1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 //  Value *Exp = ...
17 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
18 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 //    ... Pattern is matched and variables are bound ...
21 //  }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45 
46 namespace llvm {
47 namespace PatternMatch {
48 
49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50   return const_cast<Pattern &>(P).match(V);
51 }
52 
53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54   return const_cast<Pattern &>(P).match(Mask);
55 }
56 
57 template <typename SubPattern_t> struct OneUse_match {
58   SubPattern_t SubPattern;
59 
60   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61 
62   template <typename OpTy> bool match(OpTy *V) {
63     return V->hasOneUse() && SubPattern.match(V);
64   }
65 };
66 
67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68   return SubPattern;
69 }
70 
71 template <typename Class> struct class_match {
72   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73 };
74 
75 /// Match an arbitrary value and ignore it.
76 inline class_match<Value> m_Value() { return class_match<Value>(); }
77 
78 /// Match an arbitrary unary operation and ignore it.
79 inline class_match<UnaryOperator> m_UnOp() {
80   return class_match<UnaryOperator>();
81 }
82 
83 /// Match an arbitrary binary operation and ignore it.
84 inline class_match<BinaryOperator> m_BinOp() {
85   return class_match<BinaryOperator>();
86 }
87 
88 /// Matches any compare instruction and ignore it.
89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90 
91 struct undef_match {
92   static bool check(const Value *V) {
93     if (isa<UndefValue>(V))
94       return true;
95 
96     const auto *CA = dyn_cast<ConstantAggregate>(V);
97     if (!CA)
98       return false;
99 
100     SmallPtrSet<const ConstantAggregate *, 8> Seen;
101     SmallVector<const ConstantAggregate *, 8> Worklist;
102 
103     // Either UndefValue, PoisonValue, or an aggregate that only contains
104     // these is accepted by matcher.
105     // CheckValue returns false if CA cannot satisfy this constraint.
106     auto CheckValue = [&](const ConstantAggregate *CA) {
107       for (const Value *Op : CA->operand_values()) {
108         if (isa<UndefValue>(Op))
109           continue;
110 
111         const auto *CA = dyn_cast<ConstantAggregate>(Op);
112         if (!CA)
113           return false;
114         if (Seen.insert(CA).second)
115           Worklist.emplace_back(CA);
116       }
117 
118       return true;
119     };
120 
121     if (!CheckValue(CA))
122       return false;
123 
124     while (!Worklist.empty()) {
125       if (!CheckValue(Worklist.pop_back_val()))
126         return false;
127     }
128     return true;
129   }
130   template <typename ITy> bool match(ITy *V) { return check(V); }
131 };
132 
133 /// Match an arbitrary undef constant. This matches poison as well.
134 /// If this is an aggregate and contains a non-aggregate element that is
135 /// neither undef nor poison, the aggregate is not matched.
136 inline auto m_Undef() { return undef_match(); }
137 
138 /// Match an arbitrary poison constant.
139 inline class_match<PoisonValue> m_Poison() {
140   return class_match<PoisonValue>();
141 }
142 
143 /// Match an arbitrary Constant and ignore it.
144 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
145 
146 /// Match an arbitrary ConstantInt and ignore it.
147 inline class_match<ConstantInt> m_ConstantInt() {
148   return class_match<ConstantInt>();
149 }
150 
151 /// Match an arbitrary ConstantFP and ignore it.
152 inline class_match<ConstantFP> m_ConstantFP() {
153   return class_match<ConstantFP>();
154 }
155 
156 struct constantexpr_match {
157   template <typename ITy> bool match(ITy *V) {
158     auto *C = dyn_cast<Constant>(V);
159     return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
160   }
161 };
162 
163 /// Match a constant expression or a constant that contains a constant
164 /// expression.
165 inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
166 
167 /// Match an arbitrary basic block value and ignore it.
168 inline class_match<BasicBlock> m_BasicBlock() {
169   return class_match<BasicBlock>();
170 }
171 
172 /// Inverting matcher
173 template <typename Ty> struct match_unless {
174   Ty M;
175 
176   match_unless(const Ty &Matcher) : M(Matcher) {}
177 
178   template <typename ITy> bool match(ITy *V) { return !M.match(V); }
179 };
180 
181 /// Match if the inner matcher does *NOT* match.
182 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
183   return match_unless<Ty>(M);
184 }
185 
186 /// Matching combinators
187 template <typename LTy, typename RTy> struct match_combine_or {
188   LTy L;
189   RTy R;
190 
191   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
192 
193   template <typename ITy> bool match(ITy *V) {
194     if (L.match(V))
195       return true;
196     if (R.match(V))
197       return true;
198     return false;
199   }
200 };
201 
202 template <typename LTy, typename RTy> struct match_combine_and {
203   LTy L;
204   RTy R;
205 
206   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
207 
208   template <typename ITy> bool match(ITy *V) {
209     if (L.match(V))
210       if (R.match(V))
211         return true;
212     return false;
213   }
214 };
215 
216 /// Combine two pattern matchers matching L || R
217 template <typename LTy, typename RTy>
218 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
219   return match_combine_or<LTy, RTy>(L, R);
220 }
221 
222 /// Combine two pattern matchers matching L && R
223 template <typename LTy, typename RTy>
224 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
225   return match_combine_and<LTy, RTy>(L, R);
226 }
227 
228 struct apint_match {
229   const APInt *&Res;
230   bool AllowUndef;
231 
232   apint_match(const APInt *&Res, bool AllowUndef)
233       : Res(Res), AllowUndef(AllowUndef) {}
234 
235   template <typename ITy> bool match(ITy *V) {
236     if (auto *CI = dyn_cast<ConstantInt>(V)) {
237       Res = &CI->getValue();
238       return true;
239     }
240     if (V->getType()->isVectorTy())
241       if (const auto *C = dyn_cast<Constant>(V))
242         if (auto *CI =
243                 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) {
244           Res = &CI->getValue();
245           return true;
246         }
247     return false;
248   }
249 };
250 // Either constexpr if or renaming ConstantFP::getValueAPF to
251 // ConstantFP::getValue is needed to do it via single template
252 // function for both apint/apfloat.
253 struct apfloat_match {
254   const APFloat *&Res;
255   bool AllowUndef;
256 
257   apfloat_match(const APFloat *&Res, bool AllowUndef)
258       : Res(Res), AllowUndef(AllowUndef) {}
259 
260   template <typename ITy> bool match(ITy *V) {
261     if (auto *CI = dyn_cast<ConstantFP>(V)) {
262       Res = &CI->getValueAPF();
263       return true;
264     }
265     if (V->getType()->isVectorTy())
266       if (const auto *C = dyn_cast<Constant>(V))
267         if (auto *CI =
268                 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) {
269           Res = &CI->getValueAPF();
270           return true;
271         }
272     return false;
273   }
274 };
275 
276 /// Match a ConstantInt or splatted ConstantVector, binding the
277 /// specified pointer to the contained APInt.
278 inline apint_match m_APInt(const APInt *&Res) {
279   // Forbid undefs by default to maintain previous behavior.
280   return apint_match(Res, /* AllowUndef */ false);
281 }
282 
283 /// Match APInt while allowing undefs in splat vector constants.
284 inline apint_match m_APIntAllowUndef(const APInt *&Res) {
285   return apint_match(Res, /* AllowUndef */ true);
286 }
287 
288 /// Match APInt while forbidding undefs in splat vector constants.
289 inline apint_match m_APIntForbidUndef(const APInt *&Res) {
290   return apint_match(Res, /* AllowUndef */ false);
291 }
292 
293 /// Match a ConstantFP or splatted ConstantVector, binding the
294 /// specified pointer to the contained APFloat.
295 inline apfloat_match m_APFloat(const APFloat *&Res) {
296   // Forbid undefs by default to maintain previous behavior.
297   return apfloat_match(Res, /* AllowUndef */ false);
298 }
299 
300 /// Match APFloat while allowing undefs in splat vector constants.
301 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
302   return apfloat_match(Res, /* AllowUndef */ true);
303 }
304 
305 /// Match APFloat while forbidding undefs in splat vector constants.
306 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
307   return apfloat_match(Res, /* AllowUndef */ false);
308 }
309 
310 template <int64_t Val> struct constantint_match {
311   template <typename ITy> bool match(ITy *V) {
312     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
313       const APInt &CIV = CI->getValue();
314       if (Val >= 0)
315         return CIV == static_cast<uint64_t>(Val);
316       // If Val is negative, and CI is shorter than it, truncate to the right
317       // number of bits.  If it is larger, then we have to sign extend.  Just
318       // compare their negated values.
319       return -CIV == -Val;
320     }
321     return false;
322   }
323 };
324 
325 /// Match a ConstantInt with a specific value.
326 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
327   return constantint_match<Val>();
328 }
329 
330 /// This helper class is used to match constant scalars, vector splats,
331 /// and fixed width vectors that satisfy a specified predicate.
332 /// For fixed width vector constants, undefined elements are ignored.
333 template <typename Predicate, typename ConstantVal>
334 struct cstval_pred_ty : public Predicate {
335   template <typename ITy> bool match(ITy *V) {
336     if (const auto *CV = dyn_cast<ConstantVal>(V))
337       return this->isValue(CV->getValue());
338     if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
339       if (const auto *C = dyn_cast<Constant>(V)) {
340         if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
341           return this->isValue(CV->getValue());
342 
343         // Number of elements of a scalable vector unknown at compile time
344         auto *FVTy = dyn_cast<FixedVectorType>(VTy);
345         if (!FVTy)
346           return false;
347 
348         // Non-splat vector constant: check each element for a match.
