1 //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_OBJECT_ELFTYPES_H
10 #define LLVM_OBJECT_ELFTYPES_H
11 
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Object/Error.h"
16 #include "llvm/Support/BlockFrequency.h"
17 #include "llvm/Support/BranchProbability.h"
18 #include "llvm/Support/Endian.h"
19 #include "llvm/Support/Error.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 #include <cstdint>
23 #include <cstring>
24 #include <type_traits>
25 
26 namespace llvm {
27 namespace object {
28 
29 template <class ELFT> struct Elf_Ehdr_Impl;
30 template <class ELFT> struct Elf_Shdr_Impl;
31 template <class ELFT> struct Elf_Sym_Impl;
32 template <class ELFT> struct Elf_Dyn_Impl;
33 template <class ELFT> struct Elf_Phdr_Impl;
34 template <class ELFT, bool isRela> struct Elf_Rel_Impl;
35 template <class ELFT> struct Elf_Verdef_Impl;
36 template <class ELFT> struct Elf_Verdaux_Impl;
37 template <class ELFT> struct Elf_Verneed_Impl;
38 template <class ELFT> struct Elf_Vernaux_Impl;
39 template <class ELFT> struct Elf_Versym_Impl;
40 template <class ELFT> struct Elf_Hash_Impl;
41 template <class ELFT> struct Elf_GnuHash_Impl;
42 template <class ELFT> struct Elf_Chdr_Impl;
43 template <class ELFT> struct Elf_Nhdr_Impl;
44 template <class ELFT> class Elf_Note_Impl;
45 template <class ELFT> class Elf_Note_Iterator_Impl;
46 template <class ELFT> struct Elf_CGProfile_Impl;
47 
48 template <endianness E, bool Is64> struct ELFType {
49 private:
50   template <typename Ty>
51   using packed = support::detail::packed_endian_specific_integral<Ty, E, 1>;
52 
53 public:
54   static const endianness TargetEndianness = E;
55   static const bool Is64Bits = Is64;
56 
57   using uint = std::conditional_t<Is64, uint64_t, uint32_t>;
58   using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
59   using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
60   using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
61   using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>;
62   using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>;
63   using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>;
64   using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>;
65   using Relr = packed<uint>;
66   using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>;
67   using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>;
68   using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>;
69   using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>;
70   using Versym = Elf_Versym_Impl<ELFType<E, Is64>>;
71   using Hash = Elf_Hash_Impl<ELFType<E, Is64>>;
72   using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>;
73   using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>;
74   using Nhdr = Elf_Nhdr_Impl<ELFType<E, Is64>>;
75   using Note = Elf_Note_Impl<ELFType<E, Is64>>;
76   using NoteIterator = Elf_Note_Iterator_Impl<ELFType<E, Is64>>;
77   using CGProfile = Elf_CGProfile_Impl<ELFType<E, Is64>>;
78   using DynRange = ArrayRef<Dyn>;
79   using ShdrRange = ArrayRef<Shdr>;
80   using SymRange = ArrayRef<Sym>;
81   using RelRange = ArrayRef<Rel>;
82   using RelaRange = ArrayRef<Rela>;
83   using RelrRange = ArrayRef<Relr>;
84   using PhdrRange = ArrayRef<Phdr>;
85 
86   using Half = packed<uint16_t>;
87   using Word = packed<uint32_t>;
88   using Sword = packed<int32_t>;
89   using Xword = packed<uint64_t>;
90   using Sxword = packed<int64_t>;
91   using Addr = packed<uint>;
92   using Off = packed<uint>;
93 };
94 
95 using ELF32LE = ELFType<llvm::endianness::little, false>;
96 using ELF32BE = ELFType<llvm::endianness::big, false>;
97 using ELF64LE = ELFType<llvm::endianness::little, true>;
98 using ELF64BE = ELFType<llvm::endianness::big, true>;
99 
100 // Use an alignment of 2 for the typedefs since that is the worst case for
101 // ELF files in archives.
102 
103 // I really don't like doing this, but the alternative is copypasta.
