1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 ///   a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/TinyPtrVector.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PassInstrumentation.h"
48 #include "llvm/IR/PassManagerInternal.h"
49 #include "llvm/Support/TimeProfiler.h"
50 #include "llvm/Support/TypeName.h"
51 #include <cassert>
52 #include <cstring>
53 #include <iterator>
54 #include <list>
55 #include <memory>
56 #include <tuple>
57 #include <type_traits>
58 #include <utility>
59 #include <vector>
60 
61 namespace llvm {
62 
63 /// A special type used by analysis passes to provide an address that
64 /// identifies that particular analysis pass type.
65 ///
66 /// Analysis passes should have a static data member of this type and derive
67 /// from the \c AnalysisInfoMixin to get a static ID method used to identify
68 /// the analysis in the pass management infrastructure.
69 struct alignas(8) AnalysisKey {};
70 
71 /// A special type used to provide an address that identifies a set of related
72 /// analyses.  These sets are primarily used below to mark sets of analyses as
73 /// preserved.
74 ///
75 /// For example, a transformation can indicate that it preserves the CFG of a
76 /// function by preserving the appropriate AnalysisSetKey.  An analysis that
77 /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
78 /// if it is, the analysis knows that it itself is preserved.
79 struct alignas(8) AnalysisSetKey {};
80 
81 /// This templated class represents "all analyses that operate over \<a
82 /// particular IR unit\>" (e.g. a Function or a Module) in instances of
83 /// PreservedAnalysis.
84 ///
85 /// This lets a transformation say e.g. "I preserved all function analyses".
86 ///
87 /// Note that you must provide an explicit instantiation declaration and
88 /// definition for this template in order to get the correct behavior on
89 /// Windows. Otherwise, the address of SetKey will not be stable.
90 template <typename IRUnitT> class AllAnalysesOn {
91 public:
92   static AnalysisSetKey *ID() { return &SetKey; }
93 
94 private:
95   static AnalysisSetKey SetKey;
96 };
97 
98 template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
99 
100 extern template class AllAnalysesOn<Module>;
101 extern template class AllAnalysesOn<Function>;
102 
103 /// Represents analyses that only rely on functions' control flow.
104 ///
105 /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
106 /// to query whether it has been preserved.
107 ///
108 /// The CFG of a function is defined as the set of basic blocks and the edges
109 /// between them. Changing the set of basic blocks in a function is enough to
110 /// mutate the CFG. Mutating the condition of a branch or argument of an
111 /// invoked function does not mutate the CFG, but changing the successor labels
112 /// of those instructions does.
113 class CFGAnalyses {
114 public:
115   static AnalysisSetKey *ID() { return &SetKey; }
116 
117 private:
118   static AnalysisSetKey SetKey;
119 };
120 
121 /// A set of analyses that are preserved following a run of a transformation
122 /// pass.
123 ///
124 /// Transformation passes build and return these objects to communicate which
125 /// analyses are still valid after the transformation. For most passes this is
126 /// fairly simple: if they don't change anything all analyses are preserved,
127 /// otherwise only a short list of analyses that have been explicitly updated
128 /// are preserved.
129 ///
130 /// This class also lets transformation passes mark abstract *sets* of analyses
131 /// as preserved. A transformation that (say) does not alter the CFG can
132 /// indicate such by marking a particular AnalysisSetKey as preserved, and
133 /// then analyses can query whether that AnalysisSetKey is preserved.
134 ///
135 /// Finally, this class can represent an "abandoned" analysis, which is
136 /// not preserved even if it would be covered by some abstract set of analyses.
137 ///
138 /// Given a `PreservedAnalyses` object, an analysis will typically want to
139 /// figure out whether it is preserved. In the example below, MyAnalysisType is
140 /// preserved if it's not abandoned, and (a) it's explicitly marked as
141 /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
142 /// AnalysisSetA and AnalysisSetB are preserved.
143 ///
144 /// ```
145 ///   auto PAC = PA.getChecker<MyAnalysisType>();
146 ///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
147 ///       (PAC.preservedSet<AnalysisSetA>() &&
148 ///        PAC.preservedSet<AnalysisSetB>())) {
149 ///     // The analysis has been successfully preserved ...
150 ///   }
151 /// ```
152 class PreservedAnalyses {
153 public:
154   /// Convenience factory function for the empty preserved set.
155   static PreservedAnalyses none() { return PreservedAnalyses(); }
156 
157   /// Construct a special preserved set that preserves all passes.
158   static PreservedAnalyses all() {
159     PreservedAnalyses PA;
160     PA.PreservedIDs.insert(&AllAnalysesKey);
161     return PA;
162   }
163 
164   /// Construct a preserved analyses object with a single preserved set.
165   template <typename AnalysisSetT>
166   static PreservedAnalyses allInSet() {
167     PreservedAnalyses PA;
168     PA.preserveSet<AnalysisSetT>();
169     return PA;
170   }
171 
172   /// Mark an analysis as preserved.
173   template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
174 
175   /// Given an analysis's ID, mark the analysis as preserved, adding it
176   /// to the set.
177   void preserve(AnalysisKey *ID) {
178     // Clear this ID from the explicit not-preserved set if present.
179     NotPreservedAnalysisIDs.erase(ID);
180 
181     // If we're not already preserving all analyses (other than those in
182     // NotPreservedAnalysisIDs).
183     if (!areAllPreserved())
184       PreservedIDs.insert(ID);
185   }
186 
187   /// Mark an analysis set as preserved.
188   template <typename AnalysisSetT> void preserveSet() {
189     preserveSet(AnalysisSetT::ID());
190   }
191 
192   /// Mark an analysis set as preserved using its ID.
193   void preserveSet(AnalysisSetKey *ID) {
194     // If we're not already in the saturated 'all' state, add this set.
