1 //===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ValueMap class.  ValueMap maps Value* or any subclass
10 // to an arbitrary other type.  It provides the DenseMap interface but updates
11 // itself to remain safe when keys are RAUWed or deleted.  By default, when a
12 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
13 // mapping V2->target is added.  If V2 already existed, its old target is
14 // overwritten.  When a key is deleted, its mapping is removed.
15 //
16 // You can override a ValueMap's Config parameter to control exactly what
17 // happens on RAUW and destruction and to get called back on each event.  It's
18 // legal to call back into the ValueMap from a Config's callbacks.  Config
19 // parameters should inherit from ValueMapConfig<KeyT> to get default
20 // implementations of all the methods ValueMap uses.  See ValueMapConfig for
21 // documentation of the functions you can override.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef LLVM_IR_VALUEMAP_H
26 #define LLVM_IR_VALUEMAP_H
27 
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseMapInfo.h"
30 #include "llvm/IR/TrackingMDRef.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Mutex.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <iterator>
38 #include <mutex>
39 #include <optional>
40 #include <type_traits>
41 #include <utility>
42 
43 namespace llvm {
44 
45 template<typename KeyT, typename ValueT, typename Config>
46 class ValueMapCallbackVH;
47 template<typename DenseMapT, typename KeyT>
48 class ValueMapIterator;
49 template<typename DenseMapT, typename KeyT>
50 class ValueMapConstIterator;
51 
52 /// This class defines the default behavior for configurable aspects of
53 /// ValueMap<>.  User Configs should inherit from this class to be as compatible
54 /// as possible with future versions of ValueMap.
55 template<typename KeyT, typename MutexT = sys::Mutex>
56 struct ValueMapConfig {
57   using mutex_type = MutexT;
58 
59   /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
60   /// false, the ValueMap will leave the original mapping in place.
61   enum { FollowRAUW = true };
62 
63   // All methods will be called with a first argument of type ExtraData.  The
64   // default implementations in this class take a templated first argument so
65   // that users' subclasses can use any type they want without having to
66   // override all the defaults.
67   struct ExtraData {};
68 
69   template<typename ExtraDataT>
70   static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
71   template<typename ExtraDataT>
72   static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
73 
74   /// Returns a mutex that should be acquired around any changes to the map.
75   /// This is only acquired from the CallbackVH (and held around calls to onRAUW
76   /// and onDelete) and not inside other ValueMap methods.  NULL means that no
77   /// mutex is necessary.
78   template<typename ExtraDataT>
79   static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; }
80 };
81 
82 /// See the file comment.
83 template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT>>
84 class ValueMap {
85   friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
86 
87   using ValueMapCVH = ValueMapCallbackVH<KeyT, ValueT, Config>;
88   using MapT = DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>>;
89   using MDMapT = DenseMap<const Metadata *, TrackingMDRef>;
90   using ExtraData = typename Config::ExtraData;
91 
92   MapT Map;
93   std::optional<MDMapT> MDMap;
94   ExtraData Data;
95 
96 public:
97   using key_type = KeyT;
98   using mapped_type = ValueT;
99   using value_type = std::pair<KeyT, ValueT>;
100   using size_type = unsigned;
101 
102   explicit ValueMap(unsigned NumInitBuckets = 64)
103       : Map(NumInitBuckets), Data() {}
104   explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
105       : Map(NumInitBuckets), Data(Data) {}
106   // ValueMap can't be copied nor moved, because the callbacks store pointer to
107   // it.
108   ValueMap(const ValueMap &) = delete;
109   ValueMap(ValueMap &&) = delete;
110   ValueMap &operator=(const ValueMap &) = delete;
111   ValueMap &operator=(ValueMap &&) = delete;
112 
113   bool hasMD() const { return bool(MDMap); }
114   MDMapT &MD() {
115     if (!MDMap)
116       MDMap.emplace();
117     return *MDMap;
118   }
119   std::optional<MDMapT> &getMDMap() { return MDMap; }
120 
121   /// Get the mapped metadata, if it's in the map.
122   std::optional<Metadata *> getMappedMD(const Metadata *MD) const {
123     if (!MDMap)
124       return std::nullopt;
125     auto Where = MDMap->find(MD);
126     if (Where == MDMap->end())
127       return std::nullopt;
128     return Where->second.get();
129   }
130 
131   using iterator = ValueMapIterator<MapT, KeyT>;
132   using const_iterator = ValueMapConstIterator<MapT, KeyT>;
133 
134   inline iterator begin() { return iterator(Map.begin()); }
135   inline iterator end() { return iterator(Map.end()); }
136   inline const_iterator begin() const { return const_iterator(Map.begin()); }
137   inline const_iterator end() const { return const_iterator(Map.end()); }
138 
139   bool empty() const { return Map.empty(); }
140   size_type size() const { return Map.size(); }
141 
142   /// Grow the map so that it has at least Size buckets. Does not shrink
143   void reserve(size_t Size) { Map.reserve(Size); }
144 
145   void clear() {
146     Map.clear();
147     MDMap.reset();
148   }
149 
150   /// Return 1 if the specified key is in the map, 0 otherwise.
