1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - this file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 ///   [1] Linear-Time Algorithms for Dominators and Related Problems
15 ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19 /// faster than Simple Lengauer-Tarjan in practice.
20 ///
21 /// O(n^2) worst cases happen when the computation of nearest common ancestors
22 /// requires O(n) average time, which is very unlikely in real world. If this
23 /// ever turns out to be an issue, consider implementing a hybrid algorithm
24 /// that uses SLT to perform full constructions and SemiNCA for incremental
25 /// updates.
26 ///
27 /// The file uses the Depth Based Search algorithm to perform incremental
28 /// updates (insertion and deletions). The implemented algorithm is based on
29 /// this publication:
30 ///
31 ///   [2] An Experimental Study of Dynamic Dominators
32 ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
33 ///   https://arxiv.org/pdf/1604.02711.pdf
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
38 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
39 
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseSet.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/PointerIntPair.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/GenericDomTree.h"
47 #include <queue>
48 
49 #define DEBUG_TYPE "dom-tree-builder"
50 
51 namespace llvm {
52 namespace DomTreeBuilder {
53 
54 template <typename DomTreeT>
55 struct SemiNCAInfo {
56   using NodePtr = typename DomTreeT::NodePtr;
57   using NodeT = typename DomTreeT::NodeType;
58   using TreeNodePtr = DomTreeNodeBase<NodeT> *;
59   using RootsT = decltype(DomTreeT::Roots);
60   static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
61   using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
62 
63   // Information record used by Semi-NCA during tree construction.
64   struct InfoRec {
65     unsigned DFSNum = 0;
66     unsigned Parent = 0;
67     unsigned Semi = 0;
68     NodePtr Label = nullptr;
69     NodePtr IDom = nullptr;
70     SmallVector<NodePtr, 2> ReverseChildren;
71   };
72 
73   // Number to node mapping is 1-based. Initialize the mapping to start with
74   // a dummy element.
75   std::vector<NodePtr> NumToNode = {nullptr};
76   DenseMap<NodePtr, InfoRec> NodeToInfo;
77 
78   using UpdateT = typename DomTreeT::UpdateType;
79   using UpdateKind = typename DomTreeT::UpdateKind;
80   struct BatchUpdateInfo {
81     // Note: Updates inside PreViewCFG are already legalized.
82     BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
83         : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
84           NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
85 
86     // Remembers if the whole tree was recalculated at some point during the
87     // current batch update.
88     bool IsRecalculated = false;
89     GraphDiffT &PreViewCFG;
90     GraphDiffT *PostViewCFG;
91     const size_t NumLegalized;
92   };
93 
94   BatchUpdateInfo *BatchUpdates;
95   using BatchUpdatePtr = BatchUpdateInfo *;
96 
97   // If BUI is a nullptr, then there's no batch update in progress.
98   SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
99 
100   void clear() {
101     NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
102     NodeToInfo.clear();
103     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
104     // in progress, we need this information to continue it.
105   }
106 
107   template <bool Inversed>
108   static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
109     if (BUI)
110       return BUI->PreViewCFG.template getChildren<Inversed>(N);
111     return getChildren<Inversed>(N);
112   }
113 
114   template <bool Inversed>
115   static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
116     using DirectedNodeT =
117         std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
118     auto R = children<DirectedNodeT>(N);
119     SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
120 
121     // Remove nullptr children for clang.
122     llvm::erase_value(Res, nullptr);
123     return Res;
124   }
125 
126   NodePtr getIDom(NodePtr BB) const {
127     auto InfoIt = NodeToInfo.find(BB);
128     if (InfoIt == NodeToInfo.end()) return nullptr;
129 
130     return InfoIt->second.IDom;
131   }
132 
133   TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
134     if (TreeNodePtr Node = DT.getNode(BB)) return Node;
135 
136     // Haven't calculated this node yet?  Get or calculate the node for the
137     // immediate dominator.
138     NodePtr IDom = getIDom(BB);
139 
140     assert(IDom || DT.DomTreeNodes[nullptr]);
141     TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
142 
143     // Add a new tree node for this NodeT, and link it as a child of
144     // IDomNode
145     return DT.createChild(BB, IDomNode);
146   }
147 
148   static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
149 
150   struct BlockNamePrinter {
151     NodePtr N;
152 
153     BlockNamePrinter(NodePtr Block) : N(Block) {}
154     BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
155 
156     friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
157       if (!BP.N)
158         O << "nullptr";
159       else
160         BP.N->printAsOperand(O, false);
161 
162       return O;
163     }
164   };
165 
166   using NodeOrderMap = DenseMap<NodePtr, unsigned>;
167 
168   // Custom DFS implementation which can skip nodes based on a provided
169   // predicate. It also collects ReverseChildren so that we don't have to spend
170   // time getting predecessors in SemiNCA.
171   //
172   // If IsReverse is set to true, the DFS walk will be performed backwards
173   // relative to IsPostDom -- using reverse edges for dominators and forward
174   // edges for postdominators.
175   //
176   // If SuccOrder is specified then in this order the DFS traverses the children
177   // otherwise the order is implied by the results of getChildren().
178   template <bool IsReverse = false, typename DescendCondition>
179   unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
180                   unsigned AttachToNum,
181                   const NodeOrderMap *SuccOrder = nullptr) {
182     assert(V);
183     SmallVector<NodePtr, 64> WorkList = {V};
184     if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
185 
186     while (!WorkList.empty()) {
187       const NodePtr BB = WorkList.pop_back_val();
188       auto &BBInfo = NodeToInfo[BB];
189 
190       // Visited nodes always have positive DFS numbers.
191       if (BBInfo.DFSNum != 0) continue;
192       BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
193       BBInfo.Label = BB;
194       NumToNode.push_back(BB);
195 
196       constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
197       auto Successors = getChildren<Direction>(BB, BatchUpdates);
198       if (SuccOrder && Successors.size() > 1)
199         llvm::sort(
200             Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
201               return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
202             });
203 
204       for (const NodePtr Succ : Successors) {
205         const auto SIT = NodeToInfo.find(Succ);
206         // Don't visit nodes more than once but remember to collect
207         // ReverseChildren.
208         if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
209           if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
210           continue;
211         }
212 
213         if (!Condition(BB, Succ)) continue;
214 
215         // It's fine to add Succ to the map, because we know that it will be
216         // visited later.
217         auto &SuccInfo = NodeToInfo[Succ];
218         WorkList.push_back(Succ);
219         SuccInfo.Parent = LastNum;
220         SuccInfo.ReverseChildren.push_back(BB);
221       }
222     }
223 
224     return LastNum;
225   }
226 
227   // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
228   // of sdom(U), where U > W and there is a virtual forest path from U to V. The
229   // virtual forest consists of linked edges of processed vertices.
230   //
231   // We can follow Parent pointers (virtual forest edges) to determine the
232   // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
233   // compression technique to speed up to O(m*log(n)). Theoretically the virtual
234   // forest can be organized as balanced trees to achieve almost linear
235   // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
236   // and Child) and is unlikely to be faster than the simple implementation.
237   //
238   // For each vertex V, its Label points to the vertex with the minimal sdom(U)
239   // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
240   NodePtr eval(NodePtr V, unsigned LastLinked,
241                SmallVectorImpl<InfoRec *> &Stack) {
242     InfoRec *VInfo = &NodeToInfo[V];
243     if (VInfo->Parent < LastLinked)
244       return VInfo->Label;
245 
246     // Store ancestors except the last (root of a virtual tree) into a stack.
247     assert(Stack.empty());
248     do {
249       Stack.push_back(VInfo);
250       VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
251     } while (VInfo->Parent >= LastLinked);
252 
253     // Path compression. Point each vertex's Parent to the root and update its
254     // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
255     const InfoRec *PInfo = VInfo;
256     const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
257     do {
258       VInfo = Stack.pop_back_val();
259       VInfo->Parent = PInfo->Parent;
260       const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
261       if (PLabelInfo->Semi < VLabelInfo->Semi)
262         VInfo->Label = PInfo->Label;
263       else
264         PLabelInfo = VLabelInfo;
265       PInfo = VInfo;
266     } while (!Stack.empty());
267     return VInfo->Label;
268   }
269 
270   // This function requires DFS to be run before calling it.
271   void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
272     const unsigned NextDFSNum(NumToNode.size());
273     // Initialize IDoms to spanning tree parents.
274     for (unsigned i = 1; i < NextDFSNum; ++i) {
275       const NodePtr V = NumToNode[i];
276       auto &VInfo = NodeToInfo[V];
277       VInfo.IDom = NumToNode[VInfo.Parent];
278     }
279 
280     // Step #1: Calculate the semidominators of all vertices.
281     SmallVector<InfoRec *, 32> EvalStack;
282     for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
283       NodePtr W = NumToNode[i];
284       auto &WInfo = NodeToInfo[W];
285 
286       // Initialize the semi dominator to point to the parent node.
287       WInfo.Semi = WInfo.Parent;
288       for (const auto &N : WInfo.ReverseChildren) {
289         if (NodeToInfo.count(N) == 0)  // Skip unreachable predecessors.
290           continue;
291 
292         const TreeNodePtr TN = DT.getNode(N);
293         // Skip predecessors whose level is above the subtree we are processing.
294         if (TN && TN->getLevel() < MinLevel)
295           continue;
296 
297         unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
298         if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
299       }
300     }
301 
302     // Step #2: Explicitly define the immediate dominator of each vertex.
303     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
304     // Note that the parents were stored in IDoms and later got invalidated
305     // during path compression in Eval.
306     for (unsigned i = 2; i < NextDFSNum; ++i) {
307       const NodePtr W = NumToNode[i];
308       auto &WInfo = NodeToInfo[W];
309       const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
310       NodePtr WIDomCandidate = WInfo.IDom;
311       while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
312         WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
313 
314       WInfo.IDom = WIDomCandidate;
315     }
316   }
317 
318   // PostDominatorTree always has a virtual root that represents a virtual CFG
319   // node that serves as a single exit from the function. All the other exits
320   // (CFG nodes with terminators and nodes in infinite loops are logically
321   // connected to this virtual CFG exit node).
322   // This functions maps a nullptr CFG node to the virtual root tree node.
323   void addVirtualRoot() {
324     assert(IsPostDom && "Only postdominators have a virtual root");
325     assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
326 
327     auto &BBInfo = NodeToInfo[nullptr];
328     BBInfo.DFSNum = BBInfo.Semi = 1;
329     BBInfo.Label = nullptr;
330 
331     NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
332   }
333 
334   // For postdominators, nodes with no forward successors are trivial roots that
335   // are always selected as tree roots. Roots with forward successors correspond
336   // to CFG nodes within infinite loops.
337   static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
338     assert(N && "N must be a valid node");
339     return !getChildren<false>(N, BUI).empty();
340   }
341 
342   static NodePtr GetEntryNode(const DomTreeT &DT) {
343     assert(DT.Parent && "Parent not set");
344     return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
345   }
346 
347   // Finds all roots without relaying on the set of roots already stored in the
348   // tree.
349   // We define roots to be some non-redundant set of the CFG nodes
350   static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
351     assert(DT.Parent && "Parent pointer is not set");
352     RootsT Roots;
353 
354     // For dominators, function entry CFG node is always a tree root node.
355     if (!IsPostDom) {
356       Roots.push_back(GetEntryNode(DT));
357       return Roots;
358     }
359 
360     SemiNCAInfo SNCA(BUI);
361 
362     // PostDominatorTree always has a virtual root.
363     SNCA.addVirtualRoot();
364     unsigned Num = 1;
365 
366     LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
367 
368     // Step #1: Find all the trivial roots that are going to will definitely
369     // remain tree roots.
370     unsigned Total = 0;
371     // It may happen that there are some new nodes in the CFG that are result of
372     // the ongoing batch update, but we cannot really pretend that they don't
373     // exist -- we won't see any outgoing or incoming edges to them, so it's
374     // fine to discover them here, as they would end up appearing in the CFG at
375     // some point anyway.
376     for (const NodePtr N : nodes(DT.Parent)) {
377       ++Total;
378       // If it has no *successors*, it is definitely a root.
379       if (!HasForwardSuccessors(N, BUI)) {
380         Roots.push_back(N);
381         // Run DFS not to walk this part of CFG later.
382         Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
383         LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
384                           << "\n");
385         LLVM_DEBUG(dbgs() << "Last visited node: "
386                           << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
387       }
388     }
389 
390     LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
391 
392     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
393     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
394     // nodes in infinite loops).
395     bool HasNonTrivialRoots = false;
396     // Accounting for the virtual exit, see if we had any reverse-unreachable
397     // nodes.
398     if (Total + 1 != Num) {
399       HasNonTrivialRoots = true;
400 
401       // SuccOrder is the order of blocks in the function. It is needed to make
402       // the calculation of the FurthestAway node and the whole PostDomTree
403       // immune to swap successors transformation (e.g. canonicalizing branch
404       // predicates). SuccOrder is initialized lazily only for successors of
405       // reverse unreachable nodes.
406       Optional<NodeOrderMap> SuccOrder;
407       auto InitSuccOrderOnce = [&]() {
408         SuccOrder = NodeOrderMap();
409         for (const auto Node : nodes(DT.Parent))
410           if (SNCA.NodeToInfo.count(Node) == 0)
411             for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
412               SuccOrder->try_emplace(Succ, 0);
413 
414         // Add mapping for all entries of SuccOrder.
415         unsigned NodeNum = 0;
416         for (const auto Node : nodes(DT.Parent)) {
417           ++NodeNum;
418           auto Order = SuccOrder->find(Node);
419           if (Order != SuccOrder->end()) {
420             assert(Order->second == 0);
421             Order->second = NodeNum;
422           }
423         }
424       };
425 
426       // Make another DFS pass over all other nodes to find the
427       // reverse-unreachable blocks, and find the furthest paths we'll be able
428       // to make.
429       // Note that this looks N^2, but it's really 2N worst case, if every node
430       // is unreachable. This is because we are still going to only visit each
431       // unreachable node once, we may just visit it in two directions,
432       // depending on how lucky we get.
433       for (const NodePtr I : nodes(DT.Parent)) {
434         if (SNCA.NodeToInfo.count(I) == 0) {
435           LLVM_DEBUG(dbgs()
436                      << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
437           // Find the furthest away we can get by following successors, then
438           // follow them in reverse.  This gives us some reasonable answer about
439           // the post-dom tree inside any infinite loop. In particular, it
440           // guarantees we get to the farthest away point along *some*
441           // path. This also matches the GCC's behavior.
442           // If we really wanted a totally complete picture of dominance inside
443           // this infinite loop, we could do it with SCC-like algorithms to find
444           // the lowest and highest points in the infinite loop.  In theory, it
445           // would be nice to give the canonical backedge for the loop, but it's
446           // expensive and does not always lead to a minimal set of roots.
447           LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
448 
449           if (!SuccOrder)
450             InitSuccOrderOnce();
451           assert(SuccOrder);
452 
453           const unsigned NewNum =
454               SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
455           const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
456           LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
457                             << "(non-trivial root): "
458                             << BlockNamePrinter(FurthestAway) << "\n");
459           Roots.push_back(FurthestAway);
460           LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
461                             << NewNum << "\n\t\t\tRemoving DFS info\n");
462           for (unsigned i = NewNum; i > Num; --i) {
463             const NodePtr N = SNCA.NumToNode[i];
464             LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
465                               << BlockNamePrinter(N) << "\n");
466             SNCA.NodeToInfo.erase(N);
467             SNCA.NumToNode.pop_back();
468           }
469           const unsigned PrevNum = Num;
470           LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
471           Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
472           for (unsigned i = PrevNum + 1; i <= Num; ++i)
473             LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
474                               << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
475         }
476       }
477     }
478 
479     LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
480     LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
481     LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
482                << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
483 
484     assert((Total + 1 == Num) && "Everything should have been visited");
485 
486     // Step #3: If we found some non-trivial roots, make them non-redundant.
487     if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
488 
489     LLVM_DEBUG(dbgs() << "Found roots: ");
490     LLVM_DEBUG(for (auto *Root
491                     : Roots) dbgs()
492                << BlockNamePrinter(Root) << " ");
493     LLVM_DEBUG(dbgs() << "\n");
494 
495     return Roots;
496   }
497 
498   // This function only makes sense for postdominators.
499   // We define roots to be some set of CFG nodes where (reverse) DFS walks have
500   // to start in order to visit all the CFG nodes (including the
501   // reverse-unreachable ones).
502   // When the search for non-trivial roots is done it may happen that some of
503   // the non-trivial roots are reverse-reachable from other non-trivial roots,
504   // which makes them redundant. This function removes them from the set of
505   // input roots.
506   static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
507                                    RootsT &Roots) {
508     assert(IsPostDom && "This function is for postdominators only");
509     LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
510 
511     SemiNCAInfo SNCA(BUI);
512 
513     for (unsigned i = 0; i < Roots.size(); ++i) {
514       auto &Root = Roots[i];
515       // Trivial roots are always non-redundant.
516       if (!HasForwardSuccessors(Root, BUI)) continue;
517       LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
518                         << " remains a root\n");
519       SNCA.clear();
520       // Do a forward walk looking for the other roots