1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Type class.  For more "Type"
10 // stuff, look in DerivedTypes.h.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_TYPE_H
15 #define LLVM_IR_TYPE_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/Support/CBindingWrapping.h"
19 #include "llvm/Support/Casting.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TypeSize.h"
23 #include <cassert>
24 #include <cstdint>
25 #include <iterator>
26 
27 namespace llvm {
28 
29 class IntegerType;
30 struct fltSemantics;
31 class LLVMContext;
32 class PointerType;
33 class raw_ostream;
34 class StringRef;
35 template <typename PtrType> class SmallPtrSetImpl;
36 
37 /// The instances of the Type class are immutable: once they are created,
38 /// they are never changed.  Also note that only one instance of a particular
39 /// type is ever created.  Thus seeing if two types are equal is a matter of
40 /// doing a trivial pointer comparison. To enforce that no two equal instances
41 /// are created, Type instances can only be created via static factory methods
42 /// in class Type and in derived classes.  Once allocated, Types are never
43 /// free'd.
44 ///
45 class Type {
46 public:
47   //===--------------------------------------------------------------------===//
48   /// Definitions of all of the base types for the Type system.  Based on this
49   /// value, you can cast to a class defined in DerivedTypes.h.
50   /// Note: If you add an element to this, you need to add an element to the
51   /// Type::getPrimitiveType function, or else things will break!
52   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
53   ///
54   enum TypeID {
55     // PrimitiveTypes
56     HalfTyID = 0,  ///< 16-bit floating point type
57     BFloatTyID,    ///< 16-bit floating point type (7-bit significand)
58     FloatTyID,     ///< 32-bit floating point type
59     DoubleTyID,    ///< 64-bit floating point type
60     X86_FP80TyID,  ///< 80-bit floating point type (X87)
61     FP128TyID,     ///< 128-bit floating point type (112-bit significand)
62     PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
63     VoidTyID,      ///< type with no size
64     LabelTyID,     ///< Labels
65     MetadataTyID,  ///< Metadata
66     X86_MMXTyID,   ///< MMX vectors (64 bits, X86 specific)
67     X86_AMXTyID,   ///< AMX vectors (8192 bits, X86 specific)
68     TokenTyID,     ///< Tokens
69 
70     // Derived types... see DerivedTypes.h file.
71     IntegerTyID,        ///< Arbitrary bit width integers
72     FunctionTyID,       ///< Functions
73     PointerTyID,        ///< Pointers
74     StructTyID,         ///< Structures
75     ArrayTyID,          ///< Arrays
76     FixedVectorTyID,    ///< Fixed width SIMD vector type
77     ScalableVectorTyID, ///< Scalable SIMD vector type
78     DXILPointerTyID,    ///< DXIL typed pointer used by DirectX target
79   };
80 
81 private:
82   /// This refers to the LLVMContext in which this type was uniqued.
83   LLVMContext &Context;
84 
85   TypeID   ID : 8;            // The current base type of this type.
86   unsigned SubclassData : 24; // Space for subclasses to store data.
87                               // Note that this should be synchronized with
88                               // MAX_INT_BITS value in IntegerType class.
89 
90 protected:
91   friend class LLVMContextImpl;
92 
93   explicit Type(LLVMContext &C, TypeID tid)
94     : Context(C), ID(tid), SubclassData(0) {}
95   ~Type() = default;
96 
97   unsigned getSubclassData() const { return SubclassData; }
98 
99   void setSubclassData(unsigned val) {
100     SubclassData = val;
101     // Ensure we don't have any accidental truncation.
102     assert(getSubclassData() == val && "Subclass data too large for field");
103   }
104 
105   /// Keeps track of how many Type*'s there are in the ContainedTys list.
106   unsigned NumContainedTys = 0;
107 
108   /// A pointer to the array of Types contained by this Type. For example, this
109   /// includes the arguments of a function type, the elements of a structure,
110   /// the pointee of a pointer, the element type of an array, etc. This pointer
111   /// may be 0 for types that don't contain other types (Integer, Double,
112   /// Float).
113   Type * const *ContainedTys = nullptr;
114 
115 public:
116   /// Print the current type.
117   /// Omit the type details if \p NoDetails == true.
118   /// E.g., let %st = type { i32, i16 }
119   /// When \p NoDetails is true, we only print %st.
120   /// Put differently, \p NoDetails prints the type as if
121   /// inlined with the operands when printing an instruction.
122   void print(raw_ostream &O, bool IsForDebug = false,
123              bool NoDetails = false) const;
124 
125   void dump() const;
126 
127   /// Return the LLVMContext in which this type was uniqued.