104 #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
105   using Elf_Addr = typename ELFT::Addr;                                        \
106   using Elf_Off = typename ELFT::Off;                                          \
107   using Elf_Half = typename ELFT::Half;                                        \
108   using Elf_Word = typename ELFT::Word;                                        \
109   using Elf_Sword = typename ELFT::Sword;                                      \
110   using Elf_Xword = typename ELFT::Xword;                                      \
111   using Elf_Sxword = typename ELFT::Sxword;                                    \
112   using uintX_t = typename ELFT::uint;                                         \
113   using Elf_Ehdr = typename ELFT::Ehdr;                                        \
114   using Elf_Shdr = typename ELFT::Shdr;                                        \
115   using Elf_Sym = typename ELFT::Sym;                                          \
116   using Elf_Dyn = typename ELFT::Dyn;                                          \
117   using Elf_Phdr = typename ELFT::Phdr;                                        \
118   using Elf_Rel = typename ELFT::Rel;                                          \
119   using Elf_Rela = typename ELFT::Rela;                                        \
120   using Elf_Relr = typename ELFT::Relr;                                        \
121   using Elf_Verdef = typename ELFT::Verdef;                                    \
122   using Elf_Verdaux = typename ELFT::Verdaux;                                  \
123   using Elf_Verneed = typename ELFT::Verneed;                                  \
124   using Elf_Vernaux = typename ELFT::Vernaux;                                  \
125   using Elf_Versym = typename ELFT::Versym;                                    \
126   using Elf_Hash = typename ELFT::Hash;                                        \
127   using Elf_GnuHash = typename ELFT::GnuHash;                                  \
128   using Elf_Chdr = typename ELFT::Chdr;                                        \
129   using Elf_Nhdr = typename ELFT::Nhdr;                                        \
130   using Elf_Note = typename ELFT::Note;                                        \
131   using Elf_Note_Iterator = typename ELFT::NoteIterator;                       \
132   using Elf_CGProfile = typename ELFT::CGProfile;                              \
133   using Elf_Dyn_Range = typename ELFT::DynRange;                               \
134   using Elf_Shdr_Range = typename ELFT::ShdrRange;                             \
135   using Elf_Sym_Range = typename ELFT::SymRange;                               \
136   using Elf_Rel_Range = typename ELFT::RelRange;                               \
137   using Elf_Rela_Range = typename ELFT::RelaRange;                             \
138   using Elf_Relr_Range = typename ELFT::RelrRange;                             \
139   using Elf_Phdr_Range = typename ELFT::PhdrRange;
140 
141 #define LLVM_ELF_COMMA ,
142 #define LLVM_ELF_IMPORT_TYPES(E, W)                                            \
143   LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLVM_ELF_COMMA W>)
144 
145 // Section header.
146 template <class ELFT> struct Elf_Shdr_Base;
147 
148 template <endianness TargetEndianness>
149 struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
150   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
151   Elf_Word sh_name;      // Section name (index into string table)
152   Elf_Word sh_type;      // Section type (SHT_*)
153   Elf_Word sh_flags;     // Section flags (SHF_*)
154   Elf_Addr sh_addr;      // Address where section is to be loaded
155   Elf_Off sh_offset;     // File offset of section data, in bytes
156   Elf_Word sh_size;      // Size of section, in bytes
157   Elf_Word sh_link;      // Section type-specific header table index link
158   Elf_Word sh_info;      // Section type-specific extra information
159   Elf_Word sh_addralign; // Section address alignment
160   Elf_Word sh_entsize;   // Size of records contained within the section
161 };
162 
163 template <endianness TargetEndianness>
164 struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
165   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
166   Elf_Word sh_name;       // Section name (index into string table)
167   Elf_Word sh_type;       // Section type (SHT_*)
168   Elf_Xword sh_flags;     // Section flags (SHF_*)
169   Elf_Addr sh_addr;       // Address where section is to be loaded
170   Elf_Off sh_offset;      // File offset of section data, in bytes
171   Elf_Xword sh_size;      // Size of section, in bytes
172   Elf_Word sh_link;       // Section type-specific header table index link
173   Elf_Word sh_info;       // Section type-specific extra information
174   Elf_Xword sh_addralign; // Section address alignment
175   Elf_Xword sh_entsize;   // Size of records contained within the section
176 };
177 
178 template <class ELFT>
179 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
180   using Elf_Shdr_Base<ELFT>::sh_entsize;
181   using Elf_Shdr_Base<ELFT>::sh_size;
182 
183   /// Get the number of entities this section contains if it has any.