349         unsigned NumElts = FVTy->getNumElements();
350         assert(NumElts != 0 && "Constant vector with no elements?");
351         bool HasNonUndefElements = false;
352         for (unsigned i = 0; i != NumElts; ++i) {
353           Constant *Elt = C->getAggregateElement(i);
354           if (!Elt)
355             return false;
356           if (isa<UndefValue>(Elt))
357             continue;
358           auto *CV = dyn_cast<ConstantVal>(Elt);
359           if (!CV || !this->isValue(CV->getValue()))
360             return false;
361           HasNonUndefElements = true;
362         }
363         return HasNonUndefElements;
364       }
365     }
366     return false;
367   }
368 };
369 
370 /// specialization of cstval_pred_ty for ConstantInt
371 template <typename Predicate>
372 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
373 
374 /// specialization of cstval_pred_ty for ConstantFP
375 template <typename Predicate>
376 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
377 
378 /// This helper class is used to match scalar and vector constants that
379 /// satisfy a specified predicate, and bind them to an APInt.
380 template <typename Predicate> struct api_pred_ty : public Predicate {
381   const APInt *&Res;
382 
383   api_pred_ty(const APInt *&R) : Res(R) {}
384 
385   template <typename ITy> bool match(ITy *V) {
386     if (const auto *CI = dyn_cast<ConstantInt>(V))
387       if (this->isValue(CI->getValue())) {
388         Res = &CI->getValue();
389         return true;
390       }
391     if (V->getType()->isVectorTy())
392       if (const auto *C = dyn_cast<Constant>(V))
393         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
394           if (this->isValue(CI->getValue())) {
395             Res = &CI->getValue();
396             return true;
397           }
398 
399     return false;
400   }
401 };
402 
403 /// This helper class is used to match scalar and vector constants that
404 /// satisfy a specified predicate, and bind them to an APFloat.
405 /// Undefs are allowed in splat vector constants.
406 template <typename Predicate> struct apf_pred_ty : public Predicate {
407   const APFloat *&Res;
408 
409   apf_pred_ty(const APFloat *&R) : Res(R) {}
410 
411   template <typename ITy> bool match(ITy *V) {
412     if (const auto *CI = dyn_cast<ConstantFP>(V))
413       if (this->isValue(CI->getValue())) {
414         Res = &CI->getValue();
415         return true;
416       }
417     if (V->getType()->isVectorTy())
418       if (const auto *C = dyn_cast<Constant>(V))
419         if (auto *CI = dyn_cast_or_null<ConstantFP>(
420                 C->getSplatValue(/* AllowUndef */ true)))
421           if (this->isValue(CI->getValue())) {
422             Res = &CI->getValue();
423             return true;
424           }
425 
426     return false;
427   }
428 };
429 
430 ///////////////////////////////////////////////////////////////////////////////
431 //
432 // Encapsulate constant value queries for use in templated predicate matchers.
433 // This allows checking if constants match using compound predicates and works
434 // with vector constants, possibly with relaxed constraints. For example, ignore
435 // undef values.
436 //
437 ///////////////////////////////////////////////////////////////////////////////
438 
439 struct is_any_apint {
440   bool isValue(const APInt &C) { return true; }
441 };
442 /// Match an integer or vector with any integral constant.
443 /// For vectors, this includes constants with undefined elements.
444 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
445   return cst_pred_ty<is_any_apint>();
446 }
447 
448 struct is_shifted_mask {
449   bool isValue(const APInt &C) { return C.isShiftedMask(); }
450 };
451 
452 inline cst_pred_ty<is_shifted_mask> m_ShiftedMask() {
453   return cst_pred_ty<is_shifted_mask>();
454 }
455 
456 struct is_all_ones {
457   bool isValue(const APInt &C) { return C.isAllOnes(); }
458 };
459 /// Match an integer or vector with all bits set.
460 /// For vectors, this includes constants with undefined elements.
461 inline cst_pred_ty<is_all_ones> m_AllOnes() {
462   return cst_pred_ty<is_all_ones>();
463 }
464 
465 struct is_maxsignedvalue {
466   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
467 };
468 /// Match an integer or vector with values having all bits except for the high
469 /// bit set (0x7f...).
470 /// For vectors, this includes constants with undefined elements.
471 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
472   return cst_pred_ty<is_maxsignedvalue>();
473 }
474 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
475   return V;
476 }
477 
478 struct is_negative {
479   bool isValue(const APInt &C) { return C.isNegative(); }
480 };
481 /// Match an integer or vector of negative values.
482 /// For vectors, this includes constants with undefined elements.
483 inline cst_pred_ty<is_negative> m_Negative() {
484   return cst_pred_ty<is_negative>();
485 }
486 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
487 
488 struct is_nonnegative {
489   bool isValue(const APInt &C) { return C.isNonNegative(); }
490 };
491 /// Match an integer or vector of non-negative values.
492 /// For vectors, this includes constants with undefined elements.
493 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
494   return cst_pred_ty<is_nonnegative>();
495 }
496 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
497 
498 struct is_strictlypositive {
499   bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
500 };
501 /// Match an integer or vector of strictly positive values.
502 /// For vectors, this includes constants with undefined elements.
503 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
504   return cst_pred_ty<is_strictlypositive>();
505 }
506 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
507   return V;
508 }
509 
510 struct is_nonpositive {
511   bool isValue(const APInt &C) { return C.isNonPositive(); }
512 };
513 /// Match an integer or vector of non-positive values.
514 /// For vectors, this includes constants with undefined elements.
515 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
516   return cst_pred_ty<is_nonpositive>();
517 }
518 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
519 
520 struct is_one {
521   bool isValue(const APInt &C) { return C.isOne(); }
522 };
523 /// Match an integer 1 or a vector with all elements equal to 1.
524 /// For vectors, this includes constants with undefined elements.
525 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
526 
527 struct is_zero_int {
528   bool isValue(const APInt &C) { return C.isZero(); }
529 };
530 /// Match an integer 0 or a vector with all elements equal to 0.
531 /// For vectors, this includes constants with undefined elements.
532 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
533   return cst_pred_ty<is_zero_int>();
534 }
535 
536 struct is_zero {
537   template <typename ITy> bool match(ITy *V) {
538     auto *C = dyn_cast<Constant>(V);
539     // FIXME: this should be able to do something for scalable vectors
540     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
541   }
542 };
543 /// Match any null constant or a vector with all elements equal to 0.
544 /// For vectors, this includes constants with undefined elements.
545 inline is_zero m_Zero() { return is_zero(); }
546 
547 struct is_power2 {
548   bool isValue(const APInt &C) { return C.isPowerOf2(); }
549 };
550 /// Match an integer or vector power-of-2.
551 /// For vectors, this includes constants with undefined elements.
552 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
553 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
554 
555 struct is_negated_power2 {
556   bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
557 };
558 /// Match a integer or vector negated power-of-2.
559 /// For vectors, this includes constants with undefined elements.
560 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
561   return cst_pred_ty<is_negated_power2>();
562 }
563 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
564   return V;
565 }
566 
567 struct is_power2_or_zero {
568   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
569 };
570 /// Match an integer or vector of 0 or power-of-2 values.
571 /// For vectors, this includes constants with undefined elements.
572 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
573   return cst_pred_ty<is_power2_or_zero>();
574 }
575 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
576   return V;
577 }
578 
579 struct is_sign_mask {
580   bool isValue(const APInt &C) { return C.isSignMask(); }
581 };
582 /// Match an integer or vector with only the sign bit(s) set.
583 /// For vectors, this includes constants with undefined elements.
584 inline cst_pred_ty<is_sign_mask> m_SignMask() {
585   return cst_pred_ty<is_sign_mask>();
586 }
587 
588 struct is_lowbit_mask {
589   bool isValue(const APInt &C) { return C.isMask(); }
590 };
591 /// Match an integer or vector with only the low bit(s) set.
592 /// For vectors, this includes constants with undefined elements.
593 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
594   return cst_pred_ty<is_lowbit_mask>();
595 }
596 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
597 
598 struct icmp_pred_with_threshold {
599   ICmpInst::Predicate Pred;
600   const APInt *Thr;
601   bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
602 };
603 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
604 /// to Threshold. For vectors, this includes constants with undefined elements.
605 inline cst_pred_ty<icmp_pred_with_threshold>
606 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
607   cst_pred_ty<icmp_pred_with_threshold> P;
608   P.Pred = Predicate;
609   P.Thr = &Threshold;
610   return P;
611 }
612 
613 struct is_nan {
614   bool isValue(const APFloat &C) { return C.isNaN(); }
615 };
616 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
617 /// For vectors, this includes constants with undefined elements.
618 inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
619 
620 struct is_nonnan {
621   bool isValue(const APFloat &C) { return !C.isNaN(); }
622 };
623 /// Match a non-NaN FP constant.
624 /// For vectors, this includes constants with undefined elements.
625 inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
626   return cstfp_pred_ty<is_nonnan>();
627 }
628 
629 struct is_inf {
630   bool isValue(const APFloat &C) { return C.isInfinity(); }
631 };
632 /// Match a positive or negative infinity FP constant.
633 /// For vectors, this includes constants with undefined elements.
634 inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
635 
636 struct is_noninf {
637   bool isValue(const APFloat &C) { return !C.isInfinity(); }
638 };
639 /// Match a non-infinity FP constant, i.e. finite or NaN.
640 /// For vectors, this includes constants with undefined elements.
641 inline cstfp_pred_ty<is_noninf> m_NonInf() {
642   return cstfp_pred_ty<is_noninf>();
643 }
644 
645 struct is_finite {
646   bool isValue(const APFloat &C) { return C.isFinite(); }
647 };
648 /// Match a finite FP constant, i.e. not infinity or NaN.
649 /// For vectors, this includes constants with undefined elements.
650 inline cstfp_pred_ty<is_finite> m_Finite() {
651   return cstfp_pred_ty<is_finite>();
652 }
653 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
654 
655 struct is_finitenonzero {
656   bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
657 };
658 /// Match a finite non-zero FP constant.
659 /// For vectors, this includes constants with undefined elements.
660 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
661   return cstfp_pred_ty<is_finitenonzero>();
662 }
663 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
664   return V;
665 }
666 
667 struct is_any_zero_fp {
668   bool isValue(const APFloat &C) { return C.isZero(); }
669 };
670 /// Match a floating-point negative zero or positive zero.
