1 //===-- llvm/MC/MCSchedule.h - Scheduling -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the classes used to describe a subtarget's machine model
10 // for scheduling and other instruction cost heuristics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_MC_MCSCHEDULE_H
15 #define LLVM_MC_MCSCHEDULE_H
16 
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/Support/DataTypes.h"
19 #include <cassert>
20 
21 namespace llvm {
22 
23 template <typename T> class ArrayRef;
24 struct InstrItinerary;
25 class MCSubtargetInfo;
26 class MCInstrInfo;
27 class MCInst;
28 class InstrItineraryData;
29 
30 /// Define a kind of processor resource that will be modeled by the scheduler.
31 struct MCProcResourceDesc {
32   const char *Name;
33   unsigned NumUnits; // Number of resource of this kind
34   unsigned SuperIdx; // Index of the resources kind that contains this kind.
35 
36   // Number of resources that may be buffered.
37   //
38   // Buffered resources (BufferSize != 0) may be consumed at some indeterminate
39   // cycle after dispatch. This should be used for out-of-order cpus when
40   // instructions that use this resource can be buffered in a reservaton
41   // station.
42   //
43   // Unbuffered resources (BufferSize == 0) always consume their resource some
44   // fixed number of cycles after dispatch. If a resource is unbuffered, then
45   // the scheduler will avoid scheduling instructions with conflicting resources
46   // in the same cycle. This is for in-order cpus, or the in-order portion of
47   // an out-of-order cpus.
48   int BufferSize;
49 
50   // If the resource has sub-units, a pointer to the first element of an array
51   // of `NumUnits` elements containing the ProcResourceIdx of the sub units.
52   // nullptr if the resource does not have sub-units.
53   const unsigned *SubUnitsIdxBegin;
54 
55   bool operator==(const MCProcResourceDesc &Other) const {
56     return NumUnits == Other.NumUnits && SuperIdx == Other.SuperIdx
57       && BufferSize == Other.BufferSize;
58   }
59 };
60 
61 /// Identify one of the processor resource kinds consumed by a
62 /// particular scheduling class for the specified number of cycles.
63 struct MCWriteProcResEntry {
64   uint16_t ProcResourceIdx;
65   /// Cycle at which the resource will be released by an instruction,
66   /// relatively to the cycle in which the instruction is issued
67   /// (assuming no stalls inbetween).
68   uint16_t ReleaseAtCycle;
69   /// Cycle at which the resource will be aquired by an instruction,
70   /// relatively to the cycle in which the instruction is issued
71   /// (assuming no stalls inbetween).
72   uint16_t AcquireAtCycle;
73 
74   bool operator==(const MCWriteProcResEntry &Other) const {
75     return ProcResourceIdx == Other.ProcResourceIdx &&
76            ReleaseAtCycle == Other.ReleaseAtCycle &&
77            AcquireAtCycle == Other.AcquireAtCycle;
78   }
79 };
80 
81 /// Specify the latency in cpu cycles for a particular scheduling class and def
82 /// index. -1 indicates an invalid latency. Heuristics would typically consider
83 /// an instruction with invalid latency to have infinite latency.  Also identify
84 /// the WriteResources of this def. When the operand expands to a sequence of
85 /// writes, this ID is the last write in the sequence.
86 struct MCWriteLatencyEntry {
87   int16_t Cycles;
88   uint16_t WriteResourceID;
89 
90   bool operator==(const MCWriteLatencyEntry &Other) const {
91     return Cycles == Other.Cycles && WriteResourceID == Other.WriteResourceID;
92   }
93 };
94 
95 /// Specify the number of cycles allowed after instruction issue before a
96 /// particular use operand reads its registers. This effectively reduces the
97 /// write's latency. Here we allow negative cycles for corner cases where
98 /// latency increases. This rule only applies when the entry's WriteResource
99 /// matches the write's WriteResource.
100 ///
101 /// MCReadAdvanceEntries are sorted first by operand index (UseIdx), then by
102 /// WriteResourceIdx.
103 struct MCReadAdvanceEntry {
104   unsigned UseIdx;
105   unsigned WriteResourceID;
106   int Cycles;
107 
108   bool operator==(const MCReadAdvanceEntry &Other) const {
109     return UseIdx == Other.UseIdx && WriteResourceID == Other.WriteResourceID
110       && Cycles == Other.Cycles;
111   }
112 };
113 
114 /// Summarize the scheduling resources required for an instruction of a
115 /// particular scheduling class.
116 ///
117 /// Defined as an aggregate struct for creating tables with initializer lists.