195     if (!areAllPreserved())
196       PreservedIDs.insert(ID);
197   }
198 
199   /// Mark an analysis as abandoned.
200   ///
201   /// An abandoned analysis is not preserved, even if it is nominally covered
202   /// by some other set or was previously explicitly marked as preserved.
203   ///
204   /// Note that you can only abandon a specific analysis, not a *set* of
205   /// analyses.
206   template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
207 
208   /// Mark an analysis as abandoned using its ID.
209   ///
210   /// An abandoned analysis is not preserved, even if it is nominally covered
211   /// by some other set or was previously explicitly marked as preserved.
212   ///
213   /// Note that you can only abandon a specific analysis, not a *set* of
214   /// analyses.
215   void abandon(AnalysisKey *ID) {
216     PreservedIDs.erase(ID);
217     NotPreservedAnalysisIDs.insert(ID);
218   }
219 
220   /// Intersect this set with another in place.
221   ///
222   /// This is a mutating operation on this preserved set, removing all
223   /// preserved passes which are not also preserved in the argument.
224   void intersect(const PreservedAnalyses &Arg) {
225     if (Arg.areAllPreserved())
226       return;
227     if (areAllPreserved()) {
228       *this = Arg;
229       return;
230     }
231     // The intersection requires the *union* of the explicitly not-preserved
232     // IDs and the *intersection* of the preserved IDs.
233     for (auto ID : Arg.NotPreservedAnalysisIDs) {
234       PreservedIDs.erase(ID);
235       NotPreservedAnalysisIDs.insert(ID);
236     }
237     for (auto ID : PreservedIDs)
238       if (!Arg.PreservedIDs.count(ID))
239         PreservedIDs.erase(ID);
240   }
241 
242   /// Intersect this set with a temporary other set in place.
243   ///
244   /// This is a mutating operation on this preserved set, removing all
245   /// preserved passes which are not also preserved in the argument.
246   void intersect(PreservedAnalyses &&Arg) {
247     if (Arg.areAllPreserved())
248       return;
249     if (areAllPreserved()) {
250       *this = std::move(Arg);
251       return;
252     }
253     // The intersection requires the *union* of the explicitly not-preserved
254     // IDs and the *intersection* of the preserved IDs.
255     for (auto ID : Arg.NotPreservedAnalysisIDs) {
256       PreservedIDs.erase(ID);
257       NotPreservedAnalysisIDs.insert(ID);
258     }
259     for (auto ID : PreservedIDs)
260       if (!Arg.PreservedIDs.count(ID))
261         PreservedIDs.erase(ID);
262   }
263 
264   /// A checker object that makes it easy to query for whether an analysis or
265   /// some set covering it is preserved.
266   class PreservedAnalysisChecker {
267     friend class PreservedAnalyses;
268 
269     const PreservedAnalyses &PA;
270     AnalysisKey *const ID;
271     const bool IsAbandoned;
272 
273     /// A PreservedAnalysisChecker is tied to a particular Analysis because
274     /// `preserved()` and `preservedSet()` both return false if the Analysis
275     /// was abandoned.
276     PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
277         : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
278 
279   public:
280     /// Returns true if the checker's analysis was not abandoned and either
281     ///  - the analysis is explicitly preserved or
282     ///  - all analyses are preserved.
283     bool preserved() {
284       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
285                               PA.PreservedIDs.count(ID));
286     }
287 
288     /// Return true if the checker's analysis was not abandoned, i.e. it was not
289     /// explicitly invalidated. Even if the analysis is not explicitly
290     /// preserved, if the analysis is known stateless, then it is preserved.
291     bool preservedWhenStateless() {
292       return !IsAbandoned;
293     }
294 
295     /// Returns true if the checker's analysis was not abandoned and either
296     ///  - \p AnalysisSetT is explicitly preserved or
297     ///  - all analyses are preserved.
298     template <typename AnalysisSetT> bool preservedSet() {
299       AnalysisSetKey *SetID = AnalysisSetT::ID();
300       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
301                               PA.PreservedIDs.count(SetID));
302     }
303   };
304 
305   /// Build a checker for this `PreservedAnalyses` and the specified analysis
306   /// type.
307   ///
308   /// You can use the returned object to query whether an analysis was
309   /// preserved. See the example in the comment on `PreservedAnalysis`.
310   template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
311     return PreservedAnalysisChecker(*this, AnalysisT::ID());
312   }
313 
314   /// Build a checker for this `PreservedAnalyses` and the specified analysis
315   /// ID.
316   ///
317   /// You can use the returned object to query whether an analysis was
318   /// preserved. See the example in the comment on `PreservedAnalysis`.
319   PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
320     return PreservedAnalysisChecker(*this, ID);
321   }
322 
323   /// Test whether all analyses are preserved (and none are abandoned).
324   ///
325   /// This is used primarily to optimize for the common case of a transformation
326   /// which makes no changes to the IR.
327   bool areAllPreserved() const {
328     return NotPreservedAnalysisIDs.empty() &&
329            PreservedIDs.count(&AllAnalysesKey);
330   }
331 
332   /// Directly test whether a set of analyses is preserved.
333   ///
334   /// This is only true when no analyses have been explicitly abandoned.
335   template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
336     return allAnalysesInSetPreserved(AnalysisSetT::ID());
337   }
338 
339   /// Directly test whether a set of analyses is preserved.
340   ///
341   /// This is only true when no analyses have been explicitly abandoned.
342   bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
343     return NotPreservedAnalysisIDs.empty() &&
344            (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
345   }
346 
347 private:
348   /// A special key used to indicate all analyses.
349   static AnalysisSetKey AllAnalysesKey;
350 
351   /// The IDs of analyses and analysis sets that are preserved.
352   SmallPtrSet<void *, 2> PreservedIDs;
353 
354   /// The IDs of explicitly not-preserved analyses.