128   LLVMContext &getContext() const { return Context; }
129 
130   //===--------------------------------------------------------------------===//
131   // Accessors for working with types.
132   //
133 
134   /// Return the type id for the type. This will return one of the TypeID enum
135   /// elements defined above.
136   TypeID getTypeID() const { return ID; }
137 
138   /// Return true if this is 'void'.
139   bool isVoidTy() const { return getTypeID() == VoidTyID; }
140 
141   /// Return true if this is 'half', a 16-bit IEEE fp type.
142   bool isHalfTy() const { return getTypeID() == HalfTyID; }
143 
144   /// Return true if this is 'bfloat', a 16-bit bfloat type.
145   bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
146 
147   /// Return true if this is a 16-bit float type.
148   bool is16bitFPTy() const {
149     return getTypeID() == BFloatTyID || getTypeID() == HalfTyID;
150   }
151 
152   /// Return true if this is 'float', a 32-bit IEEE fp type.
153   bool isFloatTy() const { return getTypeID() == FloatTyID; }
154 
155   /// Return true if this is 'double', a 64-bit IEEE fp type.
156   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
157 
158   /// Return true if this is x86 long double.
159   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
160 
161   /// Return true if this is 'fp128'.
162   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
163 
164   /// Return true if this is powerpc long double.
165   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
166 
167   /// Return true if this is one of the six floating-point types
168   bool isFloatingPointTy() const {
169     return getTypeID() == HalfTyID || getTypeID() == BFloatTyID ||
170            getTypeID() == FloatTyID || getTypeID() == DoubleTyID ||
171            getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
172            getTypeID() == PPC_FP128TyID;
173   }
174 
175   const fltSemantics &getFltSemantics() const;
176 
177   /// Return true if this is X86 MMX.
178   bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
179 
180   /// Return true if this is X86 AMX.
181   bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; }
182 
183   /// Return true if this is a FP type or a vector of FP.
184   bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
185 
186   /// Return true if this is 'label'.
187   bool isLabelTy() const { return getTypeID() == LabelTyID; }
188 
189   /// Return true if this is 'metadata'.
190   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
191 
192   /// Return true if this is 'token'.
193   bool isTokenTy() const { return getTypeID() == TokenTyID; }
194 
195   /// True if this is an instance of IntegerType.
196   bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
197 
198   /// Return true if this is an IntegerType of the given width.
199   bool isIntegerTy(unsigned Bitwidth) const;
200 
201   /// Return true if this is an integer type or a vector of integer types.
202   bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
203 
204   /// Return true if this is an integer type or a vector of integer types of
205   /// the given width.
206   bool isIntOrIntVectorTy(unsigned BitWidth) const {
207     return getScalarType()->isIntegerTy(BitWidth);
208   }
209 
210   /// Return true if this is an integer type or a pointer type.
211   bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
212 
213   /// True if this is an instance of FunctionType.
214   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
215 
216   /// True if this is an instance of StructType.
217   bool isStructTy() const { return getTypeID() == StructTyID; }
218 
219   /// True if this is an instance of ArrayType.
220   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
221 
222   /// True if this is an instance of PointerType.
223   bool isPointerTy() const { return getTypeID() == PointerTyID; }
224 
225   /// True if this is an instance of an opaque PointerType.
226   bool isOpaquePointerTy() const;
227 
228   /// Return true if this is a pointer type or a vector of pointer types.
229   bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
230 
231   /// True if this is an instance of VectorType.
232   inline bool isVectorTy() const {
233     return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
234   }
235 
236   /// Return true if this type could be converted with a lossless BitCast to
237   /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
238   /// same size only where no re-interpretation of the bits is done.
239   /// Determine if this type could be losslessly bitcast to Ty
240   bool canLosslesslyBitCastTo(Type *Ty) const;
241 
242   /// Return true if this type is empty, that is, it has no elements or all of
243   /// its elements are empty.
244   bool isEmptyTy() const;
245 
246   /// Return true if the type is "first class", meaning it is a valid type for a
247   /// Value.
248   bool isFirstClassType() const {
249     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
250   }
251 
252   /// Return true if the type is a valid type for a register in codegen. This
253   /// includes all first-class types except struct and array types.
254   bool isSingleValueType() const {
255     return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
256            isPointerTy() || isVectorTy() || isX86_AMXTy();
257   }
258 
259   /// Return true if the type is an aggregate type. This means it is valid as
260   /// the first operand of an insertvalue or extractvalue instruction. This
261   /// includes struct and array types, but does not include vector types.