671 /// For vectors, this includes constants with undefined elements.
672 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
673   return cstfp_pred_ty<is_any_zero_fp>();
674 }
675 
676 struct is_pos_zero_fp {
677   bool isValue(const APFloat &C) { return C.isPosZero(); }
678 };
679 /// Match a floating-point positive zero.
680 /// For vectors, this includes constants with undefined elements.
681 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
682   return cstfp_pred_ty<is_pos_zero_fp>();
683 }
684 
685 struct is_neg_zero_fp {
686   bool isValue(const APFloat &C) { return C.isNegZero(); }
687 };
688 /// Match a floating-point negative zero.
689 /// For vectors, this includes constants with undefined elements.
690 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
691   return cstfp_pred_ty<is_neg_zero_fp>();
692 }
693 
694 struct is_non_zero_fp {
695   bool isValue(const APFloat &C) { return C.isNonZero(); }
696 };
697 /// Match a floating-point non-zero.
698 /// For vectors, this includes constants with undefined elements.
699 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
700   return cstfp_pred_ty<is_non_zero_fp>();
701 }
702 
703 ///////////////////////////////////////////////////////////////////////////////
704 
705 template <typename Class> struct bind_ty {
706   Class *&VR;
707 
708   bind_ty(Class *&V) : VR(V) {}
709 
710   template <typename ITy> bool match(ITy *V) {
711     if (auto *CV = dyn_cast<Class>(V)) {
712       VR = CV;
713       return true;
714     }
715     return false;
716   }
717 };
718 
719 /// Match a value, capturing it if we match.
720 inline bind_ty<Value> m_Value(Value *&V) { return V; }
721 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
722 
723 /// Match an instruction, capturing it if we match.
724 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
725 /// Match a unary operator, capturing it if we match.
726 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
727 /// Match a binary operator, capturing it if we match.
728 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
729 /// Match a with overflow intrinsic, capturing it if we match.
730 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
731   return I;
732 }
733 inline bind_ty<const WithOverflowInst>
734 m_WithOverflowInst(const WithOverflowInst *&I) {
735   return I;
736 }
737 
738 /// Match a Constant, capturing the value if we match.
739 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
740 
741 /// Match a ConstantInt, capturing the value if we match.
742 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
743 
744 /// Match a ConstantFP, capturing the value if we match.
745 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
746 
747 /// Match a ConstantExpr, capturing the value if we match.
748 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
749 
750 /// Match a basic block value, capturing it if we match.
751 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
752 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
753   return V;
754 }
755 
756 /// Match an arbitrary immediate Constant and ignore it.
757 inline match_combine_and<class_match<Constant>,
758                          match_unless<constantexpr_match>>
759 m_ImmConstant() {
760   return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
761 }
762 
763 /// Match an immediate Constant, capturing the value if we match.
764 inline match_combine_and<bind_ty<Constant>,
765                          match_unless<constantexpr_match>>
766 m_ImmConstant(Constant *&C) {
767   return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
768 }
769 
770 /// Match a specified Value*.
771 struct specificval_ty {
772   const Value *Val;
773 
774   specificval_ty(const Value *V) : Val(V) {}
775 
776   template <typename ITy> bool match(ITy *V) { return V == Val; }
777 };
778 
779 /// Match if we have a specific specified value.
780 inline specificval_ty m_Specific(const Value *V) { return V; }
781 
782 /// Stores a reference to the Value *, not the Value * itself,
783 /// thus can be used in commutative matchers.
784 template <typename Class> struct deferredval_ty {
785   Class *const &Val;
786 
787   deferredval_ty(Class *const &V) : Val(V) {}
788 
789   template <typename ITy> bool match(ITy *const V) { return V == Val; }
790 };
791 
792 /// Like m_Specific(), but works if the specific value to match is determined
793 /// as part of the same match() expression. For example:
794 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
795 /// bind X before the pattern match starts.
796 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
797 /// whichever value m_Value(X) populated.
798 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
799 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
800   return V;
801 }
802 
803 /// Match a specified floating point value or vector of all elements of
804 /// that value.
805 struct specific_fpval {
806   double Val;
807 
808   specific_fpval(double V) : Val(V) {}
809 
810   template <typename ITy> bool match(ITy *V) {
811     if (const auto *CFP = dyn_cast<ConstantFP>(V))
812       return CFP->isExactlyValue(Val);
813     if (V->getType()->isVectorTy())
814       if (const auto *C = dyn_cast<Constant>(V))
815         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
816           return CFP->isExactlyValue(Val);
817     return false;
818   }
819 };
820 
821 /// Match a specific floating point value or vector with all elements
822 /// equal to the value.
823 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
824 
825 /// Match a float 1.0 or vector with all elements equal to 1.0.
826 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
827 
828 struct bind_const_intval_ty {
829   uint64_t &VR;
830 
831   bind_const_intval_ty(uint64_t &V) : VR(V) {}
832 
833   template <typename ITy> bool match(ITy *V) {
834     if (const auto *CV = dyn_cast<ConstantInt>(V))
835       if (CV->getValue().ule(UINT64_MAX)) {
836         VR = CV->getZExtValue();
837         return true;
838       }
839     return false;
840   }
841 };
842 
843 /// Match a specified integer value or vector of all elements of that
844 /// value.
845 template <bool AllowUndefs> struct specific_intval {
846   APInt Val;
847 
848   specific_intval(APInt V) : Val(std::move(V)) {}
849 
850   template <typename ITy> bool match(ITy *V) {
851     const auto *CI = dyn_cast<ConstantInt>(V);
852     if (!CI && V->getType()->isVectorTy())
853       if (const auto *C = dyn_cast<Constant>(V))
854         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
855 
856     return CI && APInt::isSameValue(CI->getValue(), Val);
857   }
858 };
859 
860 /// Match a specific integer value or vector with all elements equal to
861 /// the value.
862 inline specific_intval<false> m_SpecificInt(APInt V) {
863   return specific_intval<false>(std::move(V));
864 }
865 
866 inline specific_intval<false> m_SpecificInt(uint64_t V) {
867   return m_SpecificInt(APInt(64, V));
868 }
869 
870 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
871   return specific_intval<true>(std::move(V));
872 }
873 
874 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
875   return m_SpecificIntAllowUndef(APInt(64, V));
876 }
877 
878 /// Match a ConstantInt and bind to its value.  This does not match
879 /// ConstantInts wider than 64-bits.
880 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
881 
882 /// Match a specified basic block value.
883 struct specific_bbval {
884   BasicBlock *Val;
885 
886   specific_bbval(BasicBlock *Val) : Val(Val) {}
887 
888   template <typename ITy> bool match(ITy *V) {
889     const auto *BB = dyn_cast<BasicBlock>(V);
890     return BB && BB == Val;
891   }
892 };
893 
894 /// Match a specific basic block value.
895 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
896   return specific_bbval(BB);
897 }
898 
899 /// A commutative-friendly version of m_Specific().
900 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
901   return BB;
902 }
903 inline deferredval_ty<const BasicBlock>
904 m_Deferred(const BasicBlock *const &BB) {
905   return BB;
906 }
907 
908 //===----------------------------------------------------------------------===//
909 // Matcher for any binary operator.
910 //
911 template <typename LHS_t, typename RHS_t, bool Commutable = false>
912 struct AnyBinaryOp_match {
913   LHS_t L;
914   RHS_t R;
915 
916   // The evaluation order is always stable, regardless of Commutability.
917   // The LHS is always matched first.
918   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
919 
920   template <typename OpTy> bool match(OpTy *V) {
921     if (auto *I = dyn_cast<BinaryOperator>(V))
922       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
923              (Commutable && L.match(I->getOperand(1)) &&
924               R.match(I->getOperand(0)));
925     return false;
926   }
927 };
928 
929 template <typename LHS, typename RHS>
930 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
931   return AnyBinaryOp_match<LHS, RHS>(L, R);
932 }
933 
934 //===----------------------------------------------------------------------===//
935 // Matcher for any unary operator.
936 // TODO fuse unary, binary matcher into n-ary matcher
937 //
938 template <typename OP_t> struct AnyUnaryOp_match {
939   OP_t X;
940 
941   AnyUnaryOp_match(const OP_t &X) : X(X) {}
942 
943   template <typename OpTy> bool match(OpTy *V) {
944     if (auto *I = dyn_cast<UnaryOperator>(V))
945       return X.match(I->getOperand(0));
946     return false;
947   }
948 };
949 
950 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
951   return AnyUnaryOp_match<OP_t>(X);
952 }
953 
954 //===----------------------------------------------------------------------===//
955 // Matchers for specific binary operators.
956 //
957 
958 template <typename LHS_t, typename RHS_t, unsigned Opcode,
959           bool Commutable = false>
960 struct BinaryOp_match {
961   LHS_t L;
962   RHS_t R;
963 
964   // The evaluation order is always stable, regardless of Commutability.
965   // The LHS is always matched first.
966   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
967 
968   template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
969     if (V->getValueID() == Value::InstructionVal + Opc) {
970       auto *I = cast<BinaryOperator>(V);
971       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
972              (Commutable && L.match(I->getOperand(1)) &&
973               R.match(I->getOperand(0)));
974     }
975     return false;
976   }
977 
978   template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
979 };
980 
981 template <typename LHS, typename RHS>
982 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
983                                                         const RHS &R) {
984   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
985 }
986 
987 template <typename LHS, typename RHS>
988 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
989                                                           const RHS &R) {
990   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
991 }
992 
993 template <typename LHS, typename RHS>
994 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
995                                                         const RHS &R) {
996   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
997 }
998 
999 template <typename LHS, typename RHS>
1000 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1001                                                           const RHS &R) {
1002   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1003 }
1004 
1005 template <typename Op_t> struct FNeg_match {
1006   Op_t X;
1007 
1008   FNeg_match(const Op_t &Op) : X(Op) {}
1009   template <typename OpTy> bool match(OpTy *V) {
1010     auto *FPMO = dyn_cast<FPMathOperator>(V);
1011     if (!FPMO)
1012       return false;
1013 
1014     if (FPMO->getOpcode() == Instruction::FNeg)
1015       return X.match(FPMO->getOperand(0));
1016 
1017     if (FPMO->getOpcode() == Instruction::FSub) {
1018       if (FPMO->hasNoSignedZeros()) {
1019         // With 'nsz', any zero goes.