355   ///
356   /// If an analysis in this set is covered by a set in `PreservedIDs`, we
357   /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
358   /// "wins" over analysis sets in `PreservedIDs`.
359   ///
360   /// Also, a given ID should never occur both here and in `PreservedIDs`.
361   SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
362 };
363 
364 // Forward declare the analysis manager template.
365 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
366 
367 /// A CRTP mix-in to automatically provide informational APIs needed for
368 /// passes.
369 ///
370 /// This provides some boilerplate for types that are passes.
371 template <typename DerivedT> struct PassInfoMixin {
372   /// Gets the name of the pass we are mixed into.
373   static StringRef name() {
374     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
375                   "Must pass the derived type as the template argument!");
376     StringRef Name = getTypeName<DerivedT>();
377     Name.consume_front("llvm::");
378     return Name;
379   }
380 
381   void printPipeline(raw_ostream &OS,
382                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
383     StringRef ClassName = DerivedT::name();
384     auto PassName = MapClassName2PassName(ClassName);
385     OS << PassName;
386   }
387 };
388 
389 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
390 ///
391 /// This provides some boilerplate for types that are analysis passes. It
392 /// automatically mixes in \c PassInfoMixin.
393 template <typename DerivedT>
394 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
395   /// Returns an opaque, unique ID for this analysis type.
396   ///
397   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
398   /// suitable for use in sets, maps, and other data structures that use the low
399   /// bits of pointers.
400   ///
401   /// Note that this requires the derived type provide a static \c AnalysisKey
402   /// member called \c Key.
403   ///
404   /// FIXME: The only reason the mixin type itself can't declare the Key value
405   /// is that some compilers cannot correctly unique a templated static variable
406   /// so it has the same addresses in each instantiation. The only currently
407   /// known platform with this limitation is Windows DLL builds, specifically
408   /// building each part of LLVM as a DLL. If we ever remove that build
409   /// configuration, this mixin can provide the static key as well.
410   static AnalysisKey *ID() {
411     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
412                   "Must pass the derived type as the template argument!");
413     return &DerivedT::Key;
414   }
415 };
416 
417 namespace detail {
418 
419 /// Actual unpacker of extra arguments in getAnalysisResult,
420 /// passes only those tuple arguments that are mentioned in index_sequence.
421 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
422           typename... ArgTs, size_t... Ns>
423 typename PassT::Result
424 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
425                              std::tuple<ArgTs...> Args,
426                              std::index_sequence<Ns...>) {
427   (void)Args;
428   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
429 }
430 
431 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
432 ///
433 /// Arguments passed in tuple come from PassManager, so they might have extra
434 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
435 /// pass to getResult.
436 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
437           typename... MainArgTs>
438 typename PassT::Result
439 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
440                   std::tuple<MainArgTs...> Args) {
441   return (getAnalysisResultUnpackTuple<
442           PassT, IRUnitT>)(AM, IR, Args,
443                            std::index_sequence_for<AnalysisArgTs...>{});
444 }
445 
446 } // namespace detail
447 
448 // Forward declare the pass instrumentation analysis explicitly queried in
449 // generic PassManager code.
450 // FIXME: figure out a way to move PassInstrumentationAnalysis into its own
451 // header.
452 class PassInstrumentationAnalysis;
453 
454 /// Manages a sequence of passes over a particular unit of IR.
455 ///
456 /// A pass manager contains a sequence of passes to run over a particular unit
457 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
458 /// IR, and when run over some given IR will run each of its contained passes in
459 /// sequence. Pass managers are the primary and most basic building block of a
460 /// pass pipeline.
461 ///
462 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
463 /// argument. The pass manager will propagate that analysis manager to each
464 /// pass it runs, and will call the analysis manager's invalidation routine with
465 /// the PreservedAnalyses of each pass it runs.
466 template <typename IRUnitT,
467           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
468           typename... ExtraArgTs>
469 class PassManager : public PassInfoMixin<
470                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
471 public:
472   /// Construct a pass manager.
473   explicit PassManager() = default;
474 
475   // FIXME: These are equivalent to the default move constructor/move
476   // assignment. However, using = default triggers linker errors due to the
477   // explicit instantiations below. Find away to use the default and remove the
478   // duplicated code here.
479   PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
480 
481   PassManager &operator=(PassManager &&RHS) {
482     Passes = std::move(RHS.Passes);
483     return *this;
484   }
485 
486   void printPipeline(raw_ostream &OS,
487                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
488     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
489       auto *P = Passes[Idx].get();
490       P->printPipeline(OS, MapClassName2PassName);
491       if (Idx + 1 < Size)
492         OS << ",";
493     }
494   }
495 
496   /// Run all of the passes in this manager over the given unit of IR.
497   /// ExtraArgs are passed to each pass.
498   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
499                         ExtraArgTs... ExtraArgs) {
500     PreservedAnalyses PA = PreservedAnalyses::all();
501 
502     // Request PassInstrumentation from analysis manager, will use it to run
503     // instrumenting callbacks for the passes later.
504     // Here we use std::tuple wrapper over getResult which helps to extract
505     // AnalysisManager's arguments out of the whole ExtraArgs set.
506     PassInstrumentation PI =
507         detail::getAnalysisResult<PassInstrumentationAnalysis>(
508             AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
509 
510     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
511       auto *P = Passes[Idx].get();
512 
513       // Check the PassInstrumentation's BeforePass callbacks before running the
514       // pass, skip its execution completely if asked to (callback returns
515       // false).
516       if (!PI.runBeforePass<IRUnitT>(*P, IR))
517         continue;
518 
519       PreservedAnalyses PassPA;
520       {
521         TimeTraceScope TimeScope(P->name(), IR.getName());
522         PassPA = P->run(IR, AM, ExtraArgs...);
523       }
524 
525       // Call onto PassInstrumentation's AfterPass callbacks immediately after
526       // running the pass.