184   unsigned getEntityCount() const {
185     if (sh_entsize == 0)
186       return 0;
187     return sh_size / sh_entsize;
188   }
189 };
190 
191 template <class ELFT> struct Elf_Sym_Base;
192 
193 template <endianness TargetEndianness>
194 struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
195   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
196   Elf_Word st_name;       // Symbol name (index into string table)
197   Elf_Addr st_value;      // Value or address associated with the symbol
198   Elf_Word st_size;       // Size of the symbol
199   unsigned char st_info;  // Symbol's type and binding attributes
200   unsigned char st_other; // Must be zero; reserved
201   Elf_Half st_shndx;      // Which section (header table index) it's defined in
202 };
203 
204 template <endianness TargetEndianness>
205 struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
206   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
207   Elf_Word st_name;       // Symbol name (index into string table)
208   unsigned char st_info;  // Symbol's type and binding attributes
209   unsigned char st_other; // Must be zero; reserved
210   Elf_Half st_shndx;      // Which section (header table index) it's defined in
211   Elf_Addr st_value;      // Value or address associated with the symbol
212   Elf_Xword st_size;      // Size of the symbol
213 };
214 
215 template <class ELFT>
216 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
217   using Elf_Sym_Base<ELFT>::st_info;
218   using Elf_Sym_Base<ELFT>::st_shndx;
219   using Elf_Sym_Base<ELFT>::st_other;
220   using Elf_Sym_Base<ELFT>::st_value;
221 
222   // These accessors and mutators correspond to the ELF32_ST_BIND,
223   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
224   unsigned char getBinding() const { return st_info >> 4; }
225   unsigned char getType() const { return st_info & 0x0f; }
226   uint64_t getValue() const { return st_value; }
227   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
228   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
229 
230   void setBindingAndType(unsigned char b, unsigned char t) {
231     st_info = (b << 4) + (t & 0x0f);
232   }
233 
234   /// Access to the STV_xxx flag stored in the first two bits of st_other.
235   /// STV_DEFAULT: 0
236   /// STV_INTERNAL: 1
237   /// STV_HIDDEN: 2
238   /// STV_PROTECTED: 3
239   unsigned char getVisibility() const { return st_other & 0x3; }
240   void setVisibility(unsigned char v) {
241     assert(v < 4 && "Invalid value for visibility");
242     st_other = (st_other & ~0x3) | v;
243   }
244 
245   bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
246 
247   bool isCommon() const {
248     return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
249   }
250 
251   bool isDefined() const { return !isUndefined(); }
252 
253   bool isProcessorSpecific() const {
254     return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
255   }
256 
257   bool isOSSpecific() const {
258     return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
259   }
260 
261   bool isReserved() const {
262     // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
263     // true and some compilers warn about it.
264     return st_shndx >= ELF::SHN_LORESERVE;
265   }
266 
267   bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
268 
269   bool isExternal() const {
270     return getBinding() != ELF::STB_LOCAL;
271   }
272 
273   Expected<StringRef> getName(StringRef StrTab) const;
274 };
275 
276 template <class ELFT>
277 Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
278   uint32_t Offset = this->st_name;
279   if (Offset >= StrTab.size())
280     return createStringError(object_error::parse_failed,
281                              "st_name (0x%" PRIx32
282                              ") is past the end of the string table"
283                              " of size 0x%zx",
284                              Offset, StrTab.size());
285   return StringRef(StrTab.data() + Offset);
286 }
287 
288 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
289 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
290 template <class ELFT>
291 struct Elf_Versym_Impl {
292   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
293   Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
294 };
295 
296 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
297 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
298 template <class ELFT>
299 struct Elf_Verdef_Impl {
300   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
301   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
302   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
303   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
304   Elf_Half vd_cnt;     // Number of Verdaux entries
305   Elf_Word vd_hash;    // Hash of name
306   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
307   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
308 
309   /// Get the first Verdaux entry for this Verdef.
310   const Elf_Verdaux *getAux() const {
311     return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
312   }
313 };
314 
315 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
316 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
317 template <class ELFT>
318 struct Elf_Verdaux_Impl {
319   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
320   Elf_Word vda_name; // Version name (offset in string table)
321   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
322 };
323 
324 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
325 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
326 template <class ELFT>
327 struct Elf_Verneed_Impl {
328   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
329   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
330   Elf_Half vn_cnt;     // Number of associated Vernaux entries
331   Elf_Word vn_file;    // Library name (string table offset)
332   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
333   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
334 };
335 
336 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
337 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
338 template <class ELFT>
339 struct Elf_Vernaux_Impl {
340   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
341   Elf_Word vna_hash;  // Hash of dependency name
342   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
343   Elf_Half vna_other; // Version index, used in .gnu.version entries
344   Elf_Word vna_name;  // Dependency name
345   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
346 };
347 
348 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
349 ///               table section (.dynamic) look like.