1020         if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1021           return false;
1022       } else {
1023         // Without 'nsz', we need fsub -0.0, X exactly.
1024         if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1025           return false;
1026       }
1027 
1028       return X.match(FPMO->getOperand(1));
1029     }
1030 
1031     return false;
1032   }
1033 };
1034 
1035 /// Match 'fneg X' as 'fsub -0.0, X'.
1036 template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
1037   return FNeg_match<OpTy>(X);
1038 }
1039 
1040 /// Match 'fneg X' as 'fsub +-0.0, X'.
1041 template <typename RHS>
1042 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1043 m_FNegNSZ(const RHS &X) {
1044   return m_FSub(m_AnyZeroFP(), X);
1045 }
1046 
1047 template <typename LHS, typename RHS>
1048 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1049                                                         const RHS &R) {
1050   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1051 }
1052 
1053 template <typename LHS, typename RHS>
1054 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1055                                                           const RHS &R) {
1056   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1057 }
1058 
1059 template <typename LHS, typename RHS>
1060 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1061                                                           const RHS &R) {
1062   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1063 }
1064 
1065 template <typename LHS, typename RHS>
1066 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1067                                                           const RHS &R) {
1068   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1069 }
1070 
1071 template <typename LHS, typename RHS>
1072 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1073                                                           const RHS &R) {
1074   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1075 }
1076 
1077 template <typename LHS, typename RHS>
1078 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1079                                                           const RHS &R) {
1080   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1081 }
1082 
1083 template <typename LHS, typename RHS>
1084 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1085                                                           const RHS &R) {
1086   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1087 }
1088 
1089 template <typename LHS, typename RHS>
1090 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1091                                                           const RHS &R) {
1092   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1093 }
1094 
1095 template <typename LHS, typename RHS>
1096 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1097                                                         const RHS &R) {
1098   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1099 }
1100 
1101 template <typename LHS, typename RHS>
1102 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1103                                                       const RHS &R) {
1104   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1105 }
1106 
1107 template <typename LHS, typename RHS>
1108 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1109                                                         const RHS &R) {
1110   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1111 }
1112 
1113 template <typename LHS, typename RHS>
1114 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1115                                                         const RHS &R) {
1116   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1117 }
1118 
1119 template <typename LHS, typename RHS>
1120 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1121                                                           const RHS &R) {
1122   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1123 }
1124 
1125 template <typename LHS, typename RHS>
1126 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1127                                                           const RHS &R) {
1128   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1129 }
1130 
1131 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1132           unsigned WrapFlags = 0>
1133 struct OverflowingBinaryOp_match {
1134   LHS_t L;
1135   RHS_t R;
1136 
1137   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1138       : L(LHS), R(RHS) {}
1139 
1140   template <typename OpTy> bool match(OpTy *V) {
1141     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1142       if (Op->getOpcode() != Opcode)
1143         return false;
1144       if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1145           !Op->hasNoUnsignedWrap())
1146         return false;
1147       if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1148           !Op->hasNoSignedWrap())
1149         return false;
1150       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1151     }
1152     return false;
1153   }
1154 };
1155 
1156 template <typename LHS, typename RHS>
1157 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1158                                  OverflowingBinaryOperator::NoSignedWrap>
1159 m_NSWAdd(const LHS &L, const RHS &R) {
1160   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1161                                    OverflowingBinaryOperator::NoSignedWrap>(L,
1162                                                                             R);
1163 }
1164 template <typename LHS, typename RHS>
1165 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1166                                  OverflowingBinaryOperator::NoSignedWrap>
1167 m_NSWSub(const LHS &L, const RHS &R) {
1168   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1169                                    OverflowingBinaryOperator::NoSignedWrap>(L,
1170                                                                             R);
1171 }
1172 template <typename LHS, typename RHS>
1173 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1174                                  OverflowingBinaryOperator::NoSignedWrap>
1175 m_NSWMul(const LHS &L, const RHS &R) {
1176   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1177                                    OverflowingBinaryOperator::NoSignedWrap>(L,
1178                                                                             R);
1179 }
1180 template <typename LHS, typename RHS>
1181 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1182                                  OverflowingBinaryOperator::NoSignedWrap>
1183 m_NSWShl(const LHS &L, const RHS &R) {
1184   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1185                                    OverflowingBinaryOperator::NoSignedWrap>(L,
1186                                                                             R);
1187 }
1188 
1189 template <typename LHS, typename RHS>
1190 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1191                                  OverflowingBinaryOperator::NoUnsignedWrap>
1192 m_NUWAdd(const LHS &L, const RHS &R) {
1193   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1194                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1195       L, R);
1196 }
1197 template <typename LHS, typename RHS>
1198 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1199                                  OverflowingBinaryOperator::NoUnsignedWrap>
1200 m_NUWSub(const LHS &L, const RHS &R) {
1201   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1202                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1203       L, R);
1204 }
1205 template <typename LHS, typename RHS>
1206 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1207                                  OverflowingBinaryOperator::NoUnsignedWrap>
1208 m_NUWMul(const LHS &L, const RHS &R) {
1209   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1210                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1211       L, R);
1212 }
1213 template <typename LHS, typename RHS>
1214 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1215                                  OverflowingBinaryOperator::NoUnsignedWrap>
1216 m_NUWShl(const LHS &L, const RHS &R) {
1217   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1218                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1219       L, R);
1220 }
1221 
1222 template <typename LHS_t, typename RHS_t, bool Commutable = false>
1223 struct SpecificBinaryOp_match
1224     : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1225   unsigned Opcode;
1226 
1227   SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1228       : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1229 
1230   template <typename OpTy> bool match(OpTy *V) {
1231     return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1232   }
1233 };
1234 
1235 /// Matches a specific opcode.
1236 template <typename LHS, typename RHS>
1237 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1238                                                 const RHS &R) {
1239   return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1240 }
1241 
1242 template <typename LHS, typename RHS, bool Commutable = false>
1243 struct DisjointOr_match {
1244   LHS L;
1245   RHS R;
1246 
1247   DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {}
1248 
1249   template <typename OpTy> bool match(OpTy *V) {
1250     if (auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1251       assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint");
1252       if (!PDI->isDisjoint())
1253         return false;
1254       return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) ||
1255              (Commutable && L.match(PDI->getOperand(1)) &&
1256               R.match(PDI->getOperand(0)));
1257     }
1258     return false;
1259   }
1260 };
1261 
1262 template <typename LHS, typename RHS>
1263 inline DisjointOr_match<LHS, RHS> m_DisjointOr(const LHS &L, const RHS &R) {
1264   return DisjointOr_match<LHS, RHS>(L, R);
1265 }
1266 
1267 template <typename LHS, typename RHS>
1268 inline DisjointOr_match<LHS, RHS, true> m_c_DisjointOr(const LHS &L,
1269                                                        const RHS &R) {
1270   return DisjointOr_match<LHS, RHS, true>(L, R);
1271 }
1272 
1273 /// Match either "and" or "or disjoint".
1274 template <typename LHS, typename RHS>
1275 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Add>,
1276                         DisjointOr_match<LHS, RHS>>
1277 m_AddLike(const LHS &L, const RHS &R) {
1278   return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R));
1279 }
1280 
1281 //===----------------------------------------------------------------------===//
1282 // Class that matches a group of binary opcodes.
1283 //
1284 template <typename LHS_t, typename RHS_t, typename Predicate>
1285 struct BinOpPred_match : Predicate {
1286   LHS_t L;
1287   RHS_t R;
1288 
1289   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1290 
1291   template <typename OpTy> bool match(OpTy *V) {
1292     if (auto *I = dyn_cast<Instruction>(V))
1293       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1294              R.match(I->getOperand(1));
1295     return false;
1296   }
1297 };
1298 
1299 struct is_shift_op {
1300   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1301 };
1302 
1303 struct is_right_shift_op {
1304   bool isOpType(unsigned Opcode) {
1305     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1306   }
1307 };
1308 
1309 struct is_logical_shift_op {
1310   bool isOpType(unsigned Opcode) {
1311     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1312   }
1313 };
1314 
1315 struct is_bitwiselogic_op {
1316   bool isOpType(unsigned Opcode) {
1317     return Instruction::isBitwiseLogicOp(Opcode);
1318   }
1319 };
1320 
1321 struct is_idiv_op {
1322   bool isOpType(unsigned Opcode) {
1323     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1324   }
1325 };
1326 
1327 struct is_irem_op {
1328   bool isOpType(unsigned Opcode) {
1329     return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1330   }
1331 };
1332 
1333 /// Matches shift operations.
1334 template <typename LHS, typename RHS>
1335 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1336                                                       const RHS &R) {
1337   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1338 }
1339 
1340 /// Matches logical shift operations.
1341 template <typename LHS, typename RHS>
1342 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1343                                                           const RHS &R) {
1344   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1345 }
1346 
1347 /// Matches logical shift operations.
1348 template <typename LHS, typename RHS>
1349 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1350 m_LogicalShift(const LHS &L, const RHS &R) {
1351   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1352 }
1353 
1354 /// Matches bitwise logic operations.
1355 template <typename LHS, typename RHS>
1356 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1357 m_BitwiseLogic(const LHS &L, const RHS &R) {
1358   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1359 }
1360 
1361 /// Matches integer division operations.
1362 template <typename LHS, typename RHS>
1363 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1364                                                     const RHS &R) {
1365   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1366 }
1367 
1368 /// Matches integer remainder operations.
1369 template <typename LHS, typename RHS>
1370 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1371                                                     const RHS &R) {
1372   return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1373 }
1374 
1375 //===----------------------------------------------------------------------===//
1376 // Class that matches exact binary ops.