527       PI.runAfterPass<IRUnitT>(*P, IR, PassPA);
528 
529       // Update the analysis manager as each pass runs and potentially
530       // invalidates analyses.
531       AM.invalidate(IR, PassPA);
532 
533       // Finally, intersect the preserved analyses to compute the aggregate
534       // preserved set for this pass manager.
535       PA.intersect(std::move(PassPA));
536     }
537 
538     // Invalidation was handled after each pass in the above loop for the
539     // current unit of IR. Therefore, the remaining analysis results in the
540     // AnalysisManager are preserved. We mark this with a set so that we don't
541     // need to inspect each one individually.
542     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
543 
544     return PA;
545   }
546 
547   template <typename PassT>
548   LLVM_ATTRIBUTE_MINSIZE
549       std::enable_if_t<!std::is_same<PassT, PassManager>::value>
550       addPass(PassT &&Pass) {
551     using PassModelT =
552         detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
553                           ExtraArgTs...>;
554     // Do not use make_unique or emplace_back, they cause too many template
555     // instantiations, causing terrible compile times.
556     Passes.push_back(std::unique_ptr<PassConceptT>(
557         new PassModelT(std::forward<PassT>(Pass))));
558   }
559 
560   /// When adding a pass manager pass that has the same type as this pass
561   /// manager, simply move the passes over. This is because we don't have use
562   /// cases rely on executing nested pass managers. Doing this could reduce
563   /// implementation complexity and avoid potential invalidation issues that may
564   /// happen with nested pass managers of the same type.
565   template <typename PassT>
566   LLVM_ATTRIBUTE_MINSIZE
567       std::enable_if_t<std::is_same<PassT, PassManager>::value>
568       addPass(PassT &&Pass) {
569     for (auto &P : Pass.Passes)
570       Passes.push_back(std::move(P));
571   }
572 
573   /// Returns if the pass manager contains any passes.
574   bool isEmpty() const { return Passes.empty(); }
575 
576   static bool isRequired() { return true; }
577 
578 protected:
579   using PassConceptT =
580       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
581 
582   std::vector<std::unique_ptr<PassConceptT>> Passes;
583 };
584 
585 extern template class PassManager<Module>;
586 
587 /// Convenience typedef for a pass manager over modules.
588 using ModulePassManager = PassManager<Module>;
589 
590 extern template class PassManager<Function>;
591 
592 /// Convenience typedef for a pass manager over functions.
593 using FunctionPassManager = PassManager<Function>;
594 
595 /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
596 /// managers. Goes before AnalysisManager definition to provide its
597 /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
598 /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
599 /// header.
600 class PassInstrumentationAnalysis
601     : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
602   friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
603   static AnalysisKey Key;
604 
605   PassInstrumentationCallbacks *Callbacks;
606 
607 public:
608   /// PassInstrumentationCallbacks object is shared, owned by something else,
609   /// not this analysis.
610   PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
611       : Callbacks(Callbacks) {}
612 
613   using Result = PassInstrumentation;
614 
615   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
616   Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
617     return PassInstrumentation(Callbacks);
618   }
619 };
620 
621 /// A container for analyses that lazily runs them and caches their
622 /// results.
623 ///
624 /// This class can manage analyses for any IR unit where the address of the IR
625 /// unit sufficies as its identity.
626 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
627 public:
628   class Invalidator;
629 
630 private:
631   // Now that we've defined our invalidator, we can define the concept types.
632   using ResultConceptT =
633       detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
634   using PassConceptT =
635       detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
636                                   ExtraArgTs...>;
637 
638   /// List of analysis pass IDs and associated concept pointers.
639   ///
640   /// Requires iterators to be valid across appending new entries and arbitrary
641   /// erases. Provides the analysis ID to enable finding iterators to a given
642   /// entry in maps below, and provides the storage for the actual result
643   /// concept.
644   using AnalysisResultListT =
645       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
646 
647   /// Map type from IRUnitT pointer to our custom list type.
648   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
649 
650   /// Map type from a pair of analysis ID and IRUnitT pointer to an
651   /// iterator into a particular result list (which is where the actual analysis
652   /// result is stored).
653   using AnalysisResultMapT =
654       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
655                typename AnalysisResultListT::iterator>;
656 
657 public:
658   /// API to communicate dependencies between analyses during invalidation.
659   ///
660   /// When an analysis result embeds handles to other analysis results, it
661   /// needs to be invalidated both when its own information isn't preserved and
662   /// when any of its embedded analysis results end up invalidated. We pass an
663   /// \c Invalidator object as an argument to \c invalidate() in order to let
664   /// the analysis results themselves define the dependency graph on the fly.
665   /// This lets us avoid building an explicit representation of the
666   /// dependencies between analysis results.
667   class Invalidator {
668   public:
669     /// Trigger the invalidation of some other analysis pass if not already
670     /// handled and return whether it was in fact invalidated.
671     ///
672     /// This is expected to be called from within a given analysis result's \c
673     /// invalidate method to trigger a depth-first walk of all inter-analysis
674     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
675     /// invalidate method should in turn be provided to this routine.
676     ///
677     /// The first time this is called for a given analysis pass, it will call
678     /// the corresponding result's \c invalidate method.  Subsequent calls will
679     /// use a cache of the results of that initial call.  It is an error to form
680     /// cyclic dependencies between analysis results.
681     ///
682     /// This returns true if the given analysis's result is invalid. Any
683     /// dependecies on it will become invalid as a result.
684     template <typename PassT>
685     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
686       using ResultModelT =
687           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
688                                       PreservedAnalyses, Invalidator>;
689 
690       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
691     }
692 
693     /// A type-erased variant of the above invalidate method with the same core
694     /// API other than passing an analysis ID rather than an analysis type
695     /// parameter.
696     ///
697     /// This is sadly less efficient than the above routine, which leverages
698     /// the type parameter to avoid the type erasure overhead.