118 struct MCSchedClassDesc {
119   static const unsigned short InvalidNumMicroOps = (1U << 13) - 1;
120   static const unsigned short VariantNumMicroOps = InvalidNumMicroOps - 1;
121 
122 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
123   const char* Name;
124 #endif
125   uint16_t NumMicroOps : 13;
126   uint16_t BeginGroup : 1;
127   uint16_t EndGroup : 1;
128   uint16_t RetireOOO : 1;
129   uint16_t WriteProcResIdx; // First index into WriteProcResTable.
130   uint16_t NumWriteProcResEntries;
131   uint16_t WriteLatencyIdx; // First index into WriteLatencyTable.
132   uint16_t NumWriteLatencyEntries;
133   uint16_t ReadAdvanceIdx; // First index into ReadAdvanceTable.
134   uint16_t NumReadAdvanceEntries;
135 
isValidMCSchedClassDesc136   bool isValid() const {
137     return NumMicroOps != InvalidNumMicroOps;
138   }
isVariantMCSchedClassDesc139   bool isVariant() const {
140     return NumMicroOps == VariantNumMicroOps;
141   }
142 };
143 
144 /// Specify the cost of a register definition in terms of number of physical
145 /// register allocated at register renaming stage. For example, AMD Jaguar.
146 /// natively supports 128-bit data types, and operations on 256-bit registers
147 /// (i.e. YMM registers) are internally split into two COPs (complex operations)
148 /// and each COP updates a physical register. Basically, on Jaguar, a YMM
149 /// register write effectively consumes two physical registers. That means,
150 /// the cost of a YMM write in the BtVer2 model is 2.
151 struct MCRegisterCostEntry {
152   unsigned RegisterClassID;
153   unsigned Cost;
154   bool AllowMoveElimination;
155 };
156 
157 /// A register file descriptor.
158 ///
159 /// This struct allows to describe processor register files. In particular, it
160 /// helps describing the size of the register file, as well as the cost of
161 /// allocating a register file at register renaming stage.
162 /// FIXME: this struct can be extended to provide information about the number
163 /// of read/write ports to the register file.  A value of zero for field
164 /// 'NumPhysRegs' means: this register file has an unbounded number of physical
165 /// registers.
166 struct MCRegisterFileDesc {
167   const char *Name;
168   uint16_t NumPhysRegs;
169   uint16_t NumRegisterCostEntries;
170   // Index of the first cost entry in MCExtraProcessorInfo::RegisterCostTable.
171   uint16_t RegisterCostEntryIdx;
172   // A value of zero means: there is no limit in the number of moves that can be
173   // eliminated every cycle.
174   uint16_t MaxMovesEliminatedPerCycle;
175   // Ture if this register file only knows how to optimize register moves from
176   // known zero registers.
177   bool AllowZeroMoveEliminationOnly;
178 };
179 
180 /// Provide extra details about the machine processor.
181 ///
182 /// This is a collection of "optional" processor information that is not
183 /// normally used by the LLVM machine schedulers, but that can be consumed by
184 /// external tools like llvm-mca to improve the quality of the peformance
185 /// analysis.
186 struct MCExtraProcessorInfo {
187   // Actual size of the reorder buffer in hardware.
188   unsigned ReorderBufferSize;
189   // Number of instructions retired per cycle.
190   unsigned MaxRetirePerCycle;
191   const MCRegisterFileDesc *RegisterFiles;
192   unsigned NumRegisterFiles;
193   const MCRegisterCostEntry *RegisterCostTable;
194   unsigned NumRegisterCostEntries;
195   unsigned LoadQueueID;
196   unsigned StoreQueueID;
197 };
198 
199 /// Machine model for scheduling, bundling, and heuristics.
200 ///
201 /// The machine model directly provides basic information about the
202 /// microarchitecture to the scheduler in the form of properties. It also
203 /// optionally refers to scheduler resource tables and itinerary
204 /// tables. Scheduler resource tables model the latency and cost for each
205 /// instruction type. Itinerary tables are an independent mechanism that
206 /// provides a detailed reservation table describing each cycle of instruction
207 /// execution. Subtargets may define any or all of the above categories of data
208 /// depending on the type of CPU and selected scheduler.
209 ///
210 /// The machine independent properties defined here are used by the scheduler as
211 /// an abstract machine model. A real micro-architecture has a number of
212 /// buffers, queues, and stages. Declaring that a given machine-independent
213 /// abstract property corresponds to a specific physical property across all
214 /// subtargets can't be done. Nonetheless, the abstract model is
215 /// useful. Futhermore, subtargets typically extend this model with processor
216 /// specific resources to model any hardware features that can be exploited by
217 /// scheduling heuristics and aren't sufficiently represented in the abstract.