262   bool isAggregateType() const {
263     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
264   }
265 
266   /// Return true if it makes sense to take the size of this type. To get the
267   /// actual size for a particular target, it is reasonable to use the
268   /// DataLayout subsystem to do this.
269   bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
270     // If it's a primitive, it is always sized.
271     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
272         getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID ||
273         getTypeID() == X86_AMXTyID)
274       return true;
275     // If it is not something that can have a size (e.g. a function or label),
276     // it doesn't have a size.
277     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy())
278       return false;
279     // Otherwise we have to try harder to decide.
280     return isSizedDerivedType(Visited);
281   }
282 
283   /// Return the basic size of this type if it is a primitive type. These are
284   /// fixed by LLVM and are not target-dependent.
285   /// This will return zero if the type does not have a size or is not a
286   /// primitive type.
287   ///
288   /// If this is a scalable vector type, the scalable property will be set and
289   /// the runtime size will be a positive integer multiple of the base size.
290   ///
291   /// Note that this may not reflect the size of memory allocated for an
292   /// instance of the type or the number of bytes that are written when an
293   /// instance of the type is stored to memory. The DataLayout class provides
294   /// additional query functions to provide this information.
295   ///
296   TypeSize getPrimitiveSizeInBits() const LLVM_READONLY;
297 
298   /// If this is a vector type, return the getPrimitiveSizeInBits value for the
299   /// element type. Otherwise return the getPrimitiveSizeInBits value for this
300   /// type.
301   unsigned getScalarSizeInBits() const LLVM_READONLY;
302 
303   /// Return the width of the mantissa of this type. This is only valid on
304   /// floating-point types. If the FP type does not have a stable mantissa (e.g.
305   /// ppc long double), this method returns -1.
306   int getFPMantissaWidth() const;
307 
308   /// Return whether the type is IEEE compatible, as defined by the eponymous
309   /// method in APFloat.
310   bool isIEEE() const;
311 
312   /// If this is a vector type, return the element type, otherwise return
313   /// 'this'.
314   inline Type *getScalarType() const {
315     if (isVectorTy())
316       return getContainedType(0);
317     return const_cast<Type *>(this);
318   }
319 
320   //===--------------------------------------------------------------------===//
321   // Type Iteration support.
322   //
323   using subtype_iterator = Type * const *;
324 
325   subtype_iterator subtype_begin() const { return ContainedTys; }
326   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
327   ArrayRef<Type*> subtypes() const {
328     return makeArrayRef(subtype_begin(), subtype_end());
329   }
330 
331   using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
332 
333   subtype_reverse_iterator subtype_rbegin() const {
334     return subtype_reverse_iterator(subtype_end());
335   }
336   subtype_reverse_iterator subtype_rend() const {
337     return subtype_reverse_iterator(subtype_begin());
338   }
339 
340   /// This method is used to implement the type iterator (defined at the end of
341   /// the file). For derived types, this returns the types 'contained' in the
342   /// derived type.
343   Type *getContainedType(unsigned i) const {
344     assert(i < NumContainedTys && "Index out of range!");
345     return ContainedTys[i];
346   }
347 
348   /// Return the number of types in the derived type.
349   unsigned getNumContainedTypes() const { return NumContainedTys; }
350 
351   //===--------------------------------------------------------------------===//
352   // Helper methods corresponding to subclass methods.  This forces a cast to
353   // the specified subclass and calls its accessor.  "getArrayNumElements" (for
354   // example) is shorthand for cast<ArrayType>(Ty)->getNumElements().  This is
355   // only intended to cover the core methods that are frequently used, helper
356   // methods should not be added here.
357 
358   inline unsigned getIntegerBitWidth() const;
359 
360   inline Type *getFunctionParamType(unsigned i) const;
361   inline unsigned getFunctionNumParams() const;
362   inline bool isFunctionVarArg() const;
363 
364   inline StringRef getStructName() const;
365   inline unsigned getStructNumElements() const;
366   inline Type *getStructElementType(unsigned N) const;
367 
368   inline uint64_t getArrayNumElements() const;
369 
370   Type *getArrayElementType() const {
371     assert(getTypeID() == ArrayTyID);
372     return ContainedTys[0];
373   }
374 
375   /// This method is deprecated without replacement. Pointer element types are
376   /// not available with opaque pointers.
377   [[deprecated("Deprecated without replacement, see "
378                "https://llvm.org/docs/OpaquePointers.html for context and "
379                "migration instructions")]]
380   Type *getPointerElementType() const {
381     return getNonOpaquePointerElementType();
382   }
383 
384   /// Only use this method in code that is not reachable with opaque pointers,
385   /// or part of deprecated methods that will be removed as part of the opaque
386   /// pointers transition.