699     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
700       return invalidateImpl<>(ID, IR, PA);
701     }
702 
703   private:
704     friend class AnalysisManager;
705 
706     template <typename ResultT = ResultConceptT>
707     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
708                         const PreservedAnalyses &PA) {
709       // If we've already visited this pass, return true if it was invalidated
710       // and false otherwise.
711       auto IMapI = IsResultInvalidated.find(ID);
712       if (IMapI != IsResultInvalidated.end())
713         return IMapI->second;
714 
715       // Otherwise look up the result object.
716       auto RI = Results.find({ID, &IR});
717       assert(RI != Results.end() &&
718              "Trying to invalidate a dependent result that isn't in the "
719              "manager's cache is always an error, likely due to a stale result "
720              "handle!");
721 
722       auto &Result = static_cast<ResultT &>(*RI->second->second);
723 
724       // Insert into the map whether the result should be invalidated and return
725       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
726       // as calling invalidate could (recursively) insert things into the map,
727       // making any iterator or reference invalid.
728       bool Inserted;
729       std::tie(IMapI, Inserted) =
730           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
731       (void)Inserted;
732       assert(Inserted && "Should not have already inserted this ID, likely "
733                          "indicates a dependency cycle!");
734       return IMapI->second;
735     }
736 
737     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
738                 const AnalysisResultMapT &Results)
739         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
740 
741     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
742     const AnalysisResultMapT &Results;
743   };
744 
745   /// Construct an empty analysis manager.
746   AnalysisManager();
747   AnalysisManager(AnalysisManager &&);
748   AnalysisManager &operator=(AnalysisManager &&);
749 
750   /// Returns true if the analysis manager has an empty results cache.
751   bool empty() const {
752     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
753            "The storage and index of analysis results disagree on how many "
754            "there are!");
755     return AnalysisResults.empty();
756   }
757 
758   /// Clear any cached analysis results for a single unit of IR.
759   ///
760   /// This doesn't invalidate, but instead simply deletes, the relevant results.
761   /// It is useful when the IR is being removed and we want to clear out all the
762   /// memory pinned for it.
763   void clear(IRUnitT &IR, llvm::StringRef Name);
764 
765   /// Clear all analysis results cached by this AnalysisManager.
766   ///
767   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
768   /// deletes them.  This lets you clean up the AnalysisManager when the set of
769   /// IR units itself has potentially changed, and thus we can't even look up a
770   /// a result and invalidate/clear it directly.
771   void clear() {
772     AnalysisResults.clear();
773     AnalysisResultLists.clear();
774   }
775 
776   /// Get the result of an analysis pass for a given IR unit.
777   ///
778   /// Runs the analysis if a cached result is not available.
779   template <typename PassT>
780   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
781     assert(AnalysisPasses.count(PassT::ID()) &&
782            "This analysis pass was not registered prior to being queried");
783     ResultConceptT &ResultConcept =
784         getResultImpl(PassT::ID(), IR, ExtraArgs...);
785 
786     using ResultModelT =
787         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
788                                     PreservedAnalyses, Invalidator>;
789 
790     return static_cast<ResultModelT &>(ResultConcept).Result;
791   }
792 
793   /// Get the cached result of an analysis pass for a given IR unit.
794   ///
795   /// This method never runs the analysis.
796   ///
797   /// \returns null if there is no cached result.
798   template <typename PassT>
799   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
800     assert(AnalysisPasses.count(PassT::ID()) &&
801            "This analysis pass was not registered prior to being queried");
802 
803     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
804     if (!ResultConcept)
805       return nullptr;
806 
807     using ResultModelT =
808         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
809                                     PreservedAnalyses, Invalidator>;
810 
811     return &static_cast<ResultModelT *>(ResultConcept)->Result;
812   }
813 
814   /// Verify that the given Result cannot be invalidated, assert otherwise.
815   template <typename PassT>
816   void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
817     PreservedAnalyses PA = PreservedAnalyses::none();
818     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
819     Invalidator Inv(IsResultInvalidated, AnalysisResults);
820     assert(!Result->invalidate(IR, PA, Inv) &&
821            "Cached result cannot be invalidated");
822   }
823 
824   /// Register an analysis pass with the manager.
825   ///
826   /// The parameter is a callable whose result is an analysis pass. This allows
827   /// passing in a lambda to construct the analysis.
828   ///
829   /// The analysis type to register is the type returned by calling the \c
830   /// PassBuilder argument. If that type has already been registered, then the
831   /// argument will not be called and this function will return false.
832   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
833   /// and this function returns true.
834   ///
835   /// (Note: Although the return value of this function indicates whether or not
836   /// an analysis was previously registered, there intentionally isn't a way to
837   /// query this directly.  Instead, you should just register all the analyses
838   /// you might want and let this class run them lazily.  This idiom lets us
839   /// minimize the number of times we have to look up analyses in our
840   /// hashtable.)
841   template <typename PassBuilderT>
842   bool registerPass(PassBuilderT &&PassBuilder) {
843     using PassT = decltype(PassBuilder());
844     using PassModelT =
845         detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
846                                   Invalidator, ExtraArgTs...>;
847 
848     auto &PassPtr = AnalysisPasses[PassT::ID()];
849     if (PassPtr)
850       // Already registered this pass type!
851       return false;
852 
853     // Construct a new model around the instance returned by the builder.
854     PassPtr.reset(new PassModelT(PassBuilder()));
855     return true;
856   }
857 
858   /// Invalidate cached analyses for an IR unit.
859   ///
860   /// Walk through all of the analyses pertaining to this unit of IR and
861   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
862   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
863 
864 private:
865   /// Look up a registered analysis pass.
866   PassConceptT &lookUpPass(AnalysisKey *ID) {
867     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
868     assert(PI != AnalysisPasses.end() &&
869            "Analysis passes must be registered prior to being queried!");
870     return *PI->second;
871   }
872 
873   /// Look up a registered analysis pass.