218 ///
219 /// The abstract pipeline is built around the notion of an "issue point". This
220 /// is merely a reference point for counting machine cycles. The physical
221 /// machine will have pipeline stages that delay execution. The scheduler does
222 /// not model those delays because they are irrelevant as long as they are
223 /// consistent. Inaccuracies arise when instructions have different execution
224 /// delays relative to each other, in addition to their intrinsic latency. Those
225 /// special cases can be handled by TableGen constructs such as, ReadAdvance,
226 /// which reduces latency when reading data, and ReleaseAtCycles, which consumes
227 /// a processor resource when writing data for a number of abstract
228 /// cycles.
229 ///
230 /// TODO: One tool currently missing is the ability to add a delay to
231 /// ReleaseAtCycles. That would be easy to add and would likely cover all cases
232 /// currently handled by the legacy itinerary tables.
233 ///
234 /// A note on out-of-order execution and, more generally, instruction
235 /// buffers. Part of the CPU pipeline is always in-order. The issue point, which
236 /// is the point of reference for counting cycles, only makes sense as an
237 /// in-order part of the pipeline. Other parts of the pipeline are sometimes
238 /// falling behind and sometimes catching up. It's only interesting to model
239 /// those other, decoupled parts of the pipeline if they may be predictably
240 /// resource constrained in a way that the scheduler can exploit.
241 ///
242 /// The LLVM machine model distinguishes between in-order constraints and
243 /// out-of-order constraints so that the target's scheduling strategy can apply
244 /// appropriate heuristics. For a well-balanced CPU pipeline, out-of-order
245 /// resources would not typically be treated as a hard scheduling
246 /// constraint. For example, in the GenericScheduler, a delay caused by limited
247 /// out-of-order resources is not directly reflected in the number of cycles
248 /// that the scheduler sees between issuing an instruction and its dependent
249 /// instructions. In other words, out-of-order resources don't directly increase
250 /// the latency between pairs of instructions. However, they can still be used
251 /// to detect potential bottlenecks across a sequence of instructions and bias
252 /// the scheduling heuristics appropriately.
253 struct MCSchedModel {
254   // IssueWidth is the maximum number of instructions that may be scheduled in
255   // the same per-cycle group. This is meant to be a hard in-order constraint
256   // (a.k.a. "hazard"). In the GenericScheduler strategy, no more than
257   // IssueWidth micro-ops can ever be scheduled in a particular cycle.
258   //
259   // In practice, IssueWidth is useful to model any bottleneck between the
260   // decoder (after micro-op expansion) and the out-of-order reservation
261   // stations or the decoder bandwidth itself. If the total number of
262   // reservation stations is also a bottleneck, or if any other pipeline stage
263   // has a bandwidth limitation, then that can be naturally modeled by adding an
264   // out-of-order processor resource.
265   unsigned IssueWidth;
266   static const unsigned DefaultIssueWidth = 1;
267 
268   // MicroOpBufferSize is the number of micro-ops that the processor may buffer
269   // for out-of-order execution.
270   //
271   // "0" means operations that are not ready in this cycle are not considered
272   // for scheduling (they go in the pending queue). Latency is paramount. This
273   // may be more efficient if many instructions are pending in a schedule.
274   //
275   // "1" means all instructions are considered for scheduling regardless of
276   // whether they are ready in this cycle. Latency still causes issue stalls,
277   // but we balance those stalls against other heuristics.
278   //
279   // "> 1" means the processor is out-of-order. This is a machine independent
280   // estimate of highly machine specific characteristics such as the register
281   // renaming pool and reorder buffer.
282   unsigned MicroOpBufferSize;
283   static const unsigned DefaultMicroOpBufferSize = 0;
284 
285   // LoopMicroOpBufferSize is the number of micro-ops that the processor may
286   // buffer for optimized loop execution. More generally, this represents the
287   // optimal number of micro-ops in a loop body. A loop may be partially
288   // unrolled to bring the count of micro-ops in the loop body closer to this
289   // number.
290   unsigned LoopMicroOpBufferSize;
291   static const unsigned DefaultLoopMicroOpBufferSize = 0;
292 
293   // LoadLatency is the expected latency of load instructions.
294   unsigned LoadLatency;
295   static const unsigned DefaultLoadLatency = 4;
296 
297   // HighLatency is the expected latency of "very high latency" operations.
298   // See TargetInstrInfo::isHighLatencyDef().
299   // By default, this is set to an arbitrarily high number of cycles
300   // likely to have some impact on scheduling heuristics.
301   unsigned HighLatency;
302   static const unsigned DefaultHighLatency = 10;
303 
304   // MispredictPenalty is the typical number of extra cycles the processor
305   // takes to recover from a branch misprediction.
306   unsigned MispredictPenalty;
307   static const unsigned DefaultMispredictPenalty = 10;
308 
309   bool PostRAScheduler; // default value is false
310 
311   bool CompleteModel;
312 
313   // Tells the MachineScheduler whether or not to track resource usage
314   // using intervals via ResourceSegments (see
315   // llvm/include/llvm/CodeGen/MachineScheduler.h).
316   bool EnableIntervals;
317 
318   unsigned ProcID;
319   const MCProcResourceDesc *ProcResourceTable;
320   const MCSchedClassDesc *SchedClassTable;
321   unsigned NumProcResourceKinds;
322   unsigned NumSchedClasses;
323   // Instruction itinerary tables used by InstrItineraryData.
324   friend class InstrItineraryData;
325   const InstrItinerary *InstrItineraries;
326 
327   const MCExtraProcessorInfo *ExtraProcessorInfo;
328 
hasExtraProcessorInfoMCSchedModel329   bool hasExtraProcessorInfo() const { return ExtraProcessorInfo; }
330 
getProcessorIDMCSchedModel331   unsigned getProcessorID() const { return ProcID; }
332 
333   /// Does this machine model include instruction-level scheduling.
hasInstrSchedModelMCSchedModel334   bool hasInstrSchedModel() const { return SchedClassTable; }
335 
getExtraProcessorInfoMCSchedModel336   const MCExtraProcessorInfo &getExtraProcessorInfo() const {
337     assert(hasExtraProcessorInfo() &&
338            "No extra information available for this model");
339     return *ExtraProcessorInfo;
340   }
341 
342   /// Return true if this machine model data for all instructions with a
343   /// scheduling class (itinerary class or SchedRW list).
isCompleteMCSchedModel344   bool isComplete() const { return CompleteModel; }
345 
346   /// Return true if machine supports out of order execution.
isOutOfOrderMCSchedModel347   bool isOutOfOrder() const { return MicroOpBufferSize > 1; }
348 
getNumProcResourceKindsMCSchedModel349   unsigned getNumProcResourceKinds() const {
350     return NumProcResourceKinds;
351   }
352 
getProcResourceMCSchedModel353   const MCProcResourceDesc *getProcResource(unsigned ProcResourceIdx) const {
354     assert(hasInstrSchedModel() && "No scheduling machine model");
355 
356     assert(ProcResourceIdx < NumProcResourceKinds && "bad proc resource idx");
357     return &ProcResourceTable[ProcResourceIdx];
358   }
359 
getSchedClassDescMCSchedModel360   const MCSchedClassDesc *getSchedClassDesc(unsigned SchedClassIdx) const {
361     assert(hasInstrSchedModel() && "No scheduling machine model");
362 
363     assert(SchedClassIdx < NumSchedClasses && "bad scheduling class idx");
364     return &SchedClassTable[SchedClassIdx];
365   }
366 
367   /// Returns the latency value for the scheduling class.
368   static int computeInstrLatency(const MCSubtargetInfo &STI,
369                                  const MCSchedClassDesc &SCDesc);
370 
371   int computeInstrLatency(const MCSubtargetInfo &STI, unsigned SClass) const;
372   int computeInstrLatency(const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
373                           const MCInst &Inst) const;
374 
375   // Returns the reciprocal throughput information from a MCSchedClassDesc.
376   static double
377   getReciprocalThroughput(const MCSubtargetInfo &STI,
378                           const MCSchedClassDesc &SCDesc);
379 
380   static double
381   getReciprocalThroughput(unsigned SchedClass, const InstrItineraryData &IID);
382 
383   double
384   getReciprocalThroughput(const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
385                           const MCInst &Inst) const;
386 
387   /// Returns the maximum forwarding delay for register reads dependent on
388   /// writes of scheduling class WriteResourceIdx.
389   static unsigned getForwardingDelayCycles(ArrayRef<MCReadAdvanceEntry> Entries,
390                                            unsigned WriteResourceIdx = 0);
391 
392   /// Returns the default initialized model.
393   static const MCSchedModel Default;
394 };
395 
396 } // namespace llvm
397 
398 #endif
399