1377 //
1378 template <typename SubPattern_t> struct Exact_match {
1379   SubPattern_t SubPattern;
1380 
1381   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1382 
1383   template <typename OpTy> bool match(OpTy *V) {
1384     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1385       return PEO->isExact() && SubPattern.match(V);
1386     return false;
1387   }
1388 };
1389 
1390 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1391   return SubPattern;
1392 }
1393 
1394 //===----------------------------------------------------------------------===//
1395 // Matchers for CmpInst classes
1396 //
1397 
1398 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1399           bool Commutable = false>
1400 struct CmpClass_match {
1401   PredicateTy &Predicate;
1402   LHS_t L;
1403   RHS_t R;
1404 
1405   // The evaluation order is always stable, regardless of Commutability.
1406   // The LHS is always matched first.
1407   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1408       : Predicate(Pred), L(LHS), R(RHS) {}
1409 
1410   template <typename OpTy> bool match(OpTy *V) {
1411     if (auto *I = dyn_cast<Class>(V)) {
1412       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1413         Predicate = I->getPredicate();
1414         return true;
1415       } else if (Commutable && L.match(I->getOperand(1)) &&
1416                  R.match(I->getOperand(0))) {
1417         Predicate = I->getSwappedPredicate();
1418         return true;
1419       }
1420     }
1421     return false;
1422   }
1423 };
1424 
1425 template <typename LHS, typename RHS>
1426 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1427 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1428   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1429 }
1430 
1431 template <typename LHS, typename RHS>
1432 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1433 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1434   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1435 }
1436 
1437 template <typename LHS, typename RHS>
1438 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1439 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1440   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1441 }
1442 
1443 //===----------------------------------------------------------------------===//
1444 // Matchers for instructions with a given opcode and number of operands.
1445 //
1446 
1447 /// Matches instructions with Opcode and three operands.
1448 template <typename T0, unsigned Opcode> struct OneOps_match {
1449   T0 Op1;
1450 
1451   OneOps_match(const T0 &Op1) : Op1(Op1) {}
1452 
1453   template <typename OpTy> bool match(OpTy *V) {
1454     if (V->getValueID() == Value::InstructionVal + Opcode) {
1455       auto *I = cast<Instruction>(V);
1456       return Op1.match(I->getOperand(0));
1457     }
1458     return false;
1459   }
1460 };
1461 
1462 /// Matches instructions with Opcode and three operands.
1463 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1464   T0 Op1;
1465   T1 Op2;
1466 
1467   TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1468 
1469   template <typename OpTy> bool match(OpTy *V) {
1470     if (V->getValueID() == Value::InstructionVal + Opcode) {
1471       auto *I = cast<Instruction>(V);
1472       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1473     }
1474     return false;
1475   }
1476 };
1477 
1478 /// Matches instructions with Opcode and three operands.
1479 template <typename T0, typename T1, typename T2, unsigned Opcode>
1480 struct ThreeOps_match {
1481   T0 Op1;
1482   T1 Op2;
1483   T2 Op3;
1484 
1485   ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1486       : Op1(Op1), Op2(Op2), Op3(Op3) {}
1487 
1488   template <typename OpTy> bool match(OpTy *V) {
1489     if (V->getValueID() == Value::InstructionVal + Opcode) {
1490       auto *I = cast<Instruction>(V);
1491       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1492              Op3.match(I->getOperand(2));
1493     }
1494     return false;
1495   }
1496 };
1497 
1498 /// Matches SelectInst.
1499 template <typename Cond, typename LHS, typename RHS>
1500 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1501 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1502   return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1503 }
1504 
1505 /// This matches a select of two constants, e.g.:
1506 /// m_SelectCst<-1, 0>(m_Value(V))
1507 template <int64_t L, int64_t R, typename Cond>
1508 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1509                       Instruction::Select>
1510 m_SelectCst(const Cond &C) {
1511   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1512 }
1513 
1514 /// Matches FreezeInst.
1515 template <typename OpTy>
1516 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1517   return OneOps_match<OpTy, Instruction::Freeze>(Op);
1518 }
1519 
1520 /// Matches InsertElementInst.
1521 template <typename Val_t, typename Elt_t, typename Idx_t>
1522 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1523 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1524   return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1525       Val, Elt, Idx);
1526 }
1527 
1528 /// Matches ExtractElementInst.
1529 template <typename Val_t, typename Idx_t>
1530 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1531 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1532   return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1533 }
1534 
1535 /// Matches shuffle.
1536 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1537   T0 Op1;
1538   T1 Op2;
1539   T2 Mask;
1540 
1541   Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1542       : Op1(Op1), Op2(Op2), Mask(Mask) {}
1543 
1544   template <typename OpTy> bool match(OpTy *V) {
1545     if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1546       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1547              Mask.match(I->getShuffleMask());
1548     }
1549     return false;
1550   }
1551 };
1552 
1553 struct m_Mask {
1554   ArrayRef<int> &MaskRef;
1555   m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1556   bool match(ArrayRef<int> Mask) {
1557     MaskRef = Mask;
1558     return true;
1559   }
1560 };
1561 
1562 struct m_ZeroMask {
1563   bool match(ArrayRef<int> Mask) {
1564     return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1565   }
1566 };
1567 
1568 struct m_SpecificMask {
1569   ArrayRef<int> &MaskRef;
1570   m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1571   bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1572 };
1573 
1574 struct m_SplatOrUndefMask {
1575   int &SplatIndex;
1576   m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1577   bool match(ArrayRef<int> Mask) {
1578     const auto *First = find_if(Mask, [](int Elem) { return Elem != -1; });
1579     if (First == Mask.end())
1580       return false;
1581     SplatIndex = *First;
1582     return all_of(Mask,
1583                   [First](int Elem) { return Elem == *First || Elem == -1; });
1584   }
1585 };
1586 
1587 /// Matches ShuffleVectorInst independently of mask value.
1588 template <typename V1_t, typename V2_t>
1589 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1590 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1591   return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1592 }
1593 
1594 template <typename V1_t, typename V2_t, typename Mask_t>
1595 inline Shuffle_match<V1_t, V2_t, Mask_t>
1596 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1597   return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1598 }
1599 
1600 /// Matches LoadInst.
1601 template <typename OpTy>
1602 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1603   return OneOps_match<OpTy, Instruction::Load>(Op);
1604 }
1605 
1606 /// Matches StoreInst.
1607 template <typename ValueOpTy, typename PointerOpTy>
1608 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1609 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1610   return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1611                                                                   PointerOp);
1612 }
1613 
1614 //===----------------------------------------------------------------------===//
1615 // Matchers for CastInst classes
1616 //
1617 
1618 template <typename Op_t, unsigned Opcode> struct CastOperator_match {
1619   Op_t Op;
1620 
1621   CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {}
1622 
1623   template <typename OpTy> bool match(OpTy *V) {
1624     if (auto *O = dyn_cast<Operator>(V))
1625       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1626     return false;
1627   }
1628 };
1629 
1630 template <typename Op_t, unsigned Opcode> struct CastInst_match {
1631   Op_t Op;
1632 
1633   CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {}
1634 
1635   template <typename OpTy> bool match(OpTy *V) {
1636     if (auto *I = dyn_cast<Instruction>(V))
1637       return I->getOpcode() == Opcode && Op.match(I->getOperand(0));
1638     return false;
1639   }
1640 };
1641 
1642 template <typename Op_t> struct PtrToIntSameSize_match {
1643   const DataLayout &DL;
1644   Op_t Op;
1645 
1646   PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch)
1647       : DL(DL), Op(OpMatch) {}
1648 
1649   template <typename OpTy> bool match(OpTy *V) {
1650     if (auto *O = dyn_cast<Operator>(V))
1651       return O->getOpcode() == Instruction::PtrToInt &&
1652              DL.getTypeSizeInBits(O->getType()) ==
1653                  DL.getTypeSizeInBits(O->getOperand(0)->getType()) &&
1654              Op.match(O->getOperand(0));
1655     return false;
1656   }
1657 };
1658 
1659 /// Matches BitCast.
1660 template <typename OpTy>
1661 inline CastOperator_match<OpTy, Instruction::BitCast>
1662 m_BitCast(const OpTy &Op) {
1663   return CastOperator_match<OpTy, Instruction::BitCast>(Op);
1664 }
1665 
1666 /// Matches PtrToInt.
1667 template <typename OpTy>
1668 inline CastOperator_match<OpTy, Instruction::PtrToInt>
1669 m_PtrToInt(const OpTy &Op) {
1670   return CastOperator_match<OpTy, Instruction::PtrToInt>(Op);
1671 }
1672 
1673 template <typename OpTy>
1674 inline PtrToIntSameSize_match<OpTy> m_PtrToIntSameSize(const DataLayout &DL,
1675                                                        const OpTy &Op) {
1676   return PtrToIntSameSize_match<OpTy>(DL, Op);
1677 }
1678 
1679 /// Matches IntToPtr.
1680 template <typename OpTy>
1681 inline CastOperator_match<OpTy, Instruction::IntToPtr>
1682 m_IntToPtr(const OpTy &Op) {
1683   return CastOperator_match<OpTy, Instruction::IntToPtr>(Op);
1684 }
1685 
1686 /// Matches Trunc.
1687 template <typename OpTy>
1688 inline CastOperator_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1689   return CastOperator_match<OpTy, Instruction::Trunc>(Op);
1690 }
1691 
1692 template <typename OpTy>
1693 inline match_combine_or<CastOperator_match<OpTy, Instruction::Trunc>, OpTy>
1694 m_TruncOrSelf(const OpTy &Op) {
1695   return m_CombineOr(m_Trunc(Op), Op);
1696 }
1697 
1698 /// Matches SExt.
1699 template <typename OpTy>
1700 inline CastInst_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1701   return CastInst_match<OpTy, Instruction::SExt>(Op);
1702 }
1703 
1704 /// Matches ZExt.