874   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
875     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
876     assert(PI != AnalysisPasses.end() &&
877            "Analysis passes must be registered prior to being queried!");
878     return *PI->second;
879   }
880 
881   /// Get an analysis result, running the pass if necessary.
882   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
883                                 ExtraArgTs... ExtraArgs);
884 
885   /// Get a cached analysis result or return null.
886   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
887     typename AnalysisResultMapT::const_iterator RI =
888         AnalysisResults.find({ID, &IR});
889     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
890   }
891 
892   /// Map type from analysis pass ID to pass concept pointer.
893   using AnalysisPassMapT =
894       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
895 
896   /// Collection of analysis passes, indexed by ID.
897   AnalysisPassMapT AnalysisPasses;
898 
899   /// Map from IR unit to a list of analysis results.
900   ///
901   /// Provides linear time removal of all analysis results for a IR unit and
902   /// the ultimate storage for a particular cached analysis result.
903   AnalysisResultListMapT AnalysisResultLists;
904 
905   /// Map from an analysis ID and IR unit to a particular cached
906   /// analysis result.
907   AnalysisResultMapT AnalysisResults;
908 };
909 
910 extern template class AnalysisManager<Module>;
911 
912 /// Convenience typedef for the Module analysis manager.
913 using ModuleAnalysisManager = AnalysisManager<Module>;
914 
915 extern template class AnalysisManager<Function>;
916 
917 /// Convenience typedef for the Function analysis manager.
918 using FunctionAnalysisManager = AnalysisManager<Function>;
919 
920 /// An analysis over an "outer" IR unit that provides access to an
921 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
922 /// in the outer unit.
923 ///
924 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
925 /// an analysis over Modules (the "outer" unit) that provides access to a
926 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
927 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
928 /// relationship is valid because each Function is contained in one Module.
929 ///
930 /// If you're (transitively) within a pass manager for an IR unit U that
931 /// contains IR unit V, you should never use an analysis manager over V, except
932 /// via one of these proxies.
933 ///
934 /// Note that the proxy's result is a move-only RAII object.  The validity of
935 /// the analyses in the inner analysis manager is tied to its lifetime.
936 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
937 class InnerAnalysisManagerProxy
938     : public AnalysisInfoMixin<
939           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
940 public:
941   class Result {
942   public:
943     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
944 
945     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
946       // We have to null out the analysis manager in the moved-from state
947       // because we are taking ownership of the responsibilty to clear the
948       // analysis state.
949       Arg.InnerAM = nullptr;
950     }
951 
952     ~Result() {
953       // InnerAM is cleared in a moved from state where there is nothing to do.
954       if (!InnerAM)
955         return;
956 
957       // Clear out the analysis manager if we're being destroyed -- it means we
958       // didn't even see an invalidate call when we got invalidated.
959       InnerAM->clear();
960     }
961 
962     Result &operator=(Result &&RHS) {
963       InnerAM = RHS.InnerAM;
964       // We have to null out the analysis manager in the moved-from state
965       // because we are taking ownership of the responsibilty to clear the
966       // analysis state.
967       RHS.InnerAM = nullptr;
968       return *this;
969     }
970 
971     /// Accessor for the analysis manager.
972     AnalysisManagerT &getManager() { return *InnerAM; }
973 
974     /// Handler for invalidation of the outer IR unit, \c IRUnitT.
975     ///
976     /// If the proxy analysis itself is not preserved, we assume that the set of
977     /// inner IR objects contained in IRUnit may have changed.  In this case,
978     /// we have to call \c clear() on the inner analysis manager, as it may now
979     /// have stale pointers to its inner IR objects.
980     ///
981     /// Regardless of whether the proxy analysis is marked as preserved, all of
982     /// the analyses in the inner analysis manager are potentially invalidated
983     /// based on the set of preserved analyses.
984     bool invalidate(
985         IRUnitT &IR, const PreservedAnalyses &PA,
986         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
987 
988   private:
989     AnalysisManagerT *InnerAM;
990   };
991 
992   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
993       : InnerAM(&InnerAM) {}
994 
995   /// Run the analysis pass and create our proxy result object.
996   ///
997   /// This doesn't do any interesting work; it is primarily used to insert our
998   /// proxy result object into the outer analysis cache so that we can proxy
999   /// invalidation to the inner analysis manager.
1000   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
1001              ExtraArgTs...) {
1002     return Result(*InnerAM);
1003   }
1004 
1005 private:
1006   friend AnalysisInfoMixin<
1007       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
1008 
1009   static AnalysisKey Key;
1010 
1011   AnalysisManagerT *InnerAM;
1012 };
1013 
1014 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1015 AnalysisKey
1016     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1017 
1018 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
1019 using FunctionAnalysisManagerModuleProxy =
1020     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
1021 
1022 /// Specialization of the invalidate method for the \c
1023 /// FunctionAnalysisManagerModuleProxy's result.
1024 template <>
1025 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
1026     Module &M, const PreservedAnalyses &PA,
1027     ModuleAnalysisManager::Invalidator &Inv);
1028 
1029 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
1030 // template.
1031 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
1032                                                 Module>;
1033 
1034 /// An analysis over an "inner" IR unit that provides access to an
1035 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
1036 /// in the outer unit.
1037 ///
1038 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
1039 /// analysis over Functions (the "inner" unit) which provides access to a Module
1040 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
1041 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
1042 /// is valid because each Function is contained in one Module.
1043 ///
1044 /// This proxy only exposes the const interface of the outer analysis manager,
1045 /// to indicate that you cannot cause an outer analysis to run from within an
1046 /// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is
1047 /// due to keeping potential future concurrency in mind. To give an example,
1048 /// running a module analysis before any function passes may give a different
1049 /// result than running it in a function pass. Both may be valid, but it would
1050 /// produce non-deterministic results. GlobalsAA is a good analysis example,
1051 /// because the cached information has the mod/ref info for all memory for each
1052 /// function at the time the analysis was computed. The information is still
1053 /// valid after a function transformation, but it may be *different* if
1054 /// recomputed after that transform. GlobalsAA is never invalidated.