151   size_type count(const KeyT &Val) const {
152     return Map.find_as(Val) == Map.end() ? 0 : 1;
153   }
154 
155   iterator find(const KeyT &Val) {
156     return iterator(Map.find_as(Val));
157   }
158   const_iterator find(const KeyT &Val) const {
159     return const_iterator(Map.find_as(Val));
160   }
161 
162   /// lookup - Return the entry for the specified key, or a default
163   /// constructed value if no such entry exists.
164   ValueT lookup(const KeyT &Val) const {
165     typename MapT::const_iterator I = Map.find_as(Val);
166     return I != Map.end() ? I->second : ValueT();
167   }
168 
169   // Inserts key,value pair into the map if the key isn't already in the map.
170   // If the key is already in the map, it returns false and doesn't update the
171   // value.
172   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
173     auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second));
174     return std::make_pair(iterator(MapResult.first), MapResult.second);
175   }
176 
177   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
178     auto MapResult =
179         Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second)));
180     return std::make_pair(iterator(MapResult.first), MapResult.second);
181   }
182 
183   /// insert - Range insertion of pairs.
184   template<typename InputIt>
185   void insert(InputIt I, InputIt E) {
186     for (; I != E; ++I)
187       insert(*I);
188   }
189 
190   bool erase(const KeyT &Val) {
191     typename MapT::iterator I = Map.find_as(Val);
192     if (I == Map.end())
193       return false;
194 
195     Map.erase(I);
196     return true;
197   }
198   void erase(iterator I) {
199     return Map.erase(I.base());
200   }
201 
202   value_type& FindAndConstruct(const KeyT &Key) {
203     return Map.FindAndConstruct(Wrap(Key));
204   }
205 
206   ValueT &operator[](const KeyT &Key) {
207     return Map[Wrap(Key)];
208   }
209 
210   /// isPointerIntoBucketsArray - Return true if the specified pointer points
211   /// somewhere into the ValueMap's array of buckets (i.e. either to a key or
212   /// value in the ValueMap).
213   bool isPointerIntoBucketsArray(const void *Ptr) const {
214     return Map.isPointerIntoBucketsArray(Ptr);
215   }
216 
217   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
218   /// array.  In conjunction with the previous method, this can be used to
219   /// determine whether an insertion caused the ValueMap to reallocate.
220   const void *getPointerIntoBucketsArray() const {
221     return Map.getPointerIntoBucketsArray();
222   }
223 
224 private:
225   // Takes a key being looked up in the map and wraps it into a
226   // ValueMapCallbackVH, the actual key type of the map.  We use a helper
227   // function because ValueMapCVH is constructed with a second parameter.
228   ValueMapCVH Wrap(KeyT key) const {
229     // The only way the resulting CallbackVH could try to modify *this (making
230     // the const_cast incorrect) is if it gets inserted into the map.  But then
231     // this function must have been called from a non-const method, making the
232     // const_cast ok.
233     return ValueMapCVH(key, const_cast<ValueMap*>(this));
234   }
235 };
236 
237 // This CallbackVH updates its ValueMap when the contained Value changes,
238 // according to the user's preferences expressed through the Config object.
239 template <typename KeyT, typename ValueT, typename Config>
240 class ValueMapCallbackVH final : public CallbackVH {
241   friend class ValueMap<KeyT, ValueT, Config>;
242   friend struct DenseMapInfo<ValueMapCallbackVH>;
243 
244   using ValueMapT = ValueMap<KeyT, ValueT, Config>;
245   using KeySansPointerT = std::remove_pointer_t<KeyT>;
246 
247   ValueMapT *Map;
248 
249   ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
250       : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
251         Map(Map) {}
252 
253   // Private constructor used to create empty/tombstone DenseMap keys.
254   ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
255 
256 public:
257   KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
258 
259   void deleted() override {
260     // Make a copy that won't get changed even when *this is destroyed.
261     ValueMapCallbackVH Copy(*this);
262     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
263     std::unique_lock<typename Config::mutex_type> Guard;
264     if (M)
265       Guard = std::unique_lock<typename Config::mutex_type>(*M);
266     Config::onDelete(Copy.Map->Data, Copy.Unwrap());  // May destroy *this.
267     Copy.Map->Map.erase(Copy);  // Definitely destroys *this.
268   }
269 
270   void allUsesReplacedWith(Value *new_key) override {
271     assert(isa<KeySansPointerT>(new_key) &&
272            "Invalid RAUW on key of ValueMap<>");
273     // Make a copy that won't get changed even when *this is destroyed.