350 template <class ELFT> struct Elf_Dyn_Base;
351 
352 template <endianness TargetEndianness>
353 struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
354   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
355   Elf_Sword d_tag;
356   union {
357     Elf_Word d_val;
358     Elf_Addr d_ptr;
359   } d_un;
360 };
361 
362 template <endianness TargetEndianness>
363 struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
364   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
365   Elf_Sxword d_tag;
366   union {
367     Elf_Xword d_val;
368     Elf_Addr d_ptr;
369   } d_un;
370 };
371 
372 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
373 template <class ELFT>
374 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
375   using Elf_Dyn_Base<ELFT>::d_tag;
376   using Elf_Dyn_Base<ELFT>::d_un;
377   using intX_t = std::conditional_t<ELFT::Is64Bits, int64_t, int32_t>;
378   using uintX_t = std::conditional_t<ELFT::Is64Bits, uint64_t, uint32_t>;
379   intX_t getTag() const { return d_tag; }
380   uintX_t getVal() const { return d_un.d_val; }
381   uintX_t getPtr() const { return d_un.d_ptr; }
382 };
383 
384 template <endianness TargetEndianness>
385 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
386   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
387   static const bool IsRela = false;
388   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
389   Elf_Word r_info;   // Symbol table index and type of relocation to apply
390 
391   uint32_t getRInfo(bool isMips64EL) const {
392     assert(!isMips64EL);
393     return r_info;
394   }
395   void setRInfo(uint32_t R, bool IsMips64EL) {
396     assert(!IsMips64EL);
397     r_info = R;
398   }
399 
400   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
401   // and ELF32_R_INFO macros defined in the ELF specification:
402   uint32_t getSymbol(bool isMips64EL) const {
403     return this->getRInfo(isMips64EL) >> 8;
404   }
405   unsigned char getType(bool isMips64EL) const {
406     return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
407   }
408   void setSymbol(uint32_t s, bool IsMips64EL) {
409     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
410   }
411   void setType(unsigned char t, bool IsMips64EL) {
412     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
413   }
414   void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
415     this->setRInfo((s << 8) + t, IsMips64EL);
416   }
417 };
418 
419 template <endianness TargetEndianness>
420 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
421     : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
422   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
423   static const bool IsRela = true;
424   Elf_Sword r_addend; // Compute value for relocatable field by adding this
425 };
426 
427 template <endianness TargetEndianness>
428 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
429   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
430   static const bool IsRela = false;
431   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
432   Elf_Xword r_info;  // Symbol table index and type of relocation to apply
433 
434   uint64_t getRInfo(bool isMips64EL) const {
435     uint64_t t = r_info;
436     if (!isMips64EL)
437       return t;
438     // Mips64 little endian has a "special" encoding of r_info. Instead of one
439     // 64 bit little endian number, it is a little endian 32 bit number followed
440     // by a 32 bit big endian number.
441     return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
442            ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
443   }
444 
445   void setRInfo(uint64_t R, bool IsMips64EL) {
446     if (IsMips64EL)
447       r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
448                ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
449     else
450       r_info = R;
451   }
452 
453   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
454   // and ELF64_R_INFO macros defined in the ELF specification:
455   uint32_t getSymbol(bool isMips64EL) const {
456     return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
457   }
458   uint32_t getType(bool isMips64EL) const {
459     return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
460   }
461   void setSymbol(uint32_t s, bool IsMips64EL) {
462     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
463   }
464   void setType(uint32_t t, bool IsMips64EL) {
465     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
466   }
467   void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
468     this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
469   }
470 };
471 
472 template <endianness TargetEndianness>
473 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
474     : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
475   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
476   static const bool IsRela = true;
477   Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
478 };
479 
480 template <class ELFT>
481 struct Elf_Ehdr_Impl {
482   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
483   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
484   Elf_Half e_type;                       // Type of file (see ET_*)
485   Elf_Half e_machine;   // Required architecture for this file (see EM_*)
486   Elf_Word e_version;   // Must be equal to 1
487   Elf_Addr e_entry;     // Address to jump to in order to start program
488   Elf_Off e_phoff;      // Program header table's file offset, in bytes
489   Elf_Off e_shoff;      // Section header table's file offset, in bytes
490   Elf_Word e_flags;     // Processor-specific flags
491   Elf_Half e_ehsize;    // Size of ELF header, in bytes
492   Elf_Half e_phentsize; // Size of an entry in the program header table
493   Elf_Half e_phnum;     // Number of entries in the program header table
494   Elf_Half e_shentsize; // Size of an entry in the section header table
495   Elf_Half e_shnum;     // Number of entries in the section header table
496   Elf_Half e_shstrndx;  // Section header table index of section name
497                         // string table
498 
499   bool checkMagic() const {
500     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
501   }
502 
503   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
504   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
505 };
506 
507 template <endianness TargetEndianness>
508 struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
509   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
510   Elf_Word p_type;   // Type of segment
511   Elf_Off p_offset;  // FileOffset where segment is located, in bytes
512   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
513   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
514   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
515   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
516   Elf_Word p_flags;  // Segment flags
517   Elf_Word p_align;  // Segment alignment constraint
518 };
519 
520 template <endianness TargetEndianness>
521 struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
522   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
523   Elf_Word p_type;    // Type of segment
524   Elf_Word p_flags;   // Segment flags
525   Elf_Off p_offset;   // FileOffset where segment is located, in bytes
526   Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
527   Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
528   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
529   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
530   Elf_Xword p_align;  // Segment alignment constraint
531 };
532 
533 // ELFT needed for endianness.
534 template <class ELFT>
535 struct Elf_Hash_Impl {
536   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
537   Elf_Word nbucket;
538   Elf_Word nchain;
539 
540   ArrayRef<Elf_Word> buckets() const {
541     return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
542   }
543 
544   ArrayRef<Elf_Word> chains() const {
545     return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
546                               &nbucket + 2 + nbucket + nchain);
547   }
548 };
549 
550 // .gnu.hash section
551 template <class ELFT>
552 struct Elf_GnuHash_Impl {
553   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
554   Elf_Word nbuckets;
555   Elf_Word symndx;
556   Elf_Word maskwords;
557   Elf_Word shift2;
558 
559   ArrayRef<Elf_Off> filter() const {
560     return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
561                              maskwords);
562   }
563 
564   ArrayRef<Elf_Word> buckets() const {
565     return ArrayRef<Elf_Word>(
566         reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
567   }
568 
569   ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
570     assert(DynamicSymCount >= symndx);
571     return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
572   }
573 };
574 
575 // Compressed section headers.
576 // http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
577 template <endianness TargetEndianness>
578 struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
579   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
580   Elf_Word ch_type;
581   Elf_Word ch_size;
582   Elf_Word ch_addralign;
583 };
584 
585 template <endianness TargetEndianness>
586 struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
587   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
588   Elf_Word ch_type;
589   Elf_Word ch_reserved;
590   Elf_Xword ch_size;
591   Elf_Xword ch_addralign;
592 };
593 
594 /// Note header
595 template <class ELFT>
596 struct Elf_Nhdr_Impl {
597   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
598   Elf_Word n_namesz;
599   Elf_Word n_descsz;
600   Elf_Word n_type;
601 
602   /// Get the size of the note, including name, descriptor, and padding. Both
603   /// the start and the end of the descriptor are aligned by the section
604   /// alignment. In practice many 64-bit systems deviate from the generic ABI by
605   /// using sh_addralign=4.
606   size_t getSize(size_t Align) const {
607     return alignToPowerOf2(sizeof(*this) + n_namesz, Align) +
608            alignToPowerOf2(n_descsz, Align);
609   }
610 };
611 
612 /// An ELF note.
613 ///
614 /// Wraps a note header, providing methods for accessing the name and
615 /// descriptor safely.
616 template <class ELFT>
617 class Elf_Note_Impl {
618   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
619 
620   const Elf_Nhdr_Impl<ELFT> &Nhdr;
621 
622   template <class NoteIteratorELFT> friend class Elf_Note_Iterator_Impl;
623 
624 public:
625   Elf_Note_Impl(const Elf_Nhdr_Impl<ELFT> &Nhdr) : Nhdr(Nhdr) {}
626 
627   /// Get the note's name, excluding the terminating null byte.
628   StringRef getName() const {
629     if (!Nhdr.n_namesz)
630       return StringRef();
631     return StringRef(reinterpret_cast<const char *>(&Nhdr) + sizeof(Nhdr),
632                      Nhdr.n_namesz - 1);
633   }
634 
635   /// Get the note's descriptor.
636   ArrayRef<uint8_t> getDesc(size_t Align) const {
637     if (!Nhdr.n_descsz)
638       return ArrayRef<uint8_t>();
639     return ArrayRef<uint8_t>(
640         reinterpret_cast<const uint8_t *>(&Nhdr) +
641             alignToPowerOf2(sizeof(Nhdr) + Nhdr.n_namesz, Align),
642         Nhdr.n_descsz);
643   }
644 
645   /// Get the note's descriptor as StringRef
646   StringRef getDescAsStringRef(size_t Align) const {
647     ArrayRef<uint8_t> Desc = getDesc(Align);
648     return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
649   }
650 
651   /// Get the note's type.
652   Elf_Word getType() const { return Nhdr.n_type; }
653 };
654 
655 template <class ELFT> class Elf_Note_Iterator_Impl {
656 public:
657   using iterator_category = std::forward_iterator_tag;
658   using value_type = Elf_Note_Impl<ELFT>;
659   using difference_type = std::ptrdiff_t;
660   using pointer = value_type *;
661   using reference = value_type &;
662 
663 private:
664   // Nhdr being a nullptr marks the end of iteration.
665   const Elf_Nhdr_Impl<ELFT> *Nhdr = nullptr;
666   size_t RemainingSize = 0u;
667   size_t Align = 0;
668   Error *Err = nullptr;
669 
670   template <class ELFFileELFT> friend class ELFFile;
671 
672   // Stop iteration and indicate an overflow.
673   void stopWithOverflowError() {
674     Nhdr = nullptr;
675     *Err = make_error<StringError>("ELF note overflows container",
676                                    object_error::parse_failed);
677   }
678 
679   // Advance Nhdr by NoteSize bytes, starting from NhdrPos.
680   //
681   // Assumes NoteSize <= RemainingSize. Ensures Nhdr->getSize() <= RemainingSize
682   // upon returning. Handles stopping iteration when reaching the end of the
683   // container, either cleanly or with an overflow error.
684   void advanceNhdr(const uint8_t *NhdrPos, size_t NoteSize) {
685     RemainingSize -= NoteSize;
686     if (RemainingSize == 0u) {
687       // Ensure that if the iterator walks to the end, the error is checked
688       // afterwards.
689       *Err = Error::success();
690       Nhdr = nullptr;
691     } else if (sizeof(*Nhdr) > RemainingSize)
692       stopWithOverflowError();
693     else {
694       Nhdr = reinterpret_cast<const Elf_Nhdr_Impl<ELFT> *>(NhdrPos + NoteSize);
695       if (Nhdr->getSize(Align) > RemainingSize)
696         stopWithOverflowError();
697       else
698         *Err = Error::success();
699     }
700   }
701 
702   Elf_Note_Iterator_Impl() = default;
703   explicit Elf_Note_Iterator_Impl(Error &Err) : Err(&Err) {}
704   Elf_Note_Iterator_Impl(const uint8_t *Start, size_t Size, size_t Align,
705                          Error &Err)
706       : RemainingSize(Size), Align(Align), Err(&Err) {
707     consumeError(std::move(Err));
708     assert(Start && "ELF note iterator starting at NULL");
709     advanceNhdr(Start, 0u);
710   }
711 
712 public:
713   Elf_Note_Iterator_Impl &operator++() {
714     assert(Nhdr && "incremented ELF note end iterator");
715     const uint8_t *NhdrPos = reinterpret_cast<const uint8_t *>(Nhdr);
716     size_t NoteSize = Nhdr->getSize(Align);
717     advanceNhdr(NhdrPos, NoteSize);
718     return *this;
719   }
720   bool operator==(Elf_Note_Iterator_Impl Other) const {
721     if (!Nhdr && Other.Err)
722       (void)(bool)(*Other.Err);
723     if (!Other.Nhdr && Err)
724       (void)(bool)(*Err);
725     return Nhdr == Other.Nhdr;
726   }
727   bool operator!=(Elf_Note_Iterator_Impl Other) const {
728     return !(*this == Other);
729   }
730   Elf_Note_Impl<ELFT> operator*() const {
731     assert(Nhdr && "dereferenced ELF note end iterator");
732     return Elf_Note_Impl<ELFT>(*Nhdr);
733   }
734 };
735 
736 template <class ELFT> struct Elf_CGProfile_Impl {
737   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
738   Elf_Xword cgp_weight;
739 };
740 
741 // MIPS .reginfo section
742 template <class ELFT>
743 struct Elf_Mips_RegInfo;
744 
745 template <llvm::endianness TargetEndianness>
746 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
747   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
748   Elf_Word ri_gprmask;     // bit-mask of used general registers
749   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
750   Elf_Addr ri_gp_value;    // gp register value
751 };
752 
753 template <llvm::endianness TargetEndianness>
754 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
755   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
756   Elf_Word ri_gprmask;     // bit-mask of used general registers
757   Elf_Word ri_pad;         // unused padding field
758   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
759   Elf_Addr ri_gp_value;    // gp register value
760 };
761 
762 // .MIPS.options section
763 template <class ELFT> struct Elf_Mips_Options {
764   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
765   uint8_t kind;     // Determines interpretation of variable part of descriptor
766   uint8_t size;     // Byte size of descriptor, including this header
767   Elf_Half section; // Section header index of section affected,
768                     // or 0 for global options
769   Elf_Word info;    // Kind-specific information
770 
771   Elf_Mips_RegInfo<ELFT> &getRegInfo() {
772     assert(kind == ELF::ODK_REGINFO);
773     return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
774         (uint8_t *)this + sizeof(Elf_Mips_Options));
775   }
776   const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
777     return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
778   }
779 };
780 
781 // .MIPS.abiflags section content
782 template <class ELFT> struct Elf_Mips_ABIFlags {
783   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
784   Elf_Half version;  // Version of the structure
785   uint8_t isa_level; // ISA level: 1-5, 32, and 64
786   uint8_t isa_rev;   // ISA revision (0 for MIPS I - MIPS V)
787   uint8_t gpr_size;  // General purpose registers size
788   uint8_t cpr1_size; // Co-processor 1 registers size
789   uint8_t cpr2_size; // Co-processor 2 registers size
790   uint8_t fp_abi;    // Floating-point ABI flag
791   Elf_Word isa_ext;  // Processor-specific extension
792   Elf_Word ases;     // ASEs flags
793   Elf_Word flags1;   // General flags
794   Elf_Word flags2;   // General flags
795 };
796 
797 // Struct representing the BBAddrMap for one function.
798 struct BBAddrMap {
799   // Struct representing the BBAddrMap information for one basic block.
800   struct BBEntry {
801     struct Metadata {
802       bool HasReturn : 1;         // If this block ends with a return (or tail
803                                   // call).
804       bool HasTailCall : 1;       // If this block ends with a tail call.
805       bool IsEHPad : 1;           // If this is an exception handling block.
806       bool CanFallThrough : 1;    // If this block can fall through to its next.
807       bool HasIndirectBranch : 1; // If this block ends with an indirect branch
808                                   // (branch via a register).
809 
810       bool operator==(const Metadata &Other) const {
811         return HasReturn == Other.HasReturn &&
812                HasTailCall == Other.HasTailCall && IsEHPad == Other.IsEHPad &&
813                CanFallThrough == Other.CanFallThrough &&
814                HasIndirectBranch == Other.HasIndirectBranch;
815       }
816 
817       // Encodes this struct as a uint32_t value.
818       uint32_t encode() const {
819         return static_cast<uint32_t>(HasReturn) |
820                (static_cast<uint32_t>(HasTailCall) << 1) |
821                (static_cast<uint32_t>(IsEHPad) << 2) |
822                (static_cast<uint32_t>(CanFallThrough) << 3) |
823                (static_cast<uint32_t>(HasIndirectBranch) << 4);
824       }
825 
826       // Decodes and returns a Metadata struct from a uint32_t value.
827       static Expected<Metadata> decode(uint32_t V) {
828         Metadata MD{/*HasReturn=*/static_cast<bool>(V & 1),
829                     /*HasTailCall=*/static_cast<bool>(V & (1 << 1)),
830                     /*IsEHPad=*/static_cast<bool>(V & (1 << 2)),
831                     /*CanFallThrough=*/static_cast<bool>(V & (1 << 3)),
832                     /*HasIndirectBranch=*/static_cast<bool>(V & (1 << 4))};
833         if (MD.encode() != V)
834           return createStringError(
835               std::error_code(), "invalid encoding for BBEntry::Metadata: 0x%x",
836               V);
837         return MD;
838       }
839     };
840 
841     uint32_t ID;     // Unique ID of this basic block.
842     uint32_t Offset; // Offset of basic block relative to function start.
843     uint32_t Size;   // Size of the basic block.
844     Metadata MD;     // Metdata for this basic block.
845 
846     BBEntry(uint32_t ID, uint32_t Offset, uint32_t Size, Metadata MD)
847         : ID(ID), Offset(Offset), Size(Size), MD(MD){};
848 
849     bool operator==(const BBEntry &Other) const {
850       return ID == Other.ID && Offset == Other.Offset && Size == Other.Size &&
851              MD == Other.MD;
852     }
853 
854     bool hasReturn() const { return MD.HasReturn; }
855     bool hasTailCall() const { return MD.HasTailCall; }
856     bool isEHPad() const { return MD.IsEHPad; }
857     bool canFallThrough() const { return MD.CanFallThrough; }
858     bool hasIndirectBranch() const { return MD.HasIndirectBranch; }
859   };
860 
861   BBAddrMap(uint64_t Addr, std::vector<BBEntry> BBEntries)
862       : Addr(Addr), BBEntries(std::move(BBEntries)) {}
863 
864   // Returns the address of the corresponding function.
865   uint64_t getFunctionAddress() const { return Addr; }
866 
867   // Returns the basic block entries for this function.
868   const std::vector<BBEntry> &getBBEntries() const { return BBEntries; }
869 
870   // Equality operator for unit testing.
871   bool operator==(const BBAddrMap &Other) const {
872     return Addr == Other.Addr && std::equal(BBEntries.begin(), BBEntries.end(),
873                                             Other.BBEntries.begin());
874   }
875 
876   uint64_t Addr;                  // Function address
877   std::vector<BBEntry> BBEntries; // Basic block entries for this function.
878 };
879 
880 /// A feature extension of BBAddrMap that holds information relevant to PGO.
881 struct PGOAnalysisMap {
882   /// Bitfield of optional features to include in the PGO extended map.
883   struct Features {
884     bool FuncEntryCount : 1;
885     bool BBFreq : 1;
886     bool BrProb : 1;
887 
888     // True if at least one feature is enabled
889     bool anyEnabled() const { return FuncEntryCount || BBFreq || BrProb; }
890 
891     // Encodes to minimum bit width representation.
892     uint8_t encode() const {
893       return (static_cast<uint8_t>(FuncEntryCount) << 0) |
894              (static_cast<uint8_t>(BBFreq) << 1) |
895              (static_cast<uint8_t>(BrProb) << 2);
896     }
897 
898     // Decodes from minimum bit width representation and validates no
899     // unnecessary bits are used.
900     static Expected<Features> decode(uint8_t Val) {
901       Features Feat{static_cast<bool>(Val & (1 << 0)),
902                     static_cast<bool>(Val & (1 << 1)),
903                     static_cast<bool>(Val & (1 << 2))};
904       if (Feat.encode() != Val)
905         return createStringError(
906             std::error_code(),
907             "invalid encoding for PGOAnalysisMap::Features: 0x%x", Val);
908       return Feat;
909     }
910 
911     bool operator==(const Features &Other) const {
912       return std::tie(FuncEntryCount, BBFreq, BrProb) ==
913              std::tie(Other.FuncEntryCount, Other.BBFreq, Other.BrProb);
914     }
915   };
916 
917   /// Extra basic block data with fields for block frequency and branch
918   /// probability.
919   struct PGOBBEntry {
920     /// Single successor of a given basic block that contains the tag and branch
921     /// probability associated with it.
922     struct SuccessorEntry {
923       /// Unique ID of this successor basic block.
924       uint32_t ID;
925       /// Branch Probability of the edge to this successor taken from MBPI.
926       BranchProbability Prob;
927 
928       bool operator==(const SuccessorEntry &Other) const {
929         return std::tie(ID, Prob) == std::tie(Other.ID, Other.Prob);
930       }
931     };
932 
933     /// Block frequency taken from MBFI
934     BlockFrequency BlockFreq;
935     /// List of successors of the current block
936     llvm::SmallVector<SuccessorEntry, 2> Successors;
937 
938     bool operator==(const PGOBBEntry &Other) const {
939       return std::tie(BlockFreq, Successors) ==
940              std::tie(Other.BlockFreq, Other.Successors);
941     }
942   };
943 
944   uint64_t FuncEntryCount;           // Prof count from IR function
945   std::vector<PGOBBEntry> BBEntries; // Extended basic block entries
946 
947   // Flags to indicate if each PGO related info was enabled in this function
948   Features FeatEnable;
949 
950   bool operator==(const PGOAnalysisMap &Other) const {
951     return std::tie(FuncEntryCount, BBEntries, FeatEnable) ==
952            std::tie(Other.FuncEntryCount, Other.BBEntries, Other.FeatEnable);
953   }
954 };
955 
956 } // end namespace object.
957 } // end namespace llvm.
958 
959 #endif // LLVM_OBJECT_ELFTYPES_H
960