1055 
1056 ///
1057 /// This proxy doesn't manage invalidation in any way -- that is handled by the
1058 /// recursive return path of each layer of the pass manager.  A consequence of
1059 /// this is the outer analyses may be stale.  We invalidate the outer analyses
1060 /// only when we're done running passes over the inner IR units.
1061 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1062 class OuterAnalysisManagerProxy
1063     : public AnalysisInfoMixin<
1064           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
1065 public:
1066   /// Result proxy object for \c OuterAnalysisManagerProxy.
1067   class Result {
1068   public:
1069     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
1070 
1071     /// Get a cached analysis. If the analysis can be invalidated, this will
1072     /// assert.
1073     template <typename PassT, typename IRUnitTParam>
1074     typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
1075       typename PassT::Result *Res =
1076           OuterAM->template getCachedResult<PassT>(IR);
1077       if (Res)
1078         OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
1079       return Res;
1080     }
1081 
1082     /// Method provided for unit testing, not intended for general use.
1083     template <typename PassT, typename IRUnitTParam>
1084     bool cachedResultExists(IRUnitTParam &IR) const {
1085       typename PassT::Result *Res =
1086           OuterAM->template getCachedResult<PassT>(IR);
1087       return Res != nullptr;
1088     }
1089 
1090     /// When invalidation occurs, remove any registered invalidation events.
1091     bool invalidate(
1092         IRUnitT &IRUnit, const PreservedAnalyses &PA,
1093         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
1094       // Loop over the set of registered outer invalidation mappings and if any
1095       // of them map to an analysis that is now invalid, clear it out.
1096       SmallVector<AnalysisKey *, 4> DeadKeys;
1097       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
1098         AnalysisKey *OuterID = KeyValuePair.first;
1099         auto &InnerIDs = KeyValuePair.second;
1100         llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) {
1101           return Inv.invalidate(InnerID, IRUnit, PA);
1102         });
1103         if (InnerIDs.empty())
1104           DeadKeys.push_back(OuterID);
1105       }
1106 
1107       for (auto OuterID : DeadKeys)
1108         OuterAnalysisInvalidationMap.erase(OuterID);
1109 
1110       // The proxy itself remains valid regardless of anything else.
1111       return false;
1112     }
1113 
1114     /// Register a deferred invalidation event for when the outer analysis
1115     /// manager processes its invalidations.
1116     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
1117     void registerOuterAnalysisInvalidation() {
1118       AnalysisKey *OuterID = OuterAnalysisT::ID();
1119       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
1120 
1121       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
1122       // Note, this is a linear scan. If we end up with large numbers of
1123       // analyses that all trigger invalidation on the same outer analysis,
1124       // this entire system should be changed to some other deterministic
1125       // data structure such as a `SetVector` of a pair of pointers.
1126       if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
1127         InvalidatedIDList.push_back(InvalidatedID);
1128     }
1129 
1130     /// Access the map from outer analyses to deferred invalidation requiring
1131     /// analyses.
1132     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
1133     getOuterInvalidations() const {
1134       return OuterAnalysisInvalidationMap;
1135     }
1136 
1137   private:
1138     const AnalysisManagerT *OuterAM;
1139 
1140     /// A map from an outer analysis ID to the set of this IR-unit's analyses
1141     /// which need to be invalidated.
1142     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
1143         OuterAnalysisInvalidationMap;
1144   };
1145 
1146   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
1147       : OuterAM(&OuterAM) {}
1148 
1149   /// Run the analysis pass and create our proxy result object.
1150   /// Nothing to see here, it just forwards the \c OuterAM reference into the
1151   /// result.
1152   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
1153              ExtraArgTs...) {
1154     return Result(*OuterAM);
1155   }
1156 
1157 private:
1158   friend AnalysisInfoMixin<
1159       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
1160 
1161   static AnalysisKey Key;
1162 
1163   const AnalysisManagerT *OuterAM;
1164 };
1165 
1166 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1167 AnalysisKey
1168     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1169 
1170 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
1171                                                 Function>;
1172 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
1173 using ModuleAnalysisManagerFunctionProxy =
1174     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
1175 
1176 /// Trivial adaptor that maps from a module to its functions.
1177 ///
1178 /// Designed to allow composition of a FunctionPass(Manager) and
1179 /// a ModulePassManager, by running the FunctionPass(Manager) over every
1180 /// function in the module.
1181 ///
1182 /// Function passes run within this adaptor can rely on having exclusive access
1183 /// to the function they are run over. They should not read or modify any other
1184 /// functions! Other threads or systems may be manipulating other functions in
1185 /// the module, and so their state should never be relied on.
1186 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1187 /// violate this principle.
1188 ///
1189 /// Function passes can also read the module containing the function, but they
1190 /// should not modify that module outside of the use lists of various globals.
1191 /// For example, a function pass is not permitted to add functions to the
1192 /// module.
1193 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1194 /// violate this principle.
1195 ///
1196 /// Note that although function passes can access module analyses, module
1197 /// analyses are not invalidated while the function passes are running, so they
1198 /// may be stale.  Function analyses will not be stale.
1199 class ModuleToFunctionPassAdaptor
1200     : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
1201 public:
1202   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
1203 
1204   explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
1205                                        bool EagerlyInvalidate)
1206       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {}
1207 
1208   /// Runs the function pass across every function in the module.