387   Type *getNonOpaquePointerElementType() const {
388     assert(getTypeID() == PointerTyID);
389     assert(NumContainedTys &&
390            "Attempting to get element type of opaque pointer");
391     return ContainedTys[0];
392   }
393 
394   /// Given vector type, change the element type,
395   /// whilst keeping the old number of elements.
396   /// For non-vectors simply returns \p EltTy.
397   inline Type *getWithNewType(Type *EltTy) const;
398 
399   /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
400   /// whilst keeping the old number of lanes.
401   inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
402 
403   /// Given scalar/vector integer type, returns a type with elements twice as
404   /// wide as in the original type. For vectors, preserves element count.
405   inline Type *getExtendedType() const;
406 
407   /// Get the address space of this pointer or pointer vector type.
408   inline unsigned getPointerAddressSpace() const;
409 
410   //===--------------------------------------------------------------------===//
411   // Static members exported by the Type class itself.  Useful for getting
412   // instances of Type.
413   //
414 
415   /// Return a type based on an identifier.
416   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
417 
418   //===--------------------------------------------------------------------===//
419   // These are the builtin types that are always available.
420   //
421   static Type *getVoidTy(LLVMContext &C);
422   static Type *getLabelTy(LLVMContext &C);
423   static Type *getHalfTy(LLVMContext &C);
424   static Type *getBFloatTy(LLVMContext &C);
425   static Type *getFloatTy(LLVMContext &C);
426   static Type *getDoubleTy(LLVMContext &C);
427   static Type *getMetadataTy(LLVMContext &C);
428   static Type *getX86_FP80Ty(LLVMContext &C);
429   static Type *getFP128Ty(LLVMContext &C);
430   static Type *getPPC_FP128Ty(LLVMContext &C);
431   static Type *getX86_MMXTy(LLVMContext &C);
432   static Type *getX86_AMXTy(LLVMContext &C);
433   static Type *getTokenTy(LLVMContext &C);
434   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
435   static IntegerType *getInt1Ty(LLVMContext &C);
436   static IntegerType *getInt8Ty(LLVMContext &C);
437   static IntegerType *getInt16Ty(LLVMContext &C);
438   static IntegerType *getInt32Ty(LLVMContext &C);
439   static IntegerType *getInt64Ty(LLVMContext &C);
440   static IntegerType *getInt128Ty(LLVMContext &C);
441   template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
442     int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
443     if (std::is_integral<ScalarTy>::value) {
444       return (Type*) Type::getIntNTy(C, noOfBits);
445     } else if (std::is_floating_point<ScalarTy>::value) {
446       switch (noOfBits) {
447       case 32:
448         return Type::getFloatTy(C);
449       case 64:
450         return Type::getDoubleTy(C);
451       }
452     }
453     llvm_unreachable("Unsupported type in Type::getScalarTy");
454   }
455   static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S);
456 
457   //===--------------------------------------------------------------------===//
458   // Convenience methods for getting pointer types with one of the above builtin
459   // types as pointee.
460   //
461   static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
462   static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0);
463   static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
464   static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
465   static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
466   static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
467   static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
468   static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
469   static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0);
470   static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
471   static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
472   static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
473   static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
474   static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
475   static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
476 
477   /// Return a pointer to the current type. This is equivalent to
478   /// PointerType::get(Foo, AddrSpace).
479   /// TODO: Remove this after opaque pointer transition is complete.
480   PointerType *getPointerTo(unsigned AddrSpace = 0) const;
481 
482 private:
483   /// Derived types like structures and arrays are sized iff all of the members
484   /// of the type are sized as well. Since asking for their size is relatively
485   /// uncommon, move this operation out-of-line.
486   bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
487 };
488 
489 // Printing of types.
490 inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
491   T.print(OS);
492   return OS;
493 }
494 
495 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
496 template <> struct isa_impl<PointerType, Type> {
497   static inline bool doit(const Type &Ty) {
498     return Ty.getTypeID() == Type::PointerTyID;
499   }
500 };
501 
502 // Create wrappers for C Binding types (see CBindingWrapping.h).
503 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
504 
505 /* Specialized opaque type conversions.
506  */
507 inline Type **unwrap(LLVMTypeRef* Tys) {
508   return reinterpret_cast<Type**>(Tys);
509 }
510 
511 inline LLVMTypeRef *wrap(Type **Tys) {
512   return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
513 }
514 
515 } // end namespace llvm
516 
517 #endif // LLVM_IR_TYPE_H
518