to perform virtual constant propagation on the
515   /// summary.
516   struct ConstVCall {
517     VFuncId VFunc;
518     std::vector<uint64_t> Args;
519   };
520 
521   /// All type identifier related information. Because these fields are
522   /// relatively uncommon we only allocate space for them if necessary.
523   struct TypeIdInfo {
524     /// List of type identifiers used by this function in llvm.type.test
525     /// intrinsics referenced by something other than an llvm.assume intrinsic,
526     /// represented as GUIDs.
527     std::vector<GlobalValue::GUID> TypeTests;
528 
529     /// List of virtual calls made by this function using (respectively)
530     /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics that do
531     /// not have all constant integer arguments.
532     std::vector<VFuncId> TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
533 
534     /// List of virtual calls made by this function using (respectively)
535     /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics with
536     /// all constant integer arguments.
537     std::vector<ConstVCall> TypeTestAssumeConstVCalls,
538         TypeCheckedLoadConstVCalls;
539   };
540 
541   /// Flags specific to function summaries.
542   struct FFlags {
543     // Function attribute flags. Used to track if a function accesses memory,
544     // recurses or aliases.
545     unsigned ReadNone : 1;
546     unsigned ReadOnly : 1;
547     unsigned NoRecurse : 1;
548     unsigned ReturnDoesNotAlias : 1;
549 
550     // Indicate if the global value cannot be inlined.
551     unsigned NoInline : 1;
552     // Indicate if function should be always inlined.
553     unsigned AlwaysInline : 1;
554   };
555 
556   /// Describes the uses of a parameter by the function.
557   struct ParamAccess {
558     static constexpr uint32_t RangeWidth = 64;
559 
560     /// Describes the use of a value in a call instruction, specifying the
561     /// call's target, the value's parameter number, and the possible range of
562     /// offsets from the beginning of the value that are passed.
563     struct Call {
564       uint64_t ParamNo = 0;
565       ValueInfo Callee;
566       ConstantRange Offsets{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
567 
568       Call() = default;
569       Call(uint64_t ParamNo, ValueInfo Callee, const ConstantRange &Offsets)
570           : ParamNo(ParamNo), Callee(Callee), Offsets(Offsets) {}
571     };
572 
573     uint64_t ParamNo = 0;
574     /// The range contains byte offsets from the parameter pointer which
575     /// accessed by the function. In the per-module summary, it only includes
576     /// accesses made by the function instructions. In the combined summary, it
577     /// also includes accesses by nested function calls.
578     ConstantRange Use{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
579     /// In the per-module summary, it summarizes the byte offset applied to each
580     /// pointer parameter before passing to each corresponding callee.
581     /// In the combined summary, it's empty and information is propagated by
582     /// inter-procedural analysis and applied to the Use field.
583     std::vector<Call> Calls;
584 
585     ParamAccess() = default;
586     ParamAccess(uint64_t ParamNo, const ConstantRange &Use)
587         : ParamNo(ParamNo), Use(Use) {}
588   };
589 
590   /// Create an empty FunctionSummary (with specified call edges).
591   /// Used to represent external nodes and the dummy root node.
592   static FunctionSummary
593   makeDummyFunctionSummary(std::vector<FunctionSummary::EdgeTy> Edges) {
594     return FunctionSummary(
595         FunctionSummary::GVFlags(
596             GlobalValue::LinkageTypes::AvailableExternallyLinkage,
597             /*NotEligibleToImport=*/true, /*Live=*/true, /*IsLocal=*/false,
598             /*CanAutoHide=*/false),
599         /*NumInsts=*/0, FunctionSummary::FFlags{}, /*EntryCount=*/0,
600         std::vector<ValueInfo>(), std::move(Edges),
601         std::vector<GlobalValue::GUID>(),
602         std::vector<FunctionSummary::VFuncId>(),
603         std::vector<FunctionSummary::VFuncId>(),
604         std::vector<FunctionSummary::ConstVCall>(),
605         std::vector<FunctionSummary::ConstVCall>(),
606         std::vector<FunctionSummary::ParamAccess>());
607   }
608 
609   /// A dummy node to reference external functions that aren't in the index
610   static FunctionSummary ExternalNode;
611 
612 private:
613   /// Number of instructions (ignoring debug instructions, e.g.) computed
614   /// during the initial compile step when the summary index is first built.
615   unsigned InstCount;
616 
617   /// Function summary specific flags.
618   FFlags FunFlags;
619 
620   /// The synthesized entry count of the function.
621   /// This is only populated during ThinLink phase and remains unused while
622   /// generating per-module summaries.
623   uint64_t EntryCount = 0;
624 
625   /// List of <CalleeValueInfo, CalleeInfo> call edge pairs from this function.
626   std::vector<EdgeTy> CallGraphEdgeList;
627 
628   std::unique_ptr<TypeIdInfo> TIdInfo;
629 
630   /// Uses for every parameter to this function.
631   using ParamAccessesTy = std::vector<ParamAccess>;
632   std::unique_ptr<ParamAccessesTy> ParamAccesses;
633 
634 public:
635   FunctionSummary(GVFlags Flags, unsigned NumInsts, FFlags FunFlags,
636                   uint64_t EntryCount, std::vector<ValueInfo> Refs,
637                   std::vector<EdgeTy> CGEdges,
638                   std::vector<GlobalValue::GUID> TypeTests,
639                   std::vector<VFuncId> TypeTestAssumeVCalls,
640                   std::vector<VFuncId> TypeCheckedLoadVCalls,
641                   std::vector<ConstVCall> TypeTestAssumeConstVCalls,
642                   std::vector<ConstVCall> TypeCheckedLoadConstVCalls,
643                   std::vector<ParamAccess> Params)
644       : GlobalValueSummary(FunctionKind, Flags, std::move(Refs)),
645         InstCount(NumInsts), FunFlags(FunFlags), EntryCount(EntryCount),
646         CallGraphEdgeList(std::move(CGEdges)) {
647     if (!TypeTests.empty() || !TypeTestAssumeVCalls.empty() ||
648         !TypeCheckedLoadVCalls.empty() || !TypeTestAssumeConstVCalls.empty() ||
649         !TypeCheckedLoadConstVCalls.empty())
650       TIdInfo = std::make_unique<TypeIdInfo>(
651           TypeIdInfo{std::move(TypeTests), std::move(TypeTestAssumeVCalls),
652                      std::move(TypeCheckedLoadVCalls),
653                      std::move(TypeTestAssumeConstVCalls),
654                      std::move(TypeCheckedLoadConstVCalls)});
655     if (!Params.empty())
656       ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(Params));
657   }
658   // Gets the number of readonly and writeonly refs in RefEdgeList
659   std::pair<unsigned, unsigned> specialRefCounts() const;
660 
661   /// Check if this is a function summary.