1209   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1210   void printPipeline(raw_ostream &OS,
1211                      function_ref<StringRef(StringRef)> MapClassName2PassName);
1212 
1213   static bool isRequired() { return true; }
1214 
1215 private:
1216   std::unique_ptr<PassConceptT> Pass;
1217   bool EagerlyInvalidate;
1218 };
1219 
1220 /// A function to deduce a function pass type and wrap it in the
1221 /// templated adaptor.
1222 template <typename FunctionPassT>
1223 ModuleToFunctionPassAdaptor
1224 createModuleToFunctionPassAdaptor(FunctionPassT &&Pass,
1225                                   bool EagerlyInvalidate = false) {
1226   using PassModelT =
1227       detail::PassModel<Function, FunctionPassT, PreservedAnalyses,
1228                         FunctionAnalysisManager>;
1229   // Do not use make_unique, it causes too many template instantiations,
1230   // causing terrible compile times.
1231   return ModuleToFunctionPassAdaptor(
1232       std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>(
1233           new PassModelT(std::forward<FunctionPassT>(Pass))),
1234       EagerlyInvalidate);
1235 }
1236 
1237 /// A utility pass template to force an analysis result to be available.
1238 ///
1239 /// If there are extra arguments at the pass's run level there may also be
1240 /// extra arguments to the analysis manager's \c getResult routine. We can't
1241 /// guess how to effectively map the arguments from one to the other, and so
1242 /// this specialization just ignores them.
1243 ///
1244 /// Specific patterns of run-method extra arguments and analysis manager extra
1245 /// arguments will have to be defined as appropriate specializations.
1246 template <typename AnalysisT, typename IRUnitT,
1247           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
1248           typename... ExtraArgTs>
1249 struct RequireAnalysisPass
1250     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
1251                                         ExtraArgTs...>> {
1252   /// Run this pass over some unit of IR.
1253   ///
1254   /// This pass can be run over any unit of IR and use any analysis manager
1255   /// provided they satisfy the basic API requirements. When this pass is
1256   /// created, these methods can be instantiated to satisfy whatever the
1257   /// context requires.
1258   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
1259                         ExtraArgTs &&... Args) {
1260     (void)AM.template getResult<AnalysisT>(Arg,
1261                                            std::forward<ExtraArgTs>(Args)...);
1262 
1263     return PreservedAnalyses::all();
1264   }
1265   void printPipeline(raw_ostream &OS,
1266                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
1267     auto ClassName = AnalysisT::name();
1268     auto PassName = MapClassName2PassName(ClassName);
1269     OS << "require<" << PassName << ">";
1270   }
1271   static bool isRequired() { return true; }
1272 };
1273 
1274 /// A no-op pass template which simply forces a specific analysis result
1275 /// to be invalidated.
1276 template <typename AnalysisT>
1277 struct InvalidateAnalysisPass
1278     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
1279   /// Run this pass over some unit of IR.
1280   ///
1281   /// This pass can be run over any unit of IR and use any analysis manager,
1282   /// provided they satisfy the basic API requirements. When this pass is
1283   /// created, these methods can be instantiated to satisfy whatever the
1284   /// context requires.
1285   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
1286   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
1287     auto PA = PreservedAnalyses::all();
1288     PA.abandon<AnalysisT>();
1289     return PA;
1290   }
1291   void printPipeline(raw_ostream &OS,
1292                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
1293     auto ClassName = AnalysisT::name();
1294     auto PassName = MapClassName2PassName(ClassName);
1295     OS << "invalidate<" << PassName << ">";
1296   }
1297 };
1298 
1299 /// A utility pass that does nothing, but preserves no analyses.
1300 ///
1301 /// Because this preserves no analyses, any analysis passes queried after this
1302 /// pass runs will recompute fresh results.
1303 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
1304   /// Run this pass over some unit of IR.
1305   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
1306   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
1307     return PreservedAnalyses::none();
1308   }
1309 };
1310 
1311 /// A utility pass template that simply runs another pass multiple times.
1312 ///
1313 /// This can be useful when debugging or testing passes. It also serves as an
1314 /// example of how to extend the pass manager in ways beyond composition.
1315 template <typename PassT>
1316 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1317 public:
1318   RepeatedPass(int Count, PassT &&P)
1319       : Count(Count), P(std::forward<PassT>(P)) {}
1320 
1321   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
1322   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
1323 
1324     // Request PassInstrumentation from analysis manager, will use it to run
1325     // instrumenting callbacks for the passes later.
1326     // Here we use std::tuple wrapper over getResult which helps to extract
1327     // AnalysisManager's arguments out of the whole Args set.
1328     PassInstrumentation PI =
1329         detail::getAnalysisResult<PassInstrumentationAnalysis>(
1330             AM, IR, std::tuple<Ts...>(Args...));
1331 
1332     auto PA = PreservedAnalyses::all();
1333     for (int i = 0; i < Count; ++i) {
1334       // Check the PassInstrumentation's BeforePass callbacks before running the
1335       // pass, skip its execution completely if asked to (callback returns
1336       // false).
1337       if (!PI.runBeforePass<IRUnitT>(P, IR))
1338         continue;
1339       PreservedAnalyses IterPA = P.run(IR, AM, std::forward<Ts>(Args)...);
1340       PA.intersect(IterPA);
1341       PI.runAfterPass(P, IR, IterPA);
1342     }
1343     return PA;
1344   }
1345 
1346   void printPipeline(raw_ostream &OS,
1347                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
1348     OS << "repeat<" << Count << ">(";
1349     P.printPipeline(OS, MapClassName2PassName);
1350     OS << ")";
1351   }
1352 
1353 private:
1354   int Count;
1355   PassT P;
1356 };
1357 
1358 template <typename PassT>
1359 RepeatedPass<PassT> createRepeatedPass(int Count, PassT &&P) {
1360   return RepeatedPass<PassT>(Count, std::forward<PassT>(P));
1361 }
1362 
1363 } // end namespace llvm
1364 
1365 #endif // LLVM_IR_PASSMANAGER_H
1366