274     ValueMapCallbackVH Copy(*this);
275     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
276     std::unique_lock<typename Config::mutex_type> Guard;
277     if (M)
278       Guard = std::unique_lock<typename Config::mutex_type>(*M);
279 
280     KeyT typed_new_key = cast<KeySansPointerT>(new_key);
281     // Can destroy *this:
282     Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
283     if (Config::FollowRAUW) {
284       typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
285       // I could == Copy.Map->Map.end() if the onRAUW callback already
286       // removed the old mapping.
287       if (I != Copy.Map->Map.end()) {
288         ValueT Target(std::move(I->second));
289         Copy.Map->Map.erase(I);  // Definitely destroys *this.
290         Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target)));
291       }
292     }
293   }
294 };
295 
296 template<typename KeyT, typename ValueT, typename Config>
297 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config>> {
298   using VH = ValueMapCallbackVH<KeyT, ValueT, Config>;
299 
300   static inline VH getEmptyKey() {
301     return VH(DenseMapInfo<Value *>::getEmptyKey());
302   }
303 
304   static inline VH getTombstoneKey() {
305     return VH(DenseMapInfo<Value *>::getTombstoneKey());
306   }
307 
308   static unsigned getHashValue(const VH &Val) {
309     return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap());
310   }
311 
312   static unsigned getHashValue(const KeyT &Val) {
313     return DenseMapInfo<KeyT>::getHashValue(Val);
314   }
315 
316   static bool isEqual(const VH &LHS, const VH &RHS) {
317     return LHS == RHS;
318   }
319 
320   static bool isEqual(const KeyT &LHS, const VH &RHS) {
321     return LHS == RHS.getValPtr();
322   }
323 };
324 
325 template <typename DenseMapT, typename KeyT> class ValueMapIterator {
326   using BaseT = typename DenseMapT::iterator;
327   using ValueT = typename DenseMapT::mapped_type;
328 
329   BaseT I;
330 
331 public:
332   using iterator_category = std::forward_iterator_tag;
333   using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>;
334   using difference_type = std::ptrdiff_t;
335   using pointer = value_type *;
336   using reference = value_type &;
337 
338   ValueMapIterator() : I() {}
339   ValueMapIterator(BaseT I) : I(I) {}
340 
341   BaseT base() const { return I; }
342 
343   struct ValueTypeProxy {
344     const KeyT first;
345     ValueT& second;
346 
347     ValueTypeProxy *operator->() { return this; }
348 
349     operator std::pair<KeyT, ValueT>() const {
350       return std::make_pair(first, second);
351     }
352   };
353 
354   ValueTypeProxy operator*() const {
355     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
356     return Result;
357   }
358 
359   ValueTypeProxy operator->() const {
360     return operator*();
361   }
362 
363   bool operator==(const ValueMapIterator &RHS) const {
364     return I == RHS.I;
365   }
366   bool operator!=(const ValueMapIterator &RHS) const {
367     return I != RHS.I;
368   }
369 
370   inline ValueMapIterator& operator++() {  // Preincrement
371     ++I;
372     return *this;
373   }
374   ValueMapIterator operator++(int) {  // Postincrement
375     ValueMapIterator tmp = *this; ++*this; return tmp;
376   }
377 };
378 
379 template <typename DenseMapT, typename KeyT> class ValueMapConstIterator {
380   using BaseT = typename DenseMapT::const_iterator;
381   using ValueT = typename DenseMapT::mapped_type;
382 
383   BaseT I;
384 
385 public:
386   using iterator_category = std::forward_iterator_tag;
387   using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>;
388   using difference_type = std::ptrdiff_t;
389   using pointer = value_type *;
390   using reference = value_type &;
391 
392   ValueMapConstIterator() : I() {}
393   ValueMapConstIterator(BaseT I) : I(I) {}
394   ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
395     : I(Other.base()) {}
396 
397   BaseT base() const { return I; }
398 
399   struct ValueTypeProxy {
400     const KeyT first;
401     const ValueT& second;
402     ValueTypeProxy *operator->() { return this; }
403     operator std::pair<KeyT, ValueT>() const {
404       return std::make_pair(first, second);
405     }
406   };
407 
408   ValueTypeProxy operator*() const {
409     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
410     return Result;
411   }
412 
413   ValueTypeProxy operator->() const {
414     return operator*();
415   }
416 
417   bool operator==(const ValueMapConstIterator &RHS) const {
418     return I == RHS.I;
419   }
420   bool operator!=(const ValueMapConstIterator &RHS) const {
421     return I != RHS.I;
422   }
423 
424   inline ValueMapConstIterator& operator++() {  // Preincrement
425     ++I;
426     return *this;
427   }
428   ValueMapConstIterator operator++(int) {  // Postincrement
429     ValueMapConstIterator tmp = *this; ++*this; return tmp;
430   }
431 };
432 
433 } // end namespace llvm
434 
435 #endif // LLVM_IR_VALUEMAP_H
436