1705 template <typename OpTy>
1706 inline CastInst_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1707   return CastInst_match<OpTy, Instruction::ZExt>(Op);
1708 }
1709 
1710 template <typename OpTy>
1711 inline match_combine_or<CastInst_match<OpTy, Instruction::ZExt>, OpTy>
1712 m_ZExtOrSelf(const OpTy &Op) {
1713   return m_CombineOr(m_ZExt(Op), Op);
1714 }
1715 
1716 template <typename OpTy>
1717 inline match_combine_or<CastInst_match<OpTy, Instruction::SExt>, OpTy>
1718 m_SExtOrSelf(const OpTy &Op) {
1719   return m_CombineOr(m_SExt(Op), Op);
1720 }
1721 
1722 template <typename OpTy>
1723 inline match_combine_or<CastInst_match<OpTy, Instruction::ZExt>,
1724                         CastInst_match<OpTy, Instruction::SExt>>
1725 m_ZExtOrSExt(const OpTy &Op) {
1726   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1727 }
1728 
1729 template <typename OpTy>
1730 inline match_combine_or<
1731     match_combine_or<CastInst_match<OpTy, Instruction::ZExt>,
1732                      CastInst_match<OpTy, Instruction::SExt>>,
1733     OpTy>
1734 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1735   return m_CombineOr(m_ZExtOrSExt(Op), Op);
1736 }
1737 
1738 template <typename OpTy>
1739 inline CastInst_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1740   return CastInst_match<OpTy, Instruction::UIToFP>(Op);
1741 }
1742 
1743 template <typename OpTy>
1744 inline CastInst_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1745   return CastInst_match<OpTy, Instruction::SIToFP>(Op);
1746 }
1747 
1748 template <typename OpTy>
1749 inline CastInst_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1750   return CastInst_match<OpTy, Instruction::FPToUI>(Op);
1751 }
1752 
1753 template <typename OpTy>
1754 inline CastInst_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1755   return CastInst_match<OpTy, Instruction::FPToSI>(Op);
1756 }
1757 
1758 template <typename OpTy>
1759 inline CastInst_match<OpTy, Instruction::FPTrunc>
1760 m_FPTrunc(const OpTy &Op) {
1761   return CastInst_match<OpTy, Instruction::FPTrunc>(Op);
1762 }
1763 
1764 template <typename OpTy>
1765 inline CastInst_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1766   return CastInst_match<OpTy, Instruction::FPExt>(Op);
1767 }
1768 
1769 //===----------------------------------------------------------------------===//
1770 // Matchers for control flow.
1771 //
1772 
1773 struct br_match {
1774   BasicBlock *&Succ;
1775 
1776   br_match(BasicBlock *&Succ) : Succ(Succ) {}
1777 
1778   template <typename OpTy> bool match(OpTy *V) {
1779     if (auto *BI = dyn_cast<BranchInst>(V))
1780       if (BI->isUnconditional()) {
1781         Succ = BI->getSuccessor(0);
1782         return true;
1783       }
1784     return false;
1785   }
1786 };
1787 
1788 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1789 
1790 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1791 struct brc_match {
1792   Cond_t Cond;
1793   TrueBlock_t T;
1794   FalseBlock_t F;
1795 
1796   brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1797       : Cond(C), T(t), F(f) {}
1798 
1799   template <typename OpTy> bool match(OpTy *V) {
1800     if (auto *BI = dyn_cast<BranchInst>(V))
1801       if (BI->isConditional() && Cond.match(BI->getCondition()))
1802         return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1803     return false;
1804   }
1805 };
1806 
1807 template <typename Cond_t>
1808 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1809 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1810   return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1811       C, m_BasicBlock(T), m_BasicBlock(F));
1812 }
1813 
1814 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1815 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1816 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1817   return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1818 }
1819 
1820 //===----------------------------------------------------------------------===//
1821 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1822 //
1823 
1824 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1825           bool Commutable = false>
1826 struct MaxMin_match {
1827   using PredType = Pred_t;
1828   LHS_t L;
1829   RHS_t R;
1830 
1831   // The evaluation order is always stable, regardless of Commutability.
1832   // The LHS is always matched first.
1833   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1834 
1835   template <typename OpTy> bool match(OpTy *V) {
1836     if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1837       Intrinsic::ID IID = II->getIntrinsicID();
1838       if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1839           (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1840           (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1841           (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1842         Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1843         return (L.match(LHS) && R.match(RHS)) ||
1844                (Commutable && L.match(RHS) && R.match(LHS));
1845       }
1846     }
1847     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1848     auto *SI = dyn_cast<SelectInst>(V);
1849     if (!SI)
1850       return false;
1851     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1852     if (!Cmp)
1853       return false;
1854     // At this point we have a select conditioned on a comparison.  Check that
1855     // it is the values returned by the select that are being compared.
1856     auto *TrueVal = SI->getTrueValue();
1857     auto *FalseVal = SI->getFalseValue();
1858     auto *LHS = Cmp->getOperand(0);
1859     auto *RHS = Cmp->getOperand(1);
1860     if ((TrueVal != LHS || FalseVal != RHS) &&
1861         (TrueVal != RHS || FalseVal != LHS))
1862       return false;
1863     typename CmpInst_t::Predicate Pred =
1864         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1865     // Does "(x pred y) ? x : y" represent the desired max/min operation?
1866     if (!Pred_t::match(Pred))
1867       return false;
1868     // It does!  Bind the operands.
1869     return (L.match(LHS) && R.match(RHS)) ||
1870            (Commutable && L.match(RHS) && R.match(LHS));
1871   }
1872 };
1873 
1874 /// Helper class for identifying signed max predicates.
1875 struct smax_pred_ty {
1876   static bool match(ICmpInst::Predicate Pred) {
1877     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1878   }
1879 };
1880 
1881 /// Helper class for identifying signed min predicates.
1882 struct smin_pred_ty {
1883   static bool match(ICmpInst::Predicate Pred) {
1884     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1885   }
1886 };
1887 
1888 /// Helper class for identifying unsigned max predicates.
1889 struct umax_pred_ty {
1890   static bool match(ICmpInst::Predicate Pred) {
1891     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1892   }
1893 };
1894 
1895 /// Helper class for identifying unsigned min predicates.
1896 struct umin_pred_ty {
1897   static bool match(ICmpInst::Predicate Pred) {
1898     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1899   }
1900 };
1901 
1902 /// Helper class for identifying ordered max predicates.
1903 struct ofmax_pred_ty {
1904   static bool match(FCmpInst::Predicate Pred) {
1905     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1906   }
1907 };
1908 
1909 /// Helper class for identifying ordered min predicates.
1910 struct ofmin_pred_ty {
1911   static bool match(FCmpInst::Predicate Pred) {
1912     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1913   }
1914 };
1915 
1916 /// Helper class for identifying unordered max predicates.
1917 struct ufmax_pred_ty {
1918   static bool match(FCmpInst::Predicate Pred) {
1919     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1920   }
1921 };
1922 
1923 /// Helper class for identifying unordered min predicates.
1924 struct ufmin_pred_ty {
1925   static bool match(FCmpInst::Predicate Pred) {
1926     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1927   }
1928 };
1929 
1930 template <typename LHS, typename RHS>
1931 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1932                                                              const RHS &R) {
1933   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1934 }
1935 
1936 template <typename LHS, typename RHS>
1937 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1938                                                              const RHS &R) {
1939   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1940 }
1941 
1942 template <typename LHS, typename RHS>
1943 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1944                                                              const RHS &R) {
1945   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1946 }
1947 
1948 template <typename LHS, typename RHS>
1949 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1950                                                              const RHS &R) {
1951   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1952 }
1953 
1954 template <typename LHS, typename RHS>
1955 inline match_combine_or<
1956     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1957                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1958     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1959                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1960 m_MaxOrMin(const LHS &L, const RHS &R) {
1961   return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1962                      m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1963 }
1964 
1965 /// Match an 'ordered' floating point maximum function.
1966 /// Floating point has one special value 'NaN'. Therefore, there is no total
1967 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1968 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1969 /// semantics. In the presence of 'NaN' we have to preserve the original
1970 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1971 ///
1972 ///                         max(L, R)  iff L and R are not NaN
1973 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1974 template <typename LHS, typename RHS>
1975 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1976                                                                  const RHS &R) {
1977   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1978 }
1979 
1980 /// Match an 'ordered' floating point minimum function.
1981 /// Floating point has one special value 'NaN'. Therefore, there is no total
1982 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1983 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1984 /// semantics. In the presence of 'NaN' we have to preserve the original
1985 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1986 ///
1987 ///                         min(L, R)  iff L and R are not NaN
1988 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1989 template <typename LHS, typename RHS>
1990 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1991                                                                  const RHS &R) {
1992   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1993 }
1994 
1995 /// Match an 'unordered' floating point maximum function.
1996 /// Floating point has one special value 'NaN'. Therefore, there is no total
1997 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1998 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1999 /// semantics. In the presence of 'NaN' we have to preserve the original
2000 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
2001 ///
2002 ///                         max(L, R)  iff L and R are not NaN
2003 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
2004 template <typename LHS, typename RHS>
2005 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
2006 m_UnordFMax(const LHS &L, const RHS &R) {
2007   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
2008 }
2009 
2010 /// Match an 'unordered' floating point minimum function.
2011 /// Floating point has one special value 'NaN'. Therefore, there is no total
2012 /// order. However, if we can ignore the 'NaN' value (for example, because of a
2013 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2014 /// semantics. In the presence of 'NaN' we have to preserve the original
2015 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
2016 ///
2017 ///                          min(L, R)  iff L and R are not NaN
2018 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
2019 template <typename LHS, typename RHS>
2020 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
2021 m_UnordFMin(const LHS &L, const RHS &R) {
2022   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
2023 }
2024 
2025 //===----------------------------------------------------------------------===//
2026 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
2027 // Note that S might be matched to other instructions than AddInst.
2028 //
2029 
2030 template <typename LHS_t, typename RHS_t, typename Sum_t>
2031 struct UAddWithOverflow_match {
2032   LHS_t L;
2033   RHS_t R;
2034   Sum_t S;
2035 
2036   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
2037       : L(L), R(R), S(S) {}
2038 
2039   template <typename OpTy> bool match(OpTy *V) {
2040     Value *ICmpLHS, *ICmpRHS;
2041     ICmpInst::Predicate Pred;
2042     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
2043       return false;
2044 
2045     Value *AddLHS, *AddRHS;
2046     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
2047 
2048     // (a + b) u< a, (a + b) u< b
2049     if (Pred == ICmpInst::ICMP_ULT)
2050       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
2051         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2052 
2053     // a >u (a + b), b >u (a + b)
2054     if (Pred == ICmpInst::ICMP_UGT)
2055       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
2056         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2057 
2058     Value *Op1;
2059     auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
2060     // (a ^ -1) <u b
2061     if (Pred == ICmpInst::ICMP_ULT) {
2062       if (XorExpr.match(ICmpLHS))
2063         return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
2064     }
2065     //  b > u (a ^ -1)
2066     if (Pred == ICmpInst::ICMP_UGT) {
2067       if (XorExpr.match(ICmpRHS))
2068         return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2069     }
2070 
2071     // Match special-case for increment-by-1.
2072     if (Pred == ICmpInst::ICMP_EQ) {
2073       // (a + 1) == 0
2074       // (1 + a) == 0
2075       if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2076           (m_One().match(AddLHS) || m_One().match(AddRHS)))
2077         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2078       // 0 == (a + 1)
2079       // 0 == (1 + a)
2080       if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2081           (m_One().match(AddLHS) || m_One().match(AddRHS)))
2082         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2083     }
2084 
2085     return false;
2086   }
2087 };
2088 
2089 /// Match an icmp instruction checking for unsigned overflow on addition.
2090 ///
2091 /// S is matched to the addition whose result is being checked for overflow, and
2092 /// L and R are matched to the LHS and RHS of S.
2093 template <typename LHS_t, typename RHS_t, typename Sum_t>
2094 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
2095 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2096   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2097 }
2098 
2099 template <typename Opnd_t> struct Argument_match {
2100   unsigned OpI;
2101   Opnd_t Val;
2102 
2103   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2104 
2105   template <typename OpTy> bool match(OpTy *V) {
2106     // FIXME: Should likely be switched to use `CallBase`.
2107     if (const auto *CI = dyn_cast<CallInst>(V))
2108       return Val.match(CI->getArgOperand(OpI));
2109     return false;
2110   }
2111 };
2112 
2113 /// Match an argument.
2114 template <unsigned OpI, typename Opnd_t>
2115 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2116   return Argument_match<Opnd_t>(OpI, Op);
2117 }
2118 
2119 /// Intrinsic matchers.
2120 struct IntrinsicID_match {
2121   unsigned ID;
2122 
2123   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2124 
2125   template <typename OpTy> bool match(OpTy *V) {
2126     if (const auto *CI = dyn_cast<CallInst>(V))
2127       if (const auto *F = CI->getCalledFunction())
2128         return F->getIntrinsicID() == ID;
2129     return false;
2130   }
2131 };
2132 
2133 /// Intrinsic matches are combinations of ID matchers, and argument
2134 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
2135 /// them with lower arity matchers. Here's some convenient typedefs for up to
2136 /// several arguments, and more can be added as needed
2137 template <typename T0 = void, typename T1 = void, typename T2 = void,
2138           typename T3 = void, typename T4 = void, typename T5 = void,
2139           typename T6 = void, typename T7 = void, typename T8 = void,
2140           typename T9 = void, typename T10 = void>
2141 struct m_Intrinsic_Ty;
2142 template <typename T0> struct m_Intrinsic_Ty<T0> {
2143   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2144 };
2145 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2146   using Ty =
2147       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2148 };
2149 template <typename T0, typename T1, typename T2>
2150 struct m_Intrinsic_Ty<T0, T1, T2> {
2151   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2152                                Argument_match<T2>>;
2153 };
2154 template <typename T0, typename T1, typename T2, typename T3>
2155 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2156   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2157                                Argument_match<T3>>;
2158 };
2159 
2160 template <typename T0, typename T1, typename T2, typename T3, typename T4>
2161 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2162   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2163                                Argument_match<T4>>;
2164 };
2165 
2166 template <typename T0, typename T1, typename T2, typename T3, typename T4,
2167           typename T5>
2168 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2169   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2170                                Argument_match<T5>>;
2171 };
2172 
2173 /// Match intrinsic calls like this:
2174 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2175 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2176   return IntrinsicID_match(IntrID);
2177 }
2178 
2179 /// Matches MaskedLoad Intrinsic.
2180 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2181 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2182 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2183              const Opnd3 &Op3) {
2184   return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2185 }
2186 
2187 /// Matches MaskedGather Intrinsic.
2188 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2189 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2190 m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2191                const Opnd3 &Op3) {
2192   return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2193 }
2194 
2195 template <Intrinsic::ID IntrID, typename T0>
2196 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2197   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2198 }
2199 
2200 template <Intrinsic::ID IntrID, typename T0, typename T1>
2201 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2202                                                        const T1 &Op1) {
2203   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2204 }
2205 
2206 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2207 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2208 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2209   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2210 }
2211 
2212 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2213           typename T3>
2214 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2215 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2216   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2217 }
2218 
2219 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2220           typename T3, typename T4>
2221 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2222 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2223             const T4 &Op4) {
2224   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2225                       m_Argument<4>(Op4));
2226 }
2227 
2228 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2229           typename T3, typename T4, typename T5>
2230 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2231 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2232             const T4 &Op4, const T5 &Op5) {
2233   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2234                       m_Argument<5>(Op5));
2235 }
2236 
2237 // Helper intrinsic matching specializations.
2238 template <typename Opnd0>
2239 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2240   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2241 }
2242 
2243 template <typename Opnd0>
2244 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2245   return m_Intrinsic<Intrinsic::bswap>(Op0);
2246 }
2247 
2248 template <typename Opnd0>
2249 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2250   return m_Intrinsic<Intrinsic::fabs>(Op0);
2251 }
2252 
2253 template <typename Opnd0>
2254 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2255   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2256 }
2257 
2258 template <typename Opnd0, typename Opnd1>
2259 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2260                                                         const Opnd1 &Op1) {
2261   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2262 }
2263 
2264 template <typename Opnd0, typename Opnd1>
2265 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2266                                                         const Opnd1 &Op1) {
2267   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2268 }
2269 
2270 template <typename Opnd0, typename Opnd1, typename Opnd2>
2271 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2272 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2273   return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2274 }
2275 
2276 template <typename Opnd0, typename Opnd1, typename Opnd2>
2277 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2278 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2279   return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2280 }
2281 
2282 template <typename Opnd0>
2283 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
2284   return m_Intrinsic<Intrinsic::sqrt>(Op0);
2285 }
2286 
2287 template <typename Opnd0, typename Opnd1>
2288 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
2289                                                             const Opnd1 &Op1) {
2290   return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
2291 }
2292 
2293 template <typename Opnd0>
2294 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
2295   return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0);
2296 }
2297 
2298 //===----------------------------------------------------------------------===//
2299 // Matchers for two-operands operators with the operators in either order
2300 //
2301 
2302 /// Matches a BinaryOperator with LHS and RHS in either order.
2303 template <typename LHS, typename RHS>
2304 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2305   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2306 }
2307 
2308 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2309 /// Swaps the predicate if operands are commuted.
2310 template <typename LHS, typename RHS>
2311 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2312 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2313   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2314                                                                        R);
2315 }
2316 
2317 /// Matches a specific opcode with LHS and RHS in either order.
2318 template <typename LHS, typename RHS>
2319 inline SpecificBinaryOp_match<LHS, RHS, true>
2320 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2321   return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2322 }
2323 
2324 /// Matches a Add with LHS and RHS in either order.
2325 template <typename LHS, typename RHS>
2326 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2327                                                                 const RHS &R) {
2328   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2329 }
2330 
2331 /// Matches a Mul with LHS and RHS in either order.
2332 template <typename LHS, typename RHS>
2333 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2334                                                                 const RHS &R) {
2335   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2336 }
2337 
2338 /// Matches an And with LHS and RHS in either order.
2339 template <typename LHS, typename RHS>
2340 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2341                                                                 const RHS &R) {
2342   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2343 }
2344 
2345 /// Matches an Or with LHS and RHS in either order.
2346 template <typename LHS, typename RHS>
2347 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2348                                                               const RHS &R) {
2349   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2350 }
2351 
2352 /// Matches an Xor with LHS and RHS in either order.
2353 template <typename LHS, typename RHS>
2354 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2355                                                                 const RHS &R) {
2356   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2357 }
2358 
2359 /// Matches a 'Neg' as 'sub 0, V'.
2360 template <typename ValTy>
2361 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2362 m_Neg(const ValTy &V) {
2363   return m_Sub(m_ZeroInt(), V);
2364 }
2365 
2366 /// Matches a 'Neg' as 'sub nsw 0, V'.
2367 template <typename ValTy>
2368 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2369                                  Instruction::Sub,
2370                                  OverflowingBinaryOperator::NoSignedWrap>
2371 m_NSWNeg(const ValTy &V) {
2372   return m_NSWSub(m_ZeroInt(), V);
2373 }
2374 
2375 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2376 /// NOTE: we first match the 'Not' (by matching '-1'),
2377 /// and only then match the inner matcher!
2378 template <typename ValTy>
2379 inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
2380 m_Not(const ValTy &V) {
2381   return m_c_Xor(m_AllOnes(), V);
2382 }
2383 
2384 template <typename ValTy> struct NotForbidUndef_match {
2385   ValTy Val;
2386   NotForbidUndef_match(const ValTy &V) : Val(V) {}
2387 
2388   template <typename OpTy> bool match(OpTy *V) {
2389     // We do not use m_c_Xor because that could match an arbitrary APInt that is
2390     // not -1 as C and then fail to match the other operand if it is -1.
2391     // This code should still work even when both operands are constants.
2392     Value *X;
2393     const APInt *C;
2394     if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
2395       return Val.match(X);
2396     if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
2397       return Val.match(X);
2398     return false;
2399   }
2400 };
2401 
2402 /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
2403 /// constant value must be composed of only -1 scalar elements.
2404 template <typename ValTy>
2405 inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
2406   return NotForbidUndef_match<ValTy>(V);
2407 }
2408 
2409 /// Matches an SMin with LHS and RHS in either order.
2410 template <typename LHS, typename RHS>
2411 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2412 m_c_SMin(const LHS &L, const RHS &R) {
2413   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2414 }
2415 /// Matches an SMax with LHS and RHS in either order.
2416 template <typename LHS, typename RHS>
2417 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2418 m_c_SMax(const LHS &L, const RHS &R) {
2419   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2420 }
2421 /// Matches a UMin with LHS and RHS in either order.
2422 template <typename LHS, typename RHS>
2423 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2424 m_c_UMin(const LHS &L, const RHS &R) {
2425   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2426 }
2427 /// Matches a UMax with LHS and RHS in either order.
2428 template <typename LHS, typename RHS>
2429 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2430 m_c_UMax(const LHS &L, const RHS &R) {
2431   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2432 }
2433 
2434 template <typename LHS, typename RHS>
2435 inline match_combine_or<
2436     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2437                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2438     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2439                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2440 m_c_MaxOrMin(const LHS &L, const RHS &R) {
2441   return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2442                      m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2443 }
2444 
2445 template <Intrinsic::ID IntrID, typename T0, typename T1>
2446 inline match_combine_or<typename m_Intrinsic_Ty<T0, T1>::Ty,
2447                         typename m_Intrinsic_Ty<T1, T0>::Ty>
2448 m_c_Intrinsic(const T0 &Op0, const T1 &Op1) {
2449   return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1),
2450                      m_Intrinsic<IntrID>(Op1, Op0));
2451 }
2452 
2453 /// Matches FAdd with LHS and RHS in either order.
2454 template <typename LHS, typename RHS>
2455 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2456 m_c_FAdd(const LHS &L, const RHS &R) {
2457   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2458 }
2459 
2460 /// Matches FMul with LHS and RHS in either order.
2461 template <typename LHS, typename RHS>
2462 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2463 m_c_FMul(const LHS &L, const RHS &R) {
2464   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2465 }
2466 
2467 template <typename Opnd_t> struct Signum_match {
2468   Opnd_t Val;
2469   Signum_match(const Opnd_t &V) : Val(V) {}
2470 
2471   template <typename OpTy> bool match(OpTy *V) {
2472     unsigned TypeSize = V->getType()->getScalarSizeInBits();
2473     if (TypeSize == 0)
2474       return false;
2475 
2476     unsigned ShiftWidth = TypeSize - 1;
2477     Value *OpL = nullptr, *OpR = nullptr;
2478 
2479     // This is the representation of signum we match:
2480     //
2481     //  signum(x) == (x >> 63) | (-x >>u 63)
2482     //
2483     // An i1 value is its own signum, so it's correct to match
2484     //
2485     //  signum(x) == (x >> 0)  | (-x >>u 0)
2486     //
2487     // for i1 values.
2488 
2489     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2490     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2491     auto Signum = m_Or(LHS, RHS);
2492 
2493     return Signum.match(V) && OpL == OpR && Val.match(OpL);
2494   }
2495 };
2496 
2497 /// Matches a signum pattern.
2498 ///
2499 /// signum(x) =
2500 ///      x >  0  ->  1
2501 ///      x == 0  ->  0
2502 ///      x <  0  -> -1
2503 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2504   return Signum_match<Val_t>(V);
2505 }
2506 
2507 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2508   Opnd_t Val;
2509   ExtractValue_match(const Opnd_t &V) : Val(V) {}
2510 
2511   template <typename OpTy> bool match(OpTy *V) {
2512     if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2513       // If Ind is -1, don't inspect indices
2514       if (Ind != -1 &&
2515           !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2516         return false;
2517       return Val.match(I->getAggregateOperand());
2518     }
2519     return false;
2520   }
2521 };
2522 
2523 /// Match a single index ExtractValue instruction.
2524 /// For example m_ExtractValue<1>(...)
2525 template <int Ind, typename Val_t>
2526 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2527   return ExtractValue_match<Ind, Val_t>(V);
2528 }
2529 
2530 /// Match an ExtractValue instruction with any index.
2531 /// For example m_ExtractValue(...)
2532 template <typename Val_t>
2533 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2534   return ExtractValue_match<-1, Val_t>(V);
2535 }
2536 
2537 /// Matcher for a single index InsertValue instruction.
2538 template <int Ind, typename T0, typename T1> struct InsertValue_match {
2539   T0 Op0;
2540   T1 Op1;
2541 
2542   InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2543 
2544   template <typename OpTy> bool match(OpTy *V) {
2545     if (auto *I = dyn_cast<InsertValueInst>(V)) {
2546       return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2547              I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2548     }
2549     return false;
2550   }
2551 };
2552 
2553 /// Matches a single index InsertValue instruction.
2554 template <int Ind, typename Val_t, typename Elt_t>
2555 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2556                                                           const Elt_t &Elt) {
2557   return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2558 }
2559 
2560 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2561 /// the constant expression
2562 ///  `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2563 /// under the right conditions determined by DataLayout.
2564 struct VScaleVal_match {
2565   template <typename ITy> bool match(ITy *V) {
2566     if (m_Intrinsic<Intrinsic::vscale>().match(V))
2567       return true;
2568 
2569     Value *Ptr;
2570     if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2571       if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2572         auto *DerefTy =
2573             dyn_cast<ScalableVectorType>(GEP->getSourceElementType());
2574         if (GEP->getNumIndices() == 1 && DerefTy &&
2575             DerefTy->getElementType()->isIntegerTy(8) &&
2576             m_Zero().match(GEP->getPointerOperand()) &&
2577             m_SpecificInt(1).match(GEP->idx_begin()->get()))
2578           return true;
2579       }
2580     }
2581 
2582     return false;
2583   }
2584 };
2585 
2586 inline VScaleVal_match m_VScale() {
2587   return VScaleVal_match();
2588 }
2589 
2590 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2591 struct LogicalOp_match {
2592   LHS L;
2593   RHS R;
2594 
2595   LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2596 
2597   template <typename T> bool match(T *V) {
2598     auto *I = dyn_cast<Instruction>(V);
2599     if (!I || !I->getType()->isIntOrIntVectorTy(1))
2600       return false;
2601 
2602     if (I->getOpcode() == Opcode) {
2603       auto *Op0 = I->getOperand(0);
2604       auto *Op1 = I->getOperand(1);
2605       return (L.match(Op0) && R.match(Op1)) ||
2606              (Commutable && L.match(Op1) && R.match(Op0));
2607     }
2608 
2609     if (auto *Select = dyn_cast<SelectInst>(I)) {
2610       auto *Cond = Select->getCondition();
2611       auto *TVal = Select->getTrueValue();
2612       auto *FVal = Select->getFalseValue();
2613 
2614       // Don't match a scalar select of bool vectors.
2615       // Transforms expect a single type for operands if this matches.
2616       if (Cond->getType() != Select->getType())
2617         return false;
2618 
2619       if (Opcode == Instruction::And) {
2620         auto *C = dyn_cast<Constant>(FVal);
2621         if (C && C->isNullValue())
2622           return (L.match(Cond) && R.match(TVal)) ||
2623                  (Commutable && L.match(TVal) && R.match(Cond));
2624       } else {
2625         assert(Opcode == Instruction::Or);
2626         auto *C = dyn_cast<Constant>(TVal);
2627         if (C && C->isOneValue())
2628           return (L.match(Cond) && R.match(FVal)) ||
2629                  (Commutable && L.match(FVal) && R.match(Cond));
2630       }
2631     }
2632 
2633     return false;
2634   }
2635 };
2636 
2637 /// Matches L && R either in the form of L & R or L ? R : false.
2638 /// Note that the latter form is poison-blocking.
2639 template <typename LHS, typename RHS>
2640 inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
2641                                                                 const RHS &R) {
2642   return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2643 }
2644 
2645 /// Matches L && R where L and R are arbitrary values.
2646 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2647 
2648 /// Matches L && R with LHS and RHS in either order.
2649 template <typename LHS, typename RHS>
2650 inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2651 m_c_LogicalAnd(const LHS &L, const RHS &R) {
2652   return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2653 }
2654 
2655 /// Matches L || R either in the form of L | R or L ? true : R.
2656 /// Note that the latter form is poison-blocking.
2657 template <typename LHS, typename RHS>
2658 inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
2659                                                               const RHS &R) {
2660   return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2661 }
2662 
2663 /// Matches L || R where L and R are arbitrary values.
2664 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
2665 
2666 /// Matches L || R with LHS and RHS in either order.
2667 template <typename LHS, typename RHS>
2668 inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2669 m_c_LogicalOr(const LHS &L, const RHS &R) {
2670   return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2671 }
2672 
2673 /// Matches either L && R or L || R,
2674 /// either one being in the either binary or logical form.
2675 /// Note that the latter form is poison-blocking.
2676 template <typename LHS, typename RHS, bool Commutable = false>
2677 inline auto m_LogicalOp(const LHS &L, const RHS &R) {
2678   return m_CombineOr(
2679       LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
2680       LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
2681 }
2682 
2683 /// Matches either L && R or L || R where L and R are arbitrary values.
2684 inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
2685 
2686 /// Matches either L && R or L || R with LHS and RHS in either order.
2687 template <typename LHS, typename RHS>
2688 inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
2689   return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
2690 }
2691 
2692 } // end namespace PatternMatch
2693 } // end namespace llvm
2694 
2695 #endif // LLVM_IR_PATTERNMATCH_H
2696