662   static bool classof(const GlobalValueSummary *GVS) {
663     return GVS->getSummaryKind() == FunctionKind;
664   }
665 
666   /// Get function summary flags.
667   FFlags fflags() const { return FunFlags; }
668 
669   /// Get the instruction count recorded for this function.
670   unsigned instCount() const { return InstCount; }
671 
672   /// Get the synthetic entry count for this function.
673   uint64_t entryCount() const { return EntryCount; }
674 
675   /// Set the synthetic entry count for this function.
676   void setEntryCount(uint64_t EC) { EntryCount = EC; }
677 
678   /// Return the list of <CalleeValueInfo, CalleeInfo> pairs.
679   ArrayRef<EdgeTy> calls() const { return CallGraphEdgeList; }
680 
681   void addCall(EdgeTy E) { CallGraphEdgeList.push_back(E); }
682 
683   /// Returns the list of type identifiers used by this function in
684   /// llvm.type.test intrinsics other than by an llvm.assume intrinsic,
685   /// represented as GUIDs.
686   ArrayRef<GlobalValue::GUID> type_tests() const {
687     if (TIdInfo)
688       return TIdInfo->TypeTests;
689     return {};
690   }
691 
692   /// Returns the list of virtual calls made by this function using
693   /// llvm.assume(llvm.type.test) intrinsics that do not have all constant
694   /// integer arguments.
695   ArrayRef<VFuncId> type_test_assume_vcalls() const {
696     if (TIdInfo)
697       return TIdInfo->TypeTestAssumeVCalls;
698     return {};
699   }
700 
701   /// Returns the list of virtual calls made by this function using
702   /// llvm.type.checked.load intrinsics that do not have all constant integer
703   /// arguments.
704   ArrayRef<VFuncId> type_checked_load_vcalls() const {
705     if (TIdInfo)
706       return TIdInfo->TypeCheckedLoadVCalls;
707     return {};
708   }
709 
710   /// Returns the list of virtual calls made by this function using
711   /// llvm.assume(llvm.type.test) intrinsics with all constant integer
712   /// arguments.
713   ArrayRef<ConstVCall> type_test_assume_const_vcalls() const {
714     if (TIdInfo)
715       return TIdInfo->TypeTestAssumeConstVCalls;
716     return {};
717   }
718 
719   /// Returns the list of virtual calls made by this function using
720   /// llvm.type.checked.load intrinsics with all constant integer arguments.
721   ArrayRef<ConstVCall> type_checked_load_const_vcalls() const {
722     if (TIdInfo)
723       return TIdInfo->TypeCheckedLoadConstVCalls;
724     return {};
725   }
726 
727   /// Returns the list of known uses of pointer parameters.
728   ArrayRef<ParamAccess> paramAccesses() const {
729     if (ParamAccesses)
730       return *ParamAccesses;
731     return {};
732   }
733 
734   /// Sets the list of known uses of pointer parameters.
735   void setParamAccesses(std::vector<ParamAccess> NewParams) {
736     if (NewParams.empty())
737       ParamAccesses.reset();
738     else if (ParamAccesses)
739       *ParamAccesses = std::move(NewParams);
740     else
741       ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(NewParams));
742   }
743 
744   /// Add a type test to the summary. This is used by WholeProgramDevirt if we
745   /// were unable to devirtualize a checked call.
746   void addTypeTest(GlobalValue::GUID Guid) {
747     if (!TIdInfo)
748       TIdInfo = std::make_unique<TypeIdInfo>();
749     TIdInfo->TypeTests.push_back(Guid);
750   }
751 
752   const TypeIdInfo *getTypeIdInfo() const { return TIdInfo.get(); };
753 
754   friend struct GraphTraits<ValueInfo>;
755 };
756 
757 template <> struct DenseMapInfo<FunctionSummary::VFuncId> {
758   static FunctionSummary::VFuncId getEmptyKey() { return {0, uint64_t(-1)}; }
759 
760   static FunctionSummary::VFuncId getTombstoneKey() {
761     return {0, uint64_t(-2)};
762   }
763 
764   static bool isEqual(FunctionSummary::VFuncId L, FunctionSummary::VFuncId R) {
765     return L.GUID == R.GUID && L.Offset == R.Offset;
766   }
767 
768   static unsigned getHashValue(FunctionSummary::VFuncId I) { return I.GUID; }
769 };
770 
771 template <> struct DenseMapInfo<FunctionSummary::ConstVCall> {
772   static FunctionSummary::ConstVCall getEmptyKey() {
773     return {{0, uint64_t(-1)}, {}};
774   }
775 
776   static FunctionSummary::ConstVCall getTombstoneKey() {
777     return {{0, uint64_t(-2)}, {}};
778   }
779 
780   static bool isEqual(FunctionSummary::ConstVCall L,
781                       FunctionSummary::ConstVCall R) {
782     return DenseMapInfo<FunctionSummary::VFuncId>::isEqual(L.VFunc, R.VFunc) &&
783            L.Args == R.Args;
784   }
785 
786   static unsigned getHashValue(FunctionSummary::ConstVCall I) {
787     return I.VFunc.GUID;
788   }
789 };
790 
791 /// The ValueInfo and offset for a function within a vtable definition
792 /// initializer array.
793 struct VirtFuncOffset {
794   VirtFuncOffset(ValueInfo VI, uint64_t Offset)
795       : FuncVI(VI), VTableOffset(Offset) {}
796 
797   ValueInfo FuncVI;
798   uint64_t VTableOffset;
799 };
800 /// List of functions referenced by a particular vtable definition.
801 using VTableFuncList = std::vector<VirtFuncOffset>;
802 
803 /// Global variable summary information to aid decisions and
804 /// implementation of importing.
805 ///
806 /// Global variable summary has two extra flag, telling if it is
807 /// readonly or writeonly. Both readonly and writeonly variables
808 /// can be optimized in the backed: readonly variables can be
809 /// const-folded, while writeonly vars can be completely eliminated
810 /// together with corresponding stores. We let both things happen
811 /// by means of internalizing such variables after ThinLTO import.
812 class GlobalVarSummary : public GlobalValueSummary {
813 private:
814   /// For vtable definitions this holds the list of functions and
815   /// their corresponding offsets within the initializer array.
816   std::unique_ptr<VTableFuncList> VTableFuncs;
817 
818 public:
819   struct GVarFlags {
820     GVarFlags(bool ReadOnly, bool WriteOnly, bool Constant,
821               GlobalObject::VCallVisibility Vis)
822         : MaybeReadOnly(ReadOnly), MaybeWriteOnly(WriteOnly),
823           Constant(Constant), VCallVisibility(Vis) {}
824 
825     // If true indicates that this global variable might be accessed
826     // purely by non-volatile load instructions. This in turn means
827     // it can be internalized in source and destination modules during
828     // thin LTO import because it neither modified nor its address
829     // is taken.
830     unsigned MaybeReadOnly : 1;
831     // If true indicates that variable is possibly only written to, so
832     // its value isn't loaded and its address isn't taken anywhere.
833     // False, when 'Constant' attribute is set.
834     unsigned MaybeWriteOnly : 1;
835     // Indicates that value is a compile-time constant. Global variable
836     // can be 'Constant' while not being 'ReadOnly' on several occasions:
837     // - it is volatile, (e.g mapped device address)
838     // - its address is taken, meaning that unlike 'ReadOnly' vars we can't
839     //   internalize it.
840     // Constant variables are always imported thus giving compiler an
841     // opportunity to make some extra optimizations. Readonly constants
842     // are also internalized.
843     unsigned Constant : 1;
844     // Set from metadata on vtable definitions during the module summary
845     // analysis.
846     unsigned VCallVisibility : 2;
847   } VarFlags;
848 
849   GlobalVarSummary(GVFlags Flags, GVarFlags VarFlags,
850                    std::vector<ValueInfo> Refs)
851       : GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)),
852         VarFlags(VarFlags) {}
853 
854   /// Check if this is a global variable summary.
855   static bool classof(const GlobalValueSummary *GVS) {
856     return GVS->getSummaryKind() == GlobalVarKind;
857   }
858 
859   GVarFlags varflags() const { return VarFlags; }
860   void setReadOnly(bool RO) { VarFlags.MaybeReadOnly = RO; }
861   void setWriteOnly(bool WO) { VarFlags.MaybeWriteOnly = WO; }
862   bool maybeReadOnly() const { return VarFlags.MaybeReadOnly; }
863   bool maybeWriteOnly() const { return VarFlags.MaybeWriteOnly; }
864   bool isConstant() const { return VarFlags.Constant; }
865   void setVCallVisibility(GlobalObject::VCallVisibility Vis) {
866     VarFlags.VCallVisibility = Vis;
867   }
868   GlobalObject::VCallVisibility getVCallVisibility() const {
869     return (GlobalObject::VCallVisibility)VarFlags.VCallVisibility;
870   }
871 
872   void setVTableFuncs(VTableFuncList Funcs) {
873     assert(!VTableFuncs);
874     VTableFuncs = std::make_unique<VTableFuncList>(std::move(Funcs));
875   }
876 
877   ArrayRef<VirtFuncOffset> vTableFuncs() const {
878     if (VTableFuncs)
879       return *VTableFuncs;
880     return {};
881   }
882 };
883 
884 struct TypeTestResolution {
885   /// Specifies which kind of type check we should emit for this byte array.
886   /// See http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html for full
887   /// details on each kind of check; the enumerators are described with
888   /// reference to that document.
889   enum Kind {
890     Unsat,     ///< Unsatisfiable type (i.e. no global has this type metadata)
891     ByteArray, ///< Test a byte array (first example)
892     Inline,    ///< Inlined bit vector ("Short Inline Bit Vectors")
893     Single,    ///< Single element (last example in "Short Inline Bit Vectors")
894     AllOnes,   ///< All-ones bit vector ("Eliminating Bit Vector Checks for
895                ///  All-Ones Bit Vectors")
896     Unknown,   ///< Unknown (analysis not performed, don't lower)
897   } TheKind = Unknown;
898 
899   /// Range of size-1 expressed as a bit width. For example, if the size is in
900   /// range [1,256], this number will be 8. This helps generate the most compact
901   /// instruction sequences.
902   unsigned SizeM1BitWidth = 0;
903 
904   // The following fields are only used if the target does not support the use
905   // of absolute symbols to store constants. Their meanings are the same as the
906   // corresponding fields in LowerTypeTestsModule::TypeIdLowering in
907   // LowerTypeTests.cpp.
908 
909   uint64_t AlignLog2 = 0;
910   uint64_t SizeM1 = 0;
911   uint8_t BitMask = 0;
912   uint64_t InlineBits = 0;
913 };
914 
915 struct WholeProgramDevirtResolution {
916   enum Kind {
917     Indir,        ///< Just do a regular virtual call
918     SingleImpl,   ///< Single implementation devirtualization
919     BranchFunnel, ///< When retpoline mitigation is enabled, use a branch funnel
920                   ///< that is defined in the merged module. Otherwise same as
921                   ///< Indir.
922   } TheKind = Indir;
923 
924   std::string SingleImplName;
925 
926   struct ByArg {
927     enum Kind {
928       Indir,            ///< Just do a regular virtual call
929       UniformRetVal,    ///< Uniform return value optimization
930       UniqueRetVal,     ///< Unique return value optimization
931       VirtualConstProp, ///< Virtual constant propagation
932     } TheKind = Indir;
933 
934     /// Additional information for the resolution:
935     /// - UniformRetVal: the uniform return value.
936     /// - UniqueRetVal: the return value associated with the unique vtable (0 or
937     ///   1).
938     uint64_t Info = 0;
939 
940     // The following fields are only used if the target does not support the use
941     // of absolute symbols to store constants.
942 
943     uint32_t Byte = 0;
944     uint32_t Bit = 0;
945   };
946 
947   /// Resolutions for calls with all constant integer arguments (excluding the
948   /// first argument, "this"), where the key is the argument vector.
949   std::map<std::vector<uint64_t>, ByArg> ResByArg;
950 };
951 
952 struct TypeIdSummary {
953   TypeTestResolution TTRes;
954 
955   /// Mapping from byte offset to whole-program devirt resolution for that
956   /// (typeid, byte offset) pair.
957   std::map<uint64_t, WholeProgramDevirtResolution> WPDRes;
958 };
959 
960 /// 160 bits SHA1
961 using ModuleHash = std::array<uint32_t, 5>;
962 
963 /// Type used for iterating through the global value summary map.
964 using const_gvsummary_iterator = GlobalValueSummaryMapTy::const_iterator;
965 using gvsummary_iterator = GlobalValueSummaryMapTy::iterator;
966 
967 /// String table to hold/own module path strings, which additionally holds the
968 /// module ID assigned to each module during the plugin step, as well as a hash
969 /// of the module. The StringMap makes a copy of and owns inserted strings.
970 using ModulePathStringTableTy = StringMap<std::pair<uint64_t, ModuleHash>>;
971 
972 /// Map of global value GUID to its summary, used to identify values defined in
973 /// a particular module, and provide efficient access to their summary.
974 using GVSummaryMapTy = DenseMap<GlobalValue::GUID, GlobalValueSummary *>;
975 
976 /// Map of a type GUID to type id string and summary (multimap used
977 /// in case of GUID conflicts).
978 using TypeIdSummaryMapTy =
979     std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
980 
981 /// The following data structures summarize type metadata information.
982 /// For type metadata overview see https://llvm.org/docs/TypeMetadata.html.
983 /// Each type metadata includes both the type identifier and the offset of
984 /// the address point of the type (the address held by objects of that type
985 /// which may not be the beginning of the virtual table). Vtable definitions
986 /// are decorated with type metadata for the types they are compatible with.
987 ///
988 /// Holds information about vtable definitions decorated with type metadata:
989 /// the vtable definition value and its address point offset in a type
990 /// identifier metadata it is decorated (compatible) with.
991 struct TypeIdOffsetVtableInfo {
992   TypeIdOffsetVtableInfo(uint64_t Offset, ValueInfo VI)
993       : AddressPointOffset(Offset), VTableVI(VI) {}
994 
995   uint64_t AddressPointOffset;
996   ValueInfo VTableVI;
997 };
998 /// List of vtable definitions decorated by a particular type identifier,
999 /// and their corresponding offsets in that type identifier's metadata.
1000 /// Note that each type identifier may be compatible with multiple vtables, due
1001 /// to inheritance, which is why this is a vector.
1002 using TypeIdCompatibleVtableInfo = std::vector<TypeIdOffsetVtableInfo>;
1003 
1004 /// Class to hold module path string table and global value map,
1005 /// and encapsulate methods for operating on them.
1006 class ModuleSummaryIndex {
1007 private:
1008   /// Map from value name to list of summary instances for values of that
1009   /// name (may be duplicates in the COMDAT case, e.g.).
1010   GlobalValueSummaryMapTy GlobalValueMap;
1011 
1012   /// Holds strings for combined index, mapping to the corresponding module ID.
1013   ModulePathStringTableTy ModulePathStringTable;
1014 
1015   /// Mapping from type identifier GUIDs to type identifier and its summary
1016   /// information. Produced by thin link.
1017   TypeIdSummaryMapTy TypeIdMap;
1018 
1019   /// Mapping from type identifier to information about vtables decorated
1020   /// with that type identifier's metadata. Produced by per module summary
1021   /// analysis and consumed by thin link. For more information, see description
1022   /// above where TypeIdCompatibleVtableInfo is defined.
1023   std::map<std::string, TypeIdCompatibleVtableInfo, std::less<>>
1024       TypeIdCompatibleVtableMap;
1025 
1026   /// Mapping from original ID to GUID. If original ID can map to multiple
1027   /// GUIDs, it will be mapped to 0.
1028   std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
1029 
1030   /// Indicates that summary-based GlobalValue GC has run, and values with
1031   /// GVFlags::Live==false are really dead. Otherwise, all values must be
1032   /// considered live.
1033   bool WithGlobalValueDeadStripping = false;
1034 
1035   /// Indicates that summary-based attribute propagation has run and
1036   /// GVarFlags::MaybeReadonly / GVarFlags::MaybeWriteonly are really
1037   /// read/write only.
1038   bool WithAttributePropagation = false;
1039 
1040   /// Indicates that summary-based synthetic entry count propagation has run
1041   bool HasSyntheticEntryCounts = false;
1042 
1043   /// Indicates that distributed backend should skip compilation of the
1044   /// module. Flag is suppose to be set by distributed ThinLTO indexing
1045   /// when it detected that the module is not needed during the final
1046   /// linking. As result distributed backend should just output a minimal
1047   /// valid object file.
1048   bool SkipModuleByDistributedBackend = false;
1049 
1050   /// If true then we're performing analysis of IR module, or parsing along with
1051   /// the IR from assembly. The value of 'false' means we're reading summary
1052   /// from BC or YAML source. Affects the type of value stored in NameOrGV
1053   /// union.
1054   bool HaveGVs;
1055 
1056   // True if the index was created for a module compiled with -fsplit-lto-unit.
1057   bool EnableSplitLTOUnit;
1058 
1059   // True if some of the modules were compiled with -fsplit-lto-unit and
1060   // some were not. Set when the combined index is created during the thin link.
1061   bool PartiallySplitLTOUnits = false;
1062 
1063   /// True if some of the FunctionSummary contains a ParamAccess.
1064   bool HasParamAccess = false;
1065 
1066   std::set<std::string> CfiFunctionDefs;
1067   std::set<std::string> CfiFunctionDecls;
1068 
1069   // Used in cases where we want to record the name of a global, but
1070   // don't have the string owned elsewhere (e.g. the Strtab on a module).
1071   StringSaver Saver;
1072   BumpPtrAllocator Alloc;
1073 
1074   // The total number of basic blocks in the module in the per-module summary or
1075   // the total number of basic blocks in the LTO unit in the combined index.
1076   uint64_t BlockCount;
1077 
1078   // YAML I/O support.
1079   friend yaml::MappingTraits<ModuleSummaryIndex>;
1080 
1081   GlobalValueSummaryMapTy::value_type *
1082   getOrInsertValuePtr(GlobalValue::GUID GUID) {
1083     return &*GlobalValueMap.emplace(GUID, GlobalValueSummaryInfo(HaveGVs))
1084                  .first;
1085   }
1086 
1087 public:
1088   // See HaveGVs variable comment.
1089   ModuleSummaryIndex(bool HaveGVs, bool EnableSplitLTOUnit = false)
1090       : HaveGVs(HaveGVs), EnableSplitLTOUnit(EnableSplitLTOUnit), Saver(Alloc),
1091         BlockCount(0) {}
1092 
1093   // Current version for the module summary in bitcode files.
1094   // The BitcodeSummaryVersion should be bumped whenever we introduce changes
1095   // in the way some record are interpreted, like flags for instance.
1096   // Note that incrementing this may require changes in both BitcodeReader.cpp
1097   // and BitcodeWriter.cpp.
1098   static constexpr uint64_t BitcodeSummaryVersion = 9;
1099 
1100   // Regular LTO module name for ASM writer
1101   static constexpr const char *getRegularLTOModuleName() {
1102     return "[Regular LTO]";
1103   }
1104 
1105   bool haveGVs() const { return HaveGVs; }
1106 
1107   uint64_t getFlags() const;
1108   void setFlags(uint64_t Flags);
1109 
1110   uint64_t getBlockCount() const { return BlockCount; }
1111   void addBlockCount(uint64_t C) { BlockCount += C; }
1112   void setBlockCount(uint64_t C) { BlockCount = C; }
1113 
1114   gvsummary_iterator begin() { return GlobalValueMap.begin(); }
1115   const_gvsummary_iterator begin() const { return GlobalValueMap.begin(); }
1116   gvsummary_iterator end() { return GlobalValueMap.end(); }
1117   const_gvsummary_iterator end() const { return GlobalValueMap.end(); }
1118   size_t size() const { return GlobalValueMap.size(); }
1119 
1120   /// Convenience function for doing a DFS on a ValueInfo. Marks the function in
1121   /// the FunctionHasParent map.
1122   static void discoverNodes(ValueInfo V,
1123                             std::map<ValueInfo, bool> &FunctionHasParent) {
1124     if (!V.getSummaryList().size())
1125       return; // skip external functions that don't have summaries
1126 
1127     // Mark discovered if we haven't yet
1128     auto S = FunctionHasParent.emplace(V, false);
1129 
1130     // Stop if we've already discovered this node
1131     if (!S.second)
1132       return;
1133 
1134     FunctionSummary *F =
1135         dyn_cast<FunctionSummary>(V.getSummaryList().front().get());
1136     assert(F != nullptr && "Expected FunctionSummary node");
1137 
1138     for (auto &C : F->calls()) {
1139       // Insert node if necessary
1140       auto S = FunctionHasParent.emplace(C.first, true);
1141 
1142       // Skip nodes that we're sure have parents
1143       if (!S.second && S.first->second)
1144         continue;
1145 
1146       if (S.second)
1147         discoverNodes(C.first, FunctionHasParent);
1148       else
1149         S.first->second = true;
1150     }
1151   }
1152 
1153   // Calculate the callgraph root
1154   FunctionSummary calculateCallGraphRoot() {
1155     // Functions that have a parent will be marked in FunctionHasParent pair.
1156     // Once we've marked all functions, the functions in the map that are false
1157     // have no parent (so they're the roots)
1158     std::map<ValueInfo, bool> FunctionHasParent;
1159 
1160     for (auto &S : *this) {
1161       // Skip external functions
1162       if (!S.second.SummaryList.size() ||
1163           !isa<FunctionSummary>(S.second.SummaryList.front().get()))
1164         continue;
1165       discoverNodes(ValueInfo(HaveGVs, &S), FunctionHasParent);
1166     }
1167 
1168     std::vector<FunctionSummary::EdgeTy> Edges;
1169     // create edges to all roots in the Index
1170     for (auto &P : FunctionHasParent) {
1171       if (P.second)
1172         continue; // skip over non-root nodes
1173       Edges.push_back(std::make_pair(P.first, CalleeInfo{}));
1174     }
1175     if (Edges.empty()) {
1176       // Failed to find root - return an empty node
1177       return FunctionSummary::makeDummyFunctionSummary({});
1178     }
1179     auto CallGraphRoot = FunctionSummary::makeDummyFunctionSummary(Edges);
1180     return CallGraphRoot;
1181   }
1182 
1183   bool withGlobalValueDeadStripping() const {
1184     return WithGlobalValueDeadStripping;
1185   }
1186   void setWithGlobalValueDeadStripping() {
1187     WithGlobalValueDeadStripping = true;
1188   }
1189 
1190   bool withAttributePropagation() const { return WithAttributePropagation; }
1191   void setWithAttributePropagation() {
1192     WithAttributePropagation = true;
1193   }
1194 
1195   bool isReadOnly(const GlobalVarSummary *GVS) const {
1196     return WithAttributePropagation && GVS->maybeReadOnly();
1197   }
1198   bool isWriteOnly(const GlobalVarSummary *GVS) const {
1199     return WithAttributePropagation && GVS->maybeWriteOnly();
1200   }
1201 
1202   bool hasSyntheticEntryCounts() const { return HasSyntheticEntryCounts; }
1203   void setHasSyntheticEntryCounts() { HasSyntheticEntryCounts = true; }
1204 
1205   bool skipModuleByDistributedBackend() const {
1206     return SkipModuleByDistributedBackend;
1207   }
1208   void setSkipModuleByDistributedBackend() {
1209     SkipModuleByDistributedBackend = true;
1210   }
1211 
1212   bool enableSplitLTOUnit() const { return EnableSplitLTOUnit; }
1213   void setEnableSplitLTOUnit() { EnableSplitLTOUnit = true; }
1214 
1215   bool partiallySplitLTOUnits() const { return PartiallySplitLTOUnits; }
1216   void setPartiallySplitLTOUnits() { PartiallySplitLTOUnits = true; }
1217 
1218   bool hasParamAccess() const { return HasParamAccess; }
1219 
1220   bool isGlobalValueLive(const GlobalValueSummary *GVS) const {
1221     return !WithGlobalValueDeadStripping || GVS->isLive();
1222   }
1223   bool isGUIDLive(GlobalValue::GUID GUID) const;
1224 
1225   /// Return a ValueInfo for the index value_type (convenient when iterating
1226   /// index).
1227   ValueInfo getValueInfo(const GlobalValueSummaryMapTy::value_type &R) const {
1228     return ValueInfo(HaveGVs, &R);
1229   }
1230 
1231   /// Return a ValueInfo for GUID if it exists, otherwise return ValueInfo().
1232   ValueInfo getValueInfo(GlobalValue::GUID GUID) const {
1233     auto I = GlobalValueMap.find(GUID);
1234     return ValueInfo(HaveGVs, I == GlobalValueMap.end() ? nullptr : &*I);
1235   }
1236 
1237   /// Return a ValueInfo for \p GUID.
1238   ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID) {
1239     return ValueInfo(HaveGVs, getOrInsertValuePtr(GUID));
1240   }
1241 
1242   // Save a string in the Index. Use before passing Name to
1243   // getOrInsertValueInfo when the string isn't owned elsewhere (e.g. on the
1244   // module's Strtab).
1245   StringRef saveString(StringRef String) { return Saver.save(String); }
1246 
1247   /// Return a ValueInfo for \p GUID setting value \p Name.
1248   ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID, StringRef Name) {
1249     assert(!HaveGVs);
1250     auto VP = getOrInsertValuePtr(GUID);
1251     VP->second.U.Name = Name;
1252     return ValueInfo(HaveGVs, VP);
1253   }
1254 
1255   /// Return a ValueInfo for \p GV and mark it as belonging to GV.
1256   ValueInfo getOrInsertValueInfo(const GlobalValue *GV) {
1257     assert(HaveGVs);
1258     auto VP = getOrInsertValuePtr(GV->getGUID());
1259     VP->second.U.GV = GV;
1260     return ValueInfo(HaveGVs, VP);
1261   }
1262 
1263   /// Return the GUID for \p OriginalId in the OidGuidMap.
1264   GlobalValue::GUID getGUIDFromOriginalID(GlobalValue::GUID OriginalID) const {
1265     const auto I = OidGuidMap.find(OriginalID);
1266     return I == OidGuidMap.end() ? 0 : I->second;
1267   }
1268 
1269   std::set<std::string> &cfiFunctionDefs() { return CfiFunctionDefs; }
1270   const std::set<std::string> &cfiFunctionDefs() const { return CfiFunctionDefs; }
1271 
1272   std::set<std::string> &cfiFunctionDecls() { return CfiFunctionDecls; }
1273   const std::set<std::string> &cfiFunctionDecls() const { return CfiFunctionDecls; }
1274 
1275   /// Add a global value summary for a value.
1276   void addGlobalValueSummary(const GlobalValue &GV,
1277                              std::unique_ptr<GlobalValueSummary> Summary) {
1278     addGlobalValueSummary(getOrInsertValueInfo(&GV), std::move(Summary));
1279   }
1280 
1281   /// Add a global value summary for a value of the given name.
1282   void addGlobalValueSummary(StringRef ValueName,
1283                              std::unique_ptr<GlobalValueSummary> Summary) {
1284     addGlobalValueSummary(getOrInsertValueInfo(GlobalValue::getGUID(ValueName)),
1285                           std::move(Summary));
1286   }
1287 
1288   /// Add a global value summary for the given ValueInfo.
1289   void addGlobalValueSummary(ValueInfo VI,
1290                              std::unique_ptr<GlobalValueSummary> Summary) {
1291     if (const FunctionSummary *FS = dyn_cast<FunctionSummary>(Summary.get()))
1292       HasParamAccess |= !FS->paramAccesses().empty();
1293     addOriginalName(VI.getGUID(), Summary->getOriginalName());
1294     // Here we have a notionally const VI, but the value it points to is owned
1295     // by the non-const *this.
1296     const_cast<GlobalValueSummaryMapTy::value_type *>(VI.getRef())
1297         ->second.SummaryList.push_back(std::move(Summary));
1298   }
1299 
1300   /// Add an original name for the value of the given GUID.
1301   void addOriginalName(GlobalValue::GUID ValueGUID,
1302                        GlobalValue::GUID OrigGUID) {
1303     if (OrigGUID == 0 || ValueGUID == OrigGUID)
1304       return;
1305     if (OidGuidMap.count(OrigGUID) && OidGuidMap[OrigGUID] != ValueGUID)
1306       OidGuidMap[OrigGUID] = 0;
1307     else
1308       OidGuidMap[OrigGUID] = ValueGUID;
1309   }
1310 
1311   /// Find the summary for ValueInfo \p VI in module \p ModuleId, or nullptr if
1312   /// not found.
1313   GlobalValueSummary *findSummaryInModule(ValueInfo VI, StringRef ModuleId) const {
1314     auto SummaryList = VI.getSummaryList();
1315     auto Summary =
1316         llvm::find_if(SummaryList,
1317                       [&](const std::unique_ptr<GlobalValueSummary> &Summary) {
1318                         return Summary->modulePath() == ModuleId;
1319                       });
1320     if (Summary == SummaryList.end())
1321       return nullptr;
1322     return Summary->get();
1323   }
1324 
1325   /// Find the summary for global \p GUID in module \p ModuleId, or nullptr if
1326   /// not found.
1327   GlobalValueSummary *findSummaryInModule(GlobalValue::GUID ValueGUID,
1328                                           StringRef ModuleId) const {
1329     auto CalleeInfo = getValueInfo(ValueGUID);
1330     if (!CalleeInfo)
1331       return nullptr; // This function does not have a summary
1332     return findSummaryInModule(CalleeInfo, ModuleId);
1333   }
1334 
1335   /// Returns the first GlobalValueSummary for \p GV, asserting that there
1336   /// is only one if \p PerModuleIndex.
1337   GlobalValueSummary *getGlobalValueSummary(const GlobalValue &GV,
1338                                             bool PerModuleIndex = true) const {
1339     assert(GV.hasName() && "Can't get GlobalValueSummary for GV with no name");
1340     return getGlobalValueSummary(GV.getGUID(), PerModuleIndex);
1341   }
1342 
1343   /// Returns the first GlobalValueSummary for \p ValueGUID, asserting that
1344   /// there
1345   /// is only one if \p PerModuleIndex.
1346   GlobalValueSummary *getGlobalValueSummary(GlobalValue::GUID ValueGUID,
1347                                             bool PerModuleIndex = true) const;
1348 
1349   /// Table of modules, containing module hash and id.
1350   const StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() const {
1351     return ModulePathStringTable;
1352   }
1353 
1354   /// Table of modules, containing hash and id.
1355   StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() {
1356     return ModulePathStringTable;
1357   }
1358 
1359   /// Get the module ID recorded for the given module path.
1360   uint64_t getModuleId(const StringRef ModPath) const {
1361     return ModulePathStringTable.lookup(ModPath).first;
1362   }
1363 
1364   /// Get the module SHA1 hash recorded for the given module path.
1365   const ModuleHash &getModuleHash(const StringRef ModPath) const {
1366     auto It = ModulePathStringTable.find(ModPath);
1367     assert(It != ModulePathStringTable.end() && "Module not registered");
1368     return It->second.second;
1369   }
1370 
1371   /// Convenience method for creating a promoted global name
1372   /// for the given value name of a local, and its original module's ID.
1373   static std::string getGlobalNameForLocal(StringRef Name, ModuleHash ModHash) {
1374     SmallString<256> NewName(Name);
1375     NewName += ".llvm.";
1376     NewName += utostr((uint64_t(ModHash[0]) << 32) |
1377                       ModHash[1]); // Take the first 64 bits
1378     return std::string(NewName.str());
1379   }
1380 
1381   /// Helper to obtain the unpromoted name for a global value (or the original
1382   /// name if not promoted). Split off the rightmost ".llvm.${hash}" suffix,
1383   /// because it is possible in certain clients (not clang at the moment) for
1384   /// two rounds of ThinLTO optimization and therefore promotion to occur.
1385   static StringRef getOriginalNameBeforePromote(StringRef Name) {
1386     std::pair<StringRef, StringRef> Pair = Name.rsplit(".llvm.");
1387     return Pair.first;
1388   }
1389 
1390   typedef ModulePathStringTableTy::value_type ModuleInfo;
1391 
1392   /// Add a new module with the given \p Hash, mapped to the given \p
1393   /// ModID, and return a reference to the module.
1394   ModuleInfo *addModule(StringRef ModPath, uint64_t ModId,
1395                         ModuleHash Hash = ModuleHash{{0}}) {
1396     return &*ModulePathStringTable.insert({ModPath, {ModId, Hash}}).first;
1397   }
1398 
1399   /// Return module entry for module with the given \p ModPath.
1400   ModuleInfo *getModule(StringRef ModPath) {
1401     auto It = ModulePathStringTable.find(ModPath);
1402     assert(It != ModulePathStringTable.end() && "Module not registered");
1403     return &*It;
1404   }
1405 
1406   /// Check if the given Module has any functions available for exporting
1407   /// in the index. We consider any module present in the ModulePathStringTable
1408   /// to have exported functions.
1409   bool hasExportedFunctions(const Module &M) const {
1410     return ModulePathStringTable.count(M.getModuleIdentifier());
1411   }
1412 
1413   const TypeIdSummaryMapTy &typeIds() const { return TypeIdMap; }
1414 
1415   /// Return an existing or new TypeIdSummary entry for \p TypeId.
1416   /// This accessor can mutate the map and therefore should not be used in
1417   /// the ThinLTO backends.
1418   TypeIdSummary &getOrInsertTypeIdSummary(StringRef TypeId) {
1419     auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1420     for (auto It = TidIter.first; It != TidIter.second; ++It)
1421       if (It->second.first == TypeId)
1422         return It->second.second;
1423     auto It = TypeIdMap.insert(
1424         {GlobalValue::getGUID(TypeId), {std::string(TypeId), TypeIdSummary()}});
1425     return It->second.second;
1426   }
1427 
1428   /// This returns either a pointer to the type id summary (if present in the
1429   /// summary map) or null (if not present). This may be used when importing.
1430   const TypeIdSummary *getTypeIdSummary(StringRef TypeId) const {
1431     auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1432     for (auto It = TidIter.first; It != TidIter.second; ++It)
1433       if (It->second.first == TypeId)
1434         return &It->second.second;
1435     return nullptr;
1436   }
1437 
1438   TypeIdSummary *getTypeIdSummary(StringRef TypeId) {
1439     return const_cast<TypeIdSummary *>(
1440         static_cast<const ModuleSummaryIndex *>(this)->getTypeIdSummary(
1441             TypeId));
1442   }
1443 
1444   const auto &typeIdCompatibleVtableMap() const {
1445     return TypeIdCompatibleVtableMap;
1446   }
1447 
1448   /// Return an existing or new TypeIdCompatibleVtableMap entry for \p TypeId.
1449   /// This accessor can mutate the map and therefore should not be used in
1450   /// the ThinLTO backends.
1451   TypeIdCompatibleVtableInfo &
1452   getOrInsertTypeIdCompatibleVtableSummary(StringRef TypeId) {
1453     return TypeIdCompatibleVtableMap[std::string(TypeId)];
1454   }
1455 
1456   /// For the given \p TypeId, this returns the TypeIdCompatibleVtableMap
1457   /// entry if present in the summary map. This may be used when importing.
1458   Optional<TypeIdCompatibleVtableInfo>
1459   getTypeIdCompatibleVtableSummary(StringRef TypeId) const {
1460     auto I = TypeIdCompatibleVtableMap.find(TypeId);
1461     if (I == TypeIdCompatibleVtableMap.end())
1462       return None;
1463     return I->second;
1464   }
1465 
1466   /// Collect for the given module the list of functions it defines
1467   /// (GUID -> Summary).
1468   void collectDefinedFunctionsForModule(StringRef ModulePath,
1469                                         GVSummaryMapTy &GVSummaryMap) const;
1470 
1471   /// Collect for each module the list of Summaries it defines (GUID ->
1472   /// Summary).
1473   template <class Map>
1474   void
1475   collectDefinedGVSummariesPerModule(Map &ModuleToDefinedGVSummaries) const {
1476     for (auto &GlobalList : *this) {
1477       auto GUID = GlobalList.first;
1478       for (auto &Summary : GlobalList.second.SummaryList) {
1479         ModuleToDefinedGVSummaries[Summary->modulePath()][GUID] = Summary.get();
1480       }
1481     }
1482   }
1483 
1484   /// Print to an output stream.
1485   void print(raw_ostream &OS, bool IsForDebug = false) const;
1486 
1487   /// Dump to stderr (for debugging).
1488   void dump() const;
1489 
1490   /// Export summary to dot file for GraphViz.
1491   void
1492   exportToDot(raw_ostream &OS,
1493               const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) const;
1494 
1495   /// Print out strongly connected components for debugging.
1496   void dumpSCCs(raw_ostream &OS);
1497 
1498   /// Analyze index and detect unmodified globals
1499   void propagateAttributes(const DenseSet<GlobalValue::GUID> &PreservedSymbols);
1500 
1501   /// Checks if we can import global variable from another module.
1502   bool canImportGlobalVar(GlobalValueSummary *S, bool AnalyzeRefs) const;
1503 };
1504 
1505 /// GraphTraits definition to build SCC for the index
1506 template <> struct GraphTraits<ValueInfo> {
1507   typedef ValueInfo NodeRef;
1508   using EdgeRef = FunctionSummary::EdgeTy &;
1509 
1510   static NodeRef valueInfoFromEdge(FunctionSummary::EdgeTy &P) {
1511     return P.first;
1512   }
1513   using ChildIteratorType =
1514       mapped_iterator<std::vector<FunctionSummary::EdgeTy>::iterator,
1515                       decltype(&valueInfoFromEdge)>;
1516 
1517   using ChildEdgeIteratorType = std::vector<FunctionSummary::EdgeTy>::iterator;
1518 
1519   static NodeRef getEntryNode(ValueInfo V) { return V; }
1520 
1521   static ChildIteratorType child_begin(NodeRef N) {
1522     if (!N.getSummaryList().size()) // handle external function
1523       return ChildIteratorType(
1524           FunctionSummary::ExternalNode.CallGraphEdgeList.begin(),
1525           &valueInfoFromEdge);
1526     FunctionSummary *F =
1527         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1528     return ChildIteratorType(F->CallGraphEdgeList.begin(), &valueInfoFromEdge);
1529   }
1530 
1531   static ChildIteratorType child_end(NodeRef N) {
1532     if (!N.getSummaryList().size()) // handle external function
1533       return ChildIteratorType(
1534           FunctionSummary::ExternalNode.CallGraphEdgeList.end(),
1535           &valueInfoFromEdge);
1536     FunctionSummary *F =
1537         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1538     return ChildIteratorType(F->CallGraphEdgeList.end(), &valueInfoFromEdge);
1539   }
1540 
1541   static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
1542     if (!N.getSummaryList().size()) // handle external function
1543       return FunctionSummary::ExternalNode.CallGraphEdgeList.begin();
1544 
1545     FunctionSummary *F =
1546         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1547     return F->CallGraphEdgeList.begin();
1548   }
1549 
1550   static ChildEdgeIteratorType child_edge_end(NodeRef N) {
1551     if (!N.getSummaryList().size()) // handle external function
1552       return FunctionSummary::ExternalNode.CallGraphEdgeList.end();
1553 
1554     FunctionSummary *F =
1555         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1556     return F->CallGraphEdgeList.end();
1557   }
1558 
1559   static NodeRef edge_dest(EdgeRef E) { return E.first; }
1560 };
1561 
1562 template <>
1563 struct GraphTraits<ModuleSummaryIndex *> : public GraphTraits<ValueInfo> {
1564   static NodeRef getEntryNode(ModuleSummaryIndex *I) {
1565     std::unique_ptr<GlobalValueSummary> Root =
1566         std::make_unique<FunctionSummary>(I->calculateCallGraphRoot());
1567     GlobalValueSummaryInfo G(I->haveGVs());
1568     G.SummaryList.push_back(std::move(Root));
1569     static auto P =
1570         GlobalValueSummaryMapTy::value_type(GlobalValue::GUID(0), std::move(G));
1571     return ValueInfo(I->haveGVs(), &P);
1572   }
1573 };
1574 } // end namespace llvm
1575 
1576 #endif // LLVM_IR_MODULESUMMARYINDEX_H
1577