1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 ///   a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/TinyPtrVector.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PassInstrumentation.h"
48 #include "llvm/IR/PassManagerInternal.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/TimeProfiler.h"
51 #include "llvm/Support/TypeName.h"
52 #include <cassert>
53 #include <cstring>
54 #include <iterator>
55 #include <list>
56 #include <memory>
57 #include <tuple>
58 #include <type_traits>
59 #include <utility>
60 #include <vector>
61 
62 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
63 
64 namespace llvm {
65 
66 // RemoveDIs: Provide facilities for converting debug-info from one form to
67 // another, which are no-ops for everything but modules.
68 template <class IRUnitT> inline bool shouldConvertDbgInfo(IRUnitT &IR) {
69   return false;
70 }
71 template <> inline bool shouldConvertDbgInfo(Module &IR) {
72   return !IR.IsNewDbgInfoFormat && UseNewDbgInfoFormat;
73 }
74 template <class IRUnitT> inline void doConvertDbgInfoToNew(IRUnitT &IR) {}
75 template <> inline void doConvertDbgInfoToNew(Module &IR) {
76   IR.convertToNewDbgValues();
77 }
78 template <class IRUnitT> inline void doConvertDebugInfoToOld(IRUnitT &IR) {}
79 template <> inline void doConvertDebugInfoToOld(Module &IR) {
80   IR.convertFromNewDbgValues();
81 }
82 
83 /// A special type used by analysis passes to provide an address that
84 /// identifies that particular analysis pass type.
85 ///
86 /// Analysis passes should have a static data member of this type and derive
87 /// from the \c AnalysisInfoMixin to get a static ID method used to identify
88 /// the analysis in the pass management infrastructure.
89 struct alignas(8) AnalysisKey {};
90 
91 /// A special type used to provide an address that identifies a set of related
92 /// analyses.  These sets are primarily used below to mark sets of analyses as
93 /// preserved.
94 ///
95 /// For example, a transformation can indicate that it preserves the CFG of a
96 /// function by preserving the appropriate AnalysisSetKey.  An analysis that
97 /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
98 /// if it is, the analysis knows that it itself is preserved.
99 struct alignas(8) AnalysisSetKey {};
100 
101 /// This templated class represents "all analyses that operate over \<a
102 /// particular IR unit\>" (e.g. a Function or a Module) in instances of
103 /// PreservedAnalysis.
104 ///
105 /// This lets a transformation say e.g. "I preserved all function analyses".
106 ///
107 /// Note that you must provide an explicit instantiation declaration and
108 /// definition for this template in order to get the correct behavior on
109 /// Windows. Otherwise, the address of SetKey will not be stable.
110 template <typename IRUnitT> class AllAnalysesOn {
111 public:
112   static AnalysisSetKey *ID() { return &SetKey; }
113 
114 private:
115   static AnalysisSetKey SetKey;
116 };
117 
118 template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
119 
120 extern template class AllAnalysesOn<Module>;
121 extern template class AllAnalysesOn<Function>;
122 
123 /// Represents analyses that only rely on functions' control flow.
124 ///
125 /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
126 /// to query whether it has been preserved.
127 ///
128 /// The CFG of a function is defined as the set of basic blocks and the edges
129 /// between them. Changing the set of basic blocks in a function is enough to
130 /// mutate the CFG. Mutating the condition of a branch or argument of an
131 /// invoked function does not mutate the CFG, but changing the successor labels
132 /// of those instructions does.
133 class CFGAnalyses {
134 public:
135   static AnalysisSetKey *ID() { return &SetKey; }
136 
137 private:
138   static AnalysisSetKey SetKey;
139 };
140 
141 /// A set of analyses that are preserved following a run of a transformation
142 /// pass.
143 ///
144 /// Transformation passes build and return these objects to communicate which
145 /// analyses are still valid after the transformation. For most passes this is
146 /// fairly simple: if they don't change anything all analyses are preserved,
147 /// otherwise only a short list of analyses that have been explicitly updated
148 /// are preserved.
149 ///
150 /// This class also lets transformation passes mark abstract *sets* of analyses
151 /// as preserved. A transformation that (say) does not alter the CFG can
152 /// indicate such by marking a particular AnalysisSetKey as preserved, and
153 /// then analyses can query whether that AnalysisSetKey is preserved.
154 ///
155 /// Finally, this class can represent an "abandoned" analysis, which is
156 /// not preserved even if it would be covered by some abstract set of analyses.
157 ///
158 /// Given a `PreservedAnalyses` object, an analysis will typically want to
159 /// figure out whether it is preserved. In the example below, MyAnalysisType is
160 /// preserved if it's not abandoned, and (a) it's explicitly marked as
161 /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
162 /// AnalysisSetA and AnalysisSetB are preserved.
163 ///
164 /// ```
165 ///   auto PAC = PA.getChecker<MyAnalysisType>();
166 ///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
167 ///       (PAC.preservedSet<AnalysisSetA>() &&
168 ///        PAC.preservedSet<AnalysisSetB>())) {
169 ///     // The analysis has been successfully preserved ...
170 ///   }
171 /// ```
172 class PreservedAnalyses {
173 public:
174   /// Convenience factory function for the empty preserved set.
175   static PreservedAnalyses none() { return PreservedAnalyses(); }
176 
177   /// Construct a special preserved set that preserves all passes.
178   static PreservedAnalyses all() {
179     PreservedAnalyses PA;
180     PA.PreservedIDs.insert(&AllAnalysesKey);
181     return PA;
182   }
183 
184   /// Construct a preserved analyses object with a single preserved set.
185   template <typename AnalysisSetT>
186   static PreservedAnalyses allInSet() {
187     PreservedAnalyses PA;
188     PA.preserveSet<AnalysisSetT>();
189     return PA;
190   }
191 
192   /// Mark an analysis as preserved.
193   template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
194 
195   /// Given an analysis's ID, mark the analysis as preserved, adding it
196   /// to the set.
197   void preserve(AnalysisKey *ID) {
198     // Clear this ID from the explicit not-preserved set if present.
199     NotPreservedAnalysisIDs.erase(ID);
200 
201     // If we're not already preserving all analyses (other than those in
202     // NotPreservedAnalysisIDs).
203     if (!areAllPreserved())
204       PreservedIDs.insert(ID);
205   }
206 
207   /// Mark an analysis set as preserved.
208   template <typename AnalysisSetT> void preserveSet() {
209     preserveSet(AnalysisSetT::ID());
210   }
211 
212   /// Mark an analysis set as preserved using its ID.
213   void preserveSet(AnalysisSetKey *ID) {
214     // If we're not already in the saturated 'all' state, add this set.
215     if (!areAllPreserved())
216       PreservedIDs.insert(ID);
217   }
218 
219   /// Mark an analysis as abandoned.
220   ///
221   /// An abandoned analysis is not preserved, even if it is nominally covered
222   /// by some other set or was previously explicitly marked as preserved.
223   ///
224   /// Note that you can only abandon a specific analysis, not a *set* of
225   /// analyses.
226   template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
227 
228   /// Mark an analysis as abandoned using its ID.
229   ///
230   /// An abandoned analysis is not preserved, even if it is nominally covered
231   /// by some other set or was previously explicitly marked as preserved.
232   ///
233   /// Note that you can only abandon a specific analysis, not a *set* of
234   /// analyses.
235   void abandon(AnalysisKey *ID) {
236     PreservedIDs.erase(ID);
237     NotPreservedAnalysisIDs.insert(ID);
238   }
239 
240   /// Intersect this set with another in place.
241   ///
242   /// This is a mutating operation on this preserved set, removing all
243   /// preserved passes which are not also preserved in the argument.
244   void intersect(const PreservedAnalyses &Arg) {
245     if (Arg.areAllPreserved())
246       return;
247     if (areAllPreserved()) {
248       *this = Arg;
249       return;
250     }
251     // The intersection requires the *union* of the explicitly not-preserved
252     // IDs and the *intersection* of the preserved IDs.
253     for (auto *ID : Arg.NotPreservedAnalysisIDs) {
254       PreservedIDs.erase(ID);
255       NotPreservedAnalysisIDs.insert(ID);
256     }
257     for (auto *ID : PreservedIDs)
258       if (!Arg.PreservedIDs.count(ID))
259         PreservedIDs.erase(ID);
260   }
261 
262   /// Intersect this set with a temporary other set in place.
263   ///
264   /// This is a mutating operation on this preserved set, removing all
265   /// preserved passes which are not also preserved in the argument.
266   void intersect(PreservedAnalyses &&Arg) {
267     if (Arg.areAllPreserved())
268       return;
269     if (areAllPreserved()) {
270       *this = std::move(Arg);
271       return;
272     }
273     // The intersection requires the *union* of the explicitly not-preserved
274     // IDs and the *intersection* of the preserved IDs.
275     for (auto *ID : Arg.NotPreservedAnalysisIDs) {
276       PreservedIDs.erase(ID);
277       NotPreservedAnalysisIDs.insert(ID);
278     }
279     for (auto *ID : PreservedIDs)
280       if (!Arg.PreservedIDs.count(ID))
281         PreservedIDs.erase(ID);
282   }
283 
284   /// A checker object that makes it easy to query for whether an analysis or
285   /// some set covering it is preserved.
286   class PreservedAnalysisChecker {
287     friend class PreservedAnalyses;
288 
289     const PreservedAnalyses &PA;
290     AnalysisKey *const ID;
291     const bool IsAbandoned;
292 
293     /// A PreservedAnalysisChecker is tied to a particular Analysis because
294     /// `preserved()` and `preservedSet()` both return false if the Analysis
295     /// was abandoned.
296     PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
297         : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
298 
299   public:
300     /// Returns true if the checker's analysis was not abandoned and either
301     ///  - the analysis is explicitly preserved or
302     ///  - all analyses are preserved.
303     bool preserved() {
304       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
305                               PA.PreservedIDs.count(ID));
306     }
307 
308     /// Return true if the checker's analysis was not abandoned, i.e. it was not
309     /// explicitly invalidated. Even if the analysis is not explicitly
310     /// preserved, if the analysis is known stateless, then it is preserved.
311     bool preservedWhenStateless() {
312       return !IsAbandoned;
313     }
314 
315     /// Returns true if the checker's analysis was not abandoned and either
316     ///  - \p AnalysisSetT is explicitly preserved or
317     ///  - all analyses are preserved.
318     template <typename AnalysisSetT> bool preservedSet() {
319       AnalysisSetKey *SetID = AnalysisSetT::ID();
320       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
321                               PA.PreservedIDs.count(SetID));
322     }
323   };
324 
325   /// Build a checker for this `PreservedAnalyses` and the specified analysis
326   /// type.
327   ///
328   /// You can use the returned object to query whether an analysis was
329   /// preserved. See the example in the comment on `PreservedAnalysis`.
330   template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
331     return PreservedAnalysisChecker(*this, AnalysisT::ID());
332   }
333 
334   /// Build a checker for this `PreservedAnalyses` and the specified analysis
335   /// ID.
336   ///
337   /// You can use the returned object to query whether an analysis was
338   /// preserved. See the example in the comment on `PreservedAnalysis`.
339   PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
340     return PreservedAnalysisChecker(*this, ID);
341   }
342 
343   /// Test whether all analyses are preserved (and none are abandoned).
344   ///
345   /// This is used primarily to optimize for the common case of a transformation
346   /// which makes no changes to the IR.
347   bool areAllPreserved() const {
348     return NotPreservedAnalysisIDs.empty() &&
349            PreservedIDs.count(&AllAnalysesKey);
350   }
351 
352   /// Directly test whether a set of analyses is preserved.
353   ///
354   /// This is only true when no analyses have been explicitly abandoned.
355   template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
356     return allAnalysesInSetPreserved(AnalysisSetT::ID());
357   }
358 
359   /// Directly test whether a set of analyses is preserved.
360   ///
361   /// This is only true when no analyses have been explicitly abandoned.
362   bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
363     return NotPreservedAnalysisIDs.empty() &&
364            (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
365   }
366 
367 private:
368   /// A special key used to indicate all analyses.
369   static AnalysisSetKey AllAnalysesKey;
370 
371   /// The IDs of analyses and analysis sets that are preserved.
372   SmallPtrSet<void *, 2> PreservedIDs;
373 
374   /// The IDs of explicitly not-preserved analyses.
375   ///
376   /// If an analysis in this set is covered by a set in `PreservedIDs`, we
377   /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
378   /// "wins" over analysis sets in `PreservedIDs`.
379   ///
380   /// Also, a given ID should never occur both here and in `PreservedIDs`.
381   SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
382 };
383 
384 // Forward declare the analysis manager template.
385 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
386 
387 /// A CRTP mix-in to automatically provide informational APIs needed for
388 /// passes.
389 ///
390 /// This provides some boilerplate for types that are passes.
391 template <typename DerivedT> struct PassInfoMixin {
392   /// Gets the name of the pass we are mixed into.
393   static StringRef name() {
394     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
395                   "Must pass the derived type as the template argument!");
396     StringRef Name = getTypeName<DerivedT>();
397     Name.consume_front("llvm::");
398     return Name;
399   }
400 
401   void printPipeline(raw_ostream &OS,
402                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
403     StringRef ClassName = DerivedT::name();
404     auto PassName = MapClassName2PassName(ClassName);
405     OS << PassName;
406   }
407 };
408 
409 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
410 ///
411 /// This provides some boilerplate for types that are analysis passes. It
412 /// automatically mixes in \c PassInfoMixin.
413 template <typename DerivedT>
414 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
415   /// Returns an opaque, unique ID for this analysis type.
416   ///
417   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
418   /// suitable for use in sets, maps, and other data structures that use the low
419   /// bits of pointers.
420   ///
421   /// Note that this requires the derived type provide a static \c AnalysisKey
422   /// member called \c Key.
423   ///
424   /// FIXME: The only reason the mixin type itself can't declare the Key value
425   /// is that some compilers cannot correctly unique a templated static variable
426   /// so it has the same addresses in each instantiation. The only currently
427   /// known platform with this limitation is Windows DLL builds, specifically
428   /// building each part of LLVM as a DLL. If we ever remove that build
429   /// configuration, this mixin can provide the static key as well.
430   static AnalysisKey *ID() {
431     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
432                   "Must pass the derived type as the template argument!");
433     return &DerivedT::Key;
434   }
435 };
436 
437 namespace detail {
438 
439 /// Actual unpacker of extra arguments in getAnalysisResult,
440 /// passes only those tuple arguments that are mentioned in index_sequence.
441 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
442           typename... ArgTs, size_t... Ns>
443 typename PassT::Result
444 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
445                              std::tuple<ArgTs...> Args,
446                              std::index_sequence<Ns...>) {
447   (void)Args;
448   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
449 }
450 
451 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
452 ///
453 /// Arguments passed in tuple come from PassManager, so they might have extra
454 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
455 /// pass to getResult.
456 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
457           typename... MainArgTs>
458 typename PassT::Result
459 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
460                   std::tuple<MainArgTs...> Args) {
461   return (getAnalysisResultUnpackTuple<
462           PassT, IRUnitT>)(AM, IR, Args,
463                            std::index_sequence_for<AnalysisArgTs...>{});
464 }
465 
466 } // namespace detail
467 
468 // Forward declare the pass instrumentation analysis explicitly queried in
469 // generic PassManager code.
470 // FIXME: figure out a way to move PassInstrumentationAnalysis into its own
471 // header.
472 class PassInstrumentationAnalysis;
473 
474 /// Manages a sequence of passes over a particular unit of IR.
475 ///
476 /// A pass manager contains a sequence of passes to run over a particular unit
477 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
478 /// IR, and when run over some given IR will run each of its contained passes in
479 /// sequence. Pass managers are the primary and most basic building block of a
480 /// pass pipeline.
481 ///
482 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
483 /// argument. The pass manager will propagate that analysis manager to each
484 /// pass it runs, and will call the analysis manager's invalidation routine with
485 /// the PreservedAnalyses of each pass it runs.
486 template <typename IRUnitT,
487           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
488           typename... ExtraArgTs>
489 class PassManager : public PassInfoMixin<
490                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
491 public:
492   /// Construct a pass manager.
493   explicit PassManager() = default;
494 
495   // FIXME: These are equivalent to the default move constructor/move
496   // assignment. However, using = default triggers linker errors due to the
497   // explicit instantiations below. Find away to use the default and remove the
498   // duplicated code here.
499   PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
500 
501   PassManager &operator=(PassManager &&RHS) {
502     Passes = std::move(RHS.Passes);
503     return *this;
504   }
505 
506   void printPipeline(raw_ostream &OS,
507                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
508     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
509       auto *P = Passes[Idx].get();
510       P->printPipeline(OS, MapClassName2PassName);
511       if (Idx + 1 < Size)
512         OS << ',';
513     }
514   }
515 
516   /// Run all of the passes in this manager over the given unit of IR.
517   /// ExtraArgs are passed to each pass.
518   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
519                         ExtraArgTs... ExtraArgs) {
520     PreservedAnalyses PA = PreservedAnalyses::all();
521 
522     // Request PassInstrumentation from analysis manager, will use it to run
523     // instrumenting callbacks for the passes later.
524     // Here we use std::tuple wrapper over getResult which helps to extract
525     // AnalysisManager's arguments out of the whole ExtraArgs set.
526     PassInstrumentation PI =
527         detail::getAnalysisResult<PassInstrumentationAnalysis>(
528             AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
529 
530     // RemoveDIs: if requested, convert debug-info to DPValue representation
531     // for duration of these passes.
532     bool ShouldConvertDbgInfo = shouldConvertDbgInfo(IR);
533     if (ShouldConvertDbgInfo)
534       doConvertDbgInfoToNew(IR);
535 
536     for (auto &Pass : Passes) {
537       // Check the PassInstrumentation's BeforePass callbacks before running the
538       // pass, skip its execution completely if asked to (callback returns
539       // false).
540       if (!PI.runBeforePass<IRUnitT>(*Pass, IR))
541         continue;
542 
543       PreservedAnalyses PassPA = Pass->run(IR, AM, ExtraArgs...);
544 
545       // Update the analysis manager as each pass runs and potentially
546       // invalidates analyses.
547       AM.invalidate(IR, PassPA);
548 
549       // Call onto PassInstrumentation's AfterPass callbacks immediately after
550       // running the pass.
551       PI.runAfterPass<IRUnitT>(*Pass, IR, PassPA);
552 
553       // Finally, intersect the preserved analyses to compute the aggregate
554       // preserved set for this pass manager.
555       PA.intersect(std::move(PassPA));
556     }
557 
558     if (ShouldConvertDbgInfo)
559       doConvertDebugInfoToOld(IR);
560 
561     // Invalidation was handled after each pass in the above loop for the
562     // current unit of IR. Therefore, the remaining analysis results in the
563     // AnalysisManager are preserved. We mark this with a set so that we don't
564     // need to inspect each one individually.
565     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
566 
567     return PA;
568   }
569 
570   template <typename PassT>
571   LLVM_ATTRIBUTE_MINSIZE
572       std::enable_if_t<!std::is_same<PassT, PassManager>::value>
573       addPass(PassT &&Pass) {
574     using PassModelT =
575         detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
576                           ExtraArgTs...>;
577     // Do not use make_unique or emplace_back, they cause too many template
578     // instantiations, causing terrible compile times.
579     Passes.push_back(std::unique_ptr<PassConceptT>(
580         new PassModelT(std::forward<PassT>(Pass))));
581   }
582 
583   /// When adding a pass manager pass that has the same type as this pass
584   /// manager, simply move the passes over. This is because we don't have use
585   /// cases rely on executing nested pass managers. Doing this could reduce
586   /// implementation complexity and avoid potential invalidation issues that may
587   /// happen with nested pass managers of the same type.
588   template <typename PassT>
589   LLVM_ATTRIBUTE_MINSIZE
590       std::enable_if_t<std::is_same<PassT, PassManager>::value>
591       addPass(PassT &&Pass) {
592     for (auto &P : Pass.Passes)
593       Passes.push_back(std::move(P));
594   }
595 
596   /// Returns if the pass manager contains any passes.
597   bool isEmpty() const { return Passes.empty(); }
598 
599   static bool isRequired() { return true; }
600 
601 protected:
602   using PassConceptT =
603       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
604 
605   std::vector<std::unique_ptr<PassConceptT>> Passes;
606 };
607 
608 extern template class PassManager<Module>;
609 
610 /// Convenience typedef for a pass manager over modules.
611 using ModulePassManager = PassManager<Module>;
612 
613 extern template class PassManager<Function>;
614 
615 /// Convenience typedef for a pass manager over functions.
616 using FunctionPassManager = PassManager<Function>;
617 
618 /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
619 /// managers. Goes before AnalysisManager definition to provide its
620 /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
621 /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
622 /// header.
623 class PassInstrumentationAnalysis
624     : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
625   friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
626   static AnalysisKey Key;
627 
628   PassInstrumentationCallbacks *Callbacks;
629 
630 public:
631   /// PassInstrumentationCallbacks object is shared, owned by something else,
632   /// not this analysis.
633   PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
634       : Callbacks(Callbacks) {}
635 
636   using Result = PassInstrumentation;
637 
638   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
639   Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
640     return PassInstrumentation(Callbacks);
641   }
642 };
643 
644 /// A container for analyses that lazily runs them and caches their
645 /// results.
646 ///
647 /// This class can manage analyses for any IR unit where the address of the IR
648 /// unit sufficies as its identity.
649 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
650 public:
651   class Invalidator;
652 
653 private:
654   // Now that we've defined our invalidator, we can define the concept types.
655   using ResultConceptT =
656       detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
657   using PassConceptT =
658       detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
659                                   ExtraArgTs...>;
660 
661   /// List of analysis pass IDs and associated concept pointers.
662   ///
663   /// Requires iterators to be valid across appending new entries and arbitrary
664   /// erases. Provides the analysis ID to enable finding iterators to a given
665   /// entry in maps below, and provides the storage for the actual result
666   /// concept.
667   using AnalysisResultListT =
668       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
669 
670   /// Map type from IRUnitT pointer to our custom list type.
671   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
672 
673   /// Map type from a pair of analysis ID and IRUnitT pointer to an
674   /// iterator into a particular result list (which is where the actual analysis
675   /// result is stored).
676   using AnalysisResultMapT =
677       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
678                typename AnalysisResultListT::iterator>;
679 
680 public:
681   /// API to communicate dependencies between analyses during invalidation.
682   ///
683   /// When an analysis result embeds handles to other analysis results, it
684   /// needs to be invalidated both when its own information isn't preserved and
685   /// when any of its embedded analysis results end up invalidated. We pass an
686   /// \c Invalidator object as an argument to \c invalidate() in order to let
687   /// the analysis results themselves define the dependency graph on the fly.
688   /// This lets us avoid building an explicit representation of the
689   /// dependencies between analysis results.
690   class Invalidator {
691   public:
692     /// Trigger the invalidation of some other analysis pass if not already
693     /// handled and return whether it was in fact invalidated.
694     ///
695     /// This is expected to be called from within a given analysis result's \c
696     /// invalidate method to trigger a depth-first walk of all inter-analysis
697     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
698     /// invalidate method should in turn be provided to this routine.
699     ///
700     /// The first time this is called for a given analysis pass, it will call
701     /// the corresponding result's \c invalidate method.  Subsequent calls will
702     /// use a cache of the results of that initial call.  It is an error to form
703     /// cyclic dependencies between analysis results.
704     ///
705     /// This returns true if the given analysis's result is invalid. Any
706     /// dependecies on it will become invalid as a result.
707     template <typename PassT>
708     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
709       using ResultModelT =
710           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
711                                       PreservedAnalyses, Invalidator>;
712 
713       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
714     }
715 
716     /// A type-erased variant of the above invalidate method with the same core
717     /// API other than passing an analysis ID rather than an analysis type
718     /// parameter.
719     ///
720     /// This is sadly less efficient than the above routine, which leverages
721     /// the type parameter to avoid the type erasure overhead.
722     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
723       return invalidateImpl<>(ID, IR, PA);
724     }
725 
726   private:
727     friend class AnalysisManager;
728 
729     template <typename ResultT = ResultConceptT>
730     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
731                         const PreservedAnalyses &PA) {
732       // If we've already visited this pass, return true if it was invalidated
733       // and false otherwise.
734       auto IMapI = IsResultInvalidated.find(ID);
735       if (IMapI != IsResultInvalidated.end())
736         return IMapI->second;
737 
738       // Otherwise look up the result object.
739       auto RI = Results.find({ID, &IR});
740       assert(RI != Results.end() &&
741              "Trying to invalidate a dependent result that isn't in the "
742              "manager's cache is always an error, likely due to a stale result "
743              "handle!");
744 
745       auto &Result = static_cast<ResultT &>(*RI->second->second);
746 
747       // Insert into the map whether the result should be invalidated and return
748       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
749       // as calling invalidate could (recursively) insert things into the map,
750       // making any iterator or reference invalid.
751       bool Inserted;
752       std::tie(IMapI, Inserted) =
753           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
754       (void)Inserted;
755       assert(Inserted && "Should not have already inserted this ID, likely "
756                          "indicates a dependency cycle!");
757       return IMapI->second;
758     }
759 
760     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
761                 const AnalysisResultMapT &Results)
762         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
763 
764     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
765     const AnalysisResultMapT &Results;
766   };
767 
768   /// Construct an empty analysis manager.
769   AnalysisManager();
770   AnalysisManager(AnalysisManager &&);
771   AnalysisManager &operator=(AnalysisManager &&);
772 
773   /// Returns true if the analysis manager has an empty results cache.
774   bool empty() const {
775     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
776            "The storage and index of analysis results disagree on how many "
777            "there are!");
778     return AnalysisResults.empty();
779   }
780 
781   /// Clear any cached analysis results for a single unit of IR.
782   ///
783   /// This doesn't invalidate, but instead simply deletes, the relevant results.
784   /// It is useful when the IR is being removed and we want to clear out all the
785   /// memory pinned for it.
786   void clear(IRUnitT &IR, llvm::StringRef Name);
787 
788   /// Clear all analysis results cached by this AnalysisManager.
789   ///
790   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
791   /// deletes them.  This lets you clean up the AnalysisManager when the set of
792   /// IR units itself has potentially changed, and thus we can't even look up a
793   /// a result and invalidate/clear it directly.
794   void clear() {
795     AnalysisResults.clear();
796     AnalysisResultLists.clear();
797   }
798 
799   /// Get the result of an analysis pass for a given IR unit.
800   ///
801   /// Runs the analysis if a cached result is not available.
802   template <typename PassT>
803   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
804     assert(AnalysisPasses.count(PassT::ID()) &&
805            "This analysis pass was not registered prior to being queried");
806     ResultConceptT &ResultConcept =
807         getResultImpl(PassT::ID(), IR, ExtraArgs...);
808 
809     using ResultModelT =
810         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
811                                     PreservedAnalyses, Invalidator>;
812 
813     return static_cast<ResultModelT &>(ResultConcept).Result;
814   }
815 
816   /// Get the cached result of an analysis pass for a given IR unit.
817   ///
818   /// This method never runs the analysis.
819   ///
820   /// \returns null if there is no cached result.
821   template <typename PassT>
822   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
823     assert(AnalysisPasses.count(PassT::ID()) &&
824            "This analysis pass was not registered prior to being queried");
825 
826     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
827     if (!ResultConcept)
828       return nullptr;
829 
830     using ResultModelT =
831         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
832                                     PreservedAnalyses, Invalidator>;
833 
834     return &static_cast<ResultModelT *>(ResultConcept)->Result;
835   }
836 
837   /// Verify that the given Result cannot be invalidated, assert otherwise.
838   template <typename PassT>
839   void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
840     PreservedAnalyses PA = PreservedAnalyses::none();
841     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
842     Invalidator Inv(IsResultInvalidated, AnalysisResults);
843     assert(!Result->invalidate(IR, PA, Inv) &&
844            "Cached result cannot be invalidated");
845   }
846 
847   /// Register an analysis pass with the manager.
848   ///
849   /// The parameter is a callable whose result is an analysis pass. This allows
850   /// passing in a lambda to construct the analysis.
851   ///
852   /// The analysis type to register is the type returned by calling the \c
853   /// PassBuilder argument. If that type has already been registered, then the
854   /// argument will not be called and this function will return false.
855   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
856   /// and this function returns true.
857   ///
858   /// (Note: Although the return value of this function indicates whether or not
859   /// an analysis was previously registered, there intentionally isn't a way to
860   /// query this directly.  Instead, you should just register all the analyses
861   /// you might want and let this class run them lazily.  This idiom lets us
862   /// minimize the number of times we have to look up analyses in our
863   /// hashtable.)
864   template <typename PassBuilderT>
865   bool registerPass(PassBuilderT &&PassBuilder) {
866     using PassT = decltype(PassBuilder());
867     using PassModelT =
868         detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
869                                   Invalidator, ExtraArgTs...>;
870 
871     auto &PassPtr = AnalysisPasses[PassT::ID()];
872     if (PassPtr)
873       // Already registered this pass type!
874       return false;
875 
876     // Construct a new model around the instance returned by the builder.
877     PassPtr.reset(new PassModelT(PassBuilder()));
878     return true;
879   }
880 
881   /// Invalidate cached analyses for an IR unit.
882   ///
883   /// Walk through all of the analyses pertaining to this unit of IR and
884   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
885   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
886 
887 private:
888   /// Look up a registered analysis pass.
889   PassConceptT &lookUpPass(AnalysisKey *ID) {
890     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
891     assert(PI != AnalysisPasses.end() &&
892            "Analysis passes must be registered prior to being queried!");
893     return *PI->second;
894   }
895 
896   /// Look up a registered analysis pass.
897   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
898     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
899     assert(PI != AnalysisPasses.end() &&
900            "Analysis passes must be registered prior to being queried!");
901     return *PI->second;
902   }
903 
904   /// Get an analysis result, running the pass if necessary.
905   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
906                                 ExtraArgTs... ExtraArgs);
907 
908   /// Get a cached analysis result or return null.
909   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
910     typename AnalysisResultMapT::const_iterator RI =
911         AnalysisResults.find({ID, &IR});
912     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
913   }
914 
915   /// Map type from analysis pass ID to pass concept pointer.
916   using AnalysisPassMapT =
917       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
918 
919   /// Collection of analysis passes, indexed by ID.
920   AnalysisPassMapT AnalysisPasses;
921 
922   /// Map from IR unit to a list of analysis results.
923   ///
924   /// Provides linear time removal of all analysis results for a IR unit and
925   /// the ultimate storage for a particular cached analysis result.
926   AnalysisResultListMapT AnalysisResultLists;
927 
928   /// Map from an analysis ID and IR unit to a particular cached
929   /// analysis result.
930   AnalysisResultMapT AnalysisResults;
931 };
932 
933 extern template class AnalysisManager<Module>;
934 
935 /// Convenience typedef for the Module analysis manager.
936 using ModuleAnalysisManager = AnalysisManager<Module>;
937 
938 extern template class AnalysisManager<Function>;
939 
940 /// Convenience typedef for the Function analysis manager.
941 using FunctionAnalysisManager = AnalysisManager<Function>;
942 
943 /// An analysis over an "outer" IR unit that provides access to an
944 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
945 /// in the outer unit.
946 ///
947 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
948 /// an analysis over Modules (the "outer" unit) that provides access to a
949 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
950 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
951 /// relationship is valid because each Function is contained in one Module.
952 ///
953 /// If you're (transitively) within a pass manager for an IR unit U that
954 /// contains IR unit V, you should never use an analysis manager over V, except
955 /// via one of these proxies.
956 ///
957 /// Note that the proxy's result is a move-only RAII object.  The validity of
958 /// the analyses in the inner analysis manager is tied to its lifetime.
959 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
960 class InnerAnalysisManagerProxy
961     : public AnalysisInfoMixin<
962           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
963 public:
964   class Result {
965   public:
966     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
967 
968     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
969       // We have to null out the analysis manager in the moved-from state
970       // because we are taking ownership of the responsibilty to clear the
971       // analysis state.
972       Arg.InnerAM = nullptr;
973     }
974 
975     ~Result() {
976       // InnerAM is cleared in a moved from state where there is nothing to do.
977       if (!InnerAM)
978         return;
979 
980       // Clear out the analysis manager if we're being destroyed -- it means we
981       // didn't even see an invalidate call when we got invalidated.
982       InnerAM->clear();
983     }
984 
985     Result &operator=(Result &&RHS) {
986       InnerAM = RHS.InnerAM;
987       // We have to null out the analysis manager in the moved-from state
988       // because we are taking ownership of the responsibilty to clear the
989       // analysis state.
990       RHS.InnerAM = nullptr;
991       return *this;
992     }
993 
994     /// Accessor for the analysis manager.
995     AnalysisManagerT &getManager() { return *InnerAM; }
996 
997     /// Handler for invalidation of the outer IR unit, \c IRUnitT.
998     ///
999     /// If the proxy analysis itself is not preserved, we assume that the set of
1000     /// inner IR objects contained in IRUnit may have changed.  In this case,
1001     /// we have to call \c clear() on the inner analysis manager, as it may now
1002     /// have stale pointers to its inner IR objects.
1003     ///
1004     /// Regardless of whether the proxy analysis is marked as preserved, all of
1005     /// the analyses in the inner analysis manager are potentially invalidated
1006     /// based on the set of preserved analyses.
1007     bool invalidate(
1008         IRUnitT &IR, const PreservedAnalyses &PA,
1009         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
1010 
1011   private:
1012     AnalysisManagerT *InnerAM;
1013   };
1014 
1015   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
1016       : InnerAM(&InnerAM) {}
1017 
1018   /// Run the analysis pass and create our proxy result object.
1019   ///
1020   /// This doesn't do any interesting work; it is primarily used to insert our
1021   /// proxy result object into the outer analysis cache so that we can proxy
1022   /// invalidation to the inner analysis manager.
1023   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
1024              ExtraArgTs...) {
1025     return Result(*InnerAM);
1026   }
1027 
1028 private:
1029   friend AnalysisInfoMixin<
1030       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
1031 
1032   static AnalysisKey Key;
1033 
1034   AnalysisManagerT *InnerAM;
1035 };
1036 
1037 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1038 AnalysisKey
1039     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1040 
1041 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
1042 using FunctionAnalysisManagerModuleProxy =
1043     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
1044 
1045 /// Specialization of the invalidate method for the \c
1046 /// FunctionAnalysisManagerModuleProxy's result.
1047 template <>
1048 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
1049     Module &M, const PreservedAnalyses &PA,
1050     ModuleAnalysisManager::Invalidator &Inv);
1051 
1052 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
1053 // template.
1054 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
1055                                                 Module>;
1056 
1057 /// An analysis over an "inner" IR unit that provides access to an
1058 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
1059 /// in the outer unit.
1060 ///
1061 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
1062 /// analysis over Functions (the "inner" unit) which provides access to a Module
1063 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
1064 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
1065 /// is valid because each Function is contained in one Module.
1066 ///
1067 /// This proxy only exposes the const interface of the outer analysis manager,
1068 /// to indicate that you cannot cause an outer analysis to run from within an
1069 /// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is
1070 /// due to keeping potential future concurrency in mind. To give an example,
1071 /// running a module analysis before any function passes may give a different
1072 /// result than running it in a function pass. Both may be valid, but it would
1073 /// produce non-deterministic results. GlobalsAA is a good analysis example,
1074 /// because the cached information has the mod/ref info for all memory for each
1075 /// function at the time the analysis was computed. The information is still
1076 /// valid after a function transformation, but it may be *different* if
1077 /// recomputed after that transform. GlobalsAA is never invalidated.
1078 
1079 ///
1080 /// This proxy doesn't manage invalidation in any way -- that is handled by the
1081 /// recursive return path of each layer of the pass manager.  A consequence of
1082 /// this is the outer analyses may be stale.  We invalidate the outer analyses
1083 /// only when we're done running passes over the inner IR units.
1084 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1085 class OuterAnalysisManagerProxy
1086     : public AnalysisInfoMixin<
1087           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
1088 public:
1089   /// Result proxy object for \c OuterAnalysisManagerProxy.
1090   class Result {
1091   public:
1092     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
1093 
1094     /// Get a cached analysis. If the analysis can be invalidated, this will
1095     /// assert.
1096     template <typename PassT, typename IRUnitTParam>
1097     typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
1098       typename PassT::Result *Res =
1099           OuterAM->template getCachedResult<PassT>(IR);
1100       if (Res)
1101         OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
1102       return Res;
1103     }
1104 
1105     /// Method provided for unit testing, not intended for general use.
1106     template <typename PassT, typename IRUnitTParam>
1107     bool cachedResultExists(IRUnitTParam &IR) const {
1108       typename PassT::Result *Res =
1109           OuterAM->template getCachedResult<PassT>(IR);
1110       return Res != nullptr;
1111     }
1112 
1113     /// When invalidation occurs, remove any registered invalidation events.
1114     bool invalidate(
1115         IRUnitT &IRUnit, const PreservedAnalyses &PA,
1116         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
1117       // Loop over the set of registered outer invalidation mappings and if any
1118       // of them map to an analysis that is now invalid, clear it out.
1119       SmallVector<AnalysisKey *, 4> DeadKeys;
1120       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
1121         AnalysisKey *OuterID = KeyValuePair.first;
1122         auto &InnerIDs = KeyValuePair.second;
1123         llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) {
1124           return Inv.invalidate(InnerID, IRUnit, PA);
1125         });
1126         if (InnerIDs.empty())
1127           DeadKeys.push_back(OuterID);
1128       }
1129 
1130       for (auto *OuterID : DeadKeys)
1131         OuterAnalysisInvalidationMap.erase(OuterID);
1132 
1133       // The proxy itself remains valid regardless of anything else.
1134       return false;
1135     }
1136 
1137     /// Register a deferred invalidation event for when the outer analysis
1138     /// manager processes its invalidations.
1139     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
1140     void registerOuterAnalysisInvalidation() {
1141       AnalysisKey *OuterID = OuterAnalysisT::ID();
1142       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
1143 
1144       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
1145       // Note, this is a linear scan. If we end up with large numbers of
1146       // analyses that all trigger invalidation on the same outer analysis,
1147       // this entire system should be changed to some other deterministic
1148       // data structure such as a `SetVector` of a pair of pointers.
1149       if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
1150         InvalidatedIDList.push_back(InvalidatedID);
1151     }
1152 
1153     /// Access the map from outer analyses to deferred invalidation requiring
1154     /// analyses.
1155     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
1156     getOuterInvalidations() const {
1157       return OuterAnalysisInvalidationMap;
1158     }
1159 
1160   private:
1161     const AnalysisManagerT *OuterAM;
1162 
1163     /// A map from an outer analysis ID to the set of this IR-unit's analyses
1164     /// which need to be invalidated.
1165     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
1166         OuterAnalysisInvalidationMap;
1167   };
1168 
1169   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
1170       : OuterAM(&OuterAM) {}
1171 
1172   /// Run the analysis pass and create our proxy result object.
1173   /// Nothing to see here, it just forwards the \c OuterAM reference into the
1174   /// result.
1175   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
1176              ExtraArgTs...) {
1177     return Result(*OuterAM);
1178   }
1179 
1180 private:
1181   friend AnalysisInfoMixin<
1182       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
1183 
1184   static AnalysisKey Key;
1185 
1186   const AnalysisManagerT *OuterAM;
1187 };
1188 
1189 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1190 AnalysisKey
1191     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1192 
1193 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
1194                                                 Function>;
1195 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
1196 using ModuleAnalysisManagerFunctionProxy =
1197     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
1198 
1199 /// Trivial adaptor that maps from a module to its functions.
1200 ///
1201 /// Designed to allow composition of a FunctionPass(Manager) and
1202 /// a ModulePassManager, by running the FunctionPass(Manager) over every
1203 /// function in the module.
1204 ///
1205 /// Function passes run within this adaptor can rely on having exclusive access
1206 /// to the function they are run over. They should not read or modify any other
1207 /// functions! Other threads or systems may be manipulating other functions in
1208 /// the module, and so their state should never be relied on.
1209 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1210 /// violate this principle.
1211 ///
1212 /// Function passes can also read the module containing the function, but they
1213 /// should not modify that module outside of the use lists of various globals.
1214 /// For example, a function pass is not permitted to add functions to the
1215 /// module.
1216 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1217 /// violate this principle.
1218 ///
1219 /// Note that although function passes can access module analyses, module
1220 /// analyses are not invalidated while the function passes are running, so they
1221 /// may be stale.  Function analyses will not be stale.
1222 class ModuleToFunctionPassAdaptor
1223     : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
1224 public:
1225   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
1226 
1227   explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
1228                                        bool EagerlyInvalidate)
1229       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {}
1230 
1231   /// Runs the function pass across every function in the module.
1232   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1233   void printPipeline(raw_ostream &OS,
1234                      function_ref<StringRef(StringRef)> MapClassName2PassName);
1235 
1236   static bool isRequired() { return true; }
1237 
1238 private:
1239   std::unique_ptr<PassConceptT> Pass;
1240   bool EagerlyInvalidate;
1241 };
1242 
1243 /// A function to deduce a function pass type and wrap it in the
1244 /// templated adaptor.
1245 template <typename FunctionPassT>
1246 ModuleToFunctionPassAdaptor
1247 createModuleToFunctionPassAdaptor(FunctionPassT &&Pass,
1248                                   bool EagerlyInvalidate = false) {
1249   using PassModelT =
1250       detail::PassModel<Function, FunctionPassT, PreservedAnalyses,
1251                         FunctionAnalysisManager>;
1252   // Do not use make_unique, it causes too many template instantiations,
1253   // causing terrible compile times.
1254   return ModuleToFunctionPassAdaptor(
1255       std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>(
1256           new PassModelT(std::forward<FunctionPassT>(Pass))),
1257       EagerlyInvalidate);
1258 }
1259 
1260 /// A utility pass template to force an analysis result to be available.
1261 ///
1262 /// If there are extra arguments at the pass's run level there may also be
1263 /// extra arguments to the analysis manager's \c getResult routine. We can't
1264 /// guess how to effectively map the arguments from one to the other, and so
1265 /// this specialization just ignores them.
1266 ///
1267 /// Specific patterns of run-method extra arguments and analysis manager extra
1268 /// arguments will have to be defined as appropriate specializations.
1269 template <typename AnalysisT, typename IRUnitT,
1270           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
1271           typename... ExtraArgTs>
1272 struct RequireAnalysisPass
1273     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
1274                                         ExtraArgTs...>> {
1275   /// Run this pass over some unit of IR.
1276   ///
1277   /// This pass can be run over any unit of IR and use any analysis manager
1278   /// provided they satisfy the basic API requirements. When this pass is
1279   /// created, these methods can be instantiated to satisfy whatever the
1280   /// context requires.
1281   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
1282                         ExtraArgTs &&... Args) {
1283     (void)AM.template getResult<AnalysisT>(Arg,
1284                                            std::forward<ExtraArgTs>(Args)...);
1285 
1286     return PreservedAnalyses::all();
1287   }
1288   void printPipeline(raw_ostream &OS,
1289                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
1290     auto ClassName = AnalysisT::name();
1291     auto PassName = MapClassName2PassName(ClassName);
1292     OS << "require<" << PassName << '>';
1293   }
1294   static bool isRequired() { return true; }
1295 };
1296 
1297 /// A no-op pass template which simply forces a specific analysis result
1298 /// to be invalidated.
1299 template <typename AnalysisT>
1300 struct InvalidateAnalysisPass
1301     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
1302   /// Run this pass over some unit of IR.
1303   ///
1304   /// This pass can be run over any unit of IR and use any analysis manager,
1305   /// provided they satisfy the basic API requirements. When this pass is
1306   /// created, these methods can be instantiated to satisfy whatever the
1307   /// context requires.
1308   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
1309   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
1310     auto PA = PreservedAnalyses::all();
1311     PA.abandon<AnalysisT>();
1312     return PA;
1313   }
1314   void printPipeline(raw_ostream &OS,
1315                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
1316     auto ClassName = AnalysisT::name();
1317     auto PassName = MapClassName2PassName(ClassName);
1318     OS << "invalidate<" << PassName << '>';
1319   }
1320 };
1321 
1322 /// A utility pass that does nothing, but preserves no analyses.
1323 ///
1324 /// Because this preserves no analyses, any analysis passes queried after this
1325 /// pass runs will recompute fresh results.
1326 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
1327   /// Run this pass over some unit of IR.
1328   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
1329   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
1330     return PreservedAnalyses::none();
1331   }
1332 };
1333 
1334 /// A utility pass template that simply runs another pass multiple times.
1335 ///
1336 /// This can be useful when debugging or testing passes. It also serves as an
1337 /// example of how to extend the pass manager in ways beyond composition.
1338 template <typename PassT>
1339 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1340 public:
1341   RepeatedPass(int Count, PassT &&P)
1342       : Count(Count), P(std::forward<PassT>(P)) {}
1343 
1344   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
1345   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
1346 
1347     // Request PassInstrumentation from analysis manager, will use it to run
1348     // instrumenting callbacks for the passes later.
1349     // Here we use std::tuple wrapper over getResult which helps to extract
1350     // AnalysisManager's arguments out of the whole Args set.
1351     PassInstrumentation PI =
1352         detail::getAnalysisResult<PassInstrumentationAnalysis>(
1353             AM, IR, std::tuple<Ts...>(Args...));
1354 
1355     auto PA = PreservedAnalyses::all();
1356     for (int i = 0; i < Count; ++i) {
1357       // Check the PassInstrumentation's BeforePass callbacks before running the
1358       // pass, skip its execution completely if asked to (callback returns
1359       // false).
1360       if (!PI.runBeforePass<IRUnitT>(P, IR))
1361         continue;
1362       PreservedAnalyses IterPA = P.run(IR, AM, std::forward<Ts>(Args)...);
1363       PA.intersect(IterPA);
1364       PI.runAfterPass(P, IR, IterPA);
1365     }
1366     return PA;
1367   }
1368 
1369   void printPipeline(raw_ostream &OS,
1370                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
1371     OS << "repeat<" << Count << ">(";
1372     P.printPipeline(OS, MapClassName2PassName);
1373     OS << ')';
1374   }
1375 
1376 private:
1377   int Count;
1378   PassT P;
1379 };
1380 
1381 template <typename PassT>
1382 RepeatedPass<PassT> createRepeatedPass(int Count, PassT &&P) {
1383   return RepeatedPass<PassT>(Count, std::forward<PassT>(P));
1384 }
1385 
1386 } // end namespace llvm
1387 
1388 #endif // LLVM_IR_PASSMANAGER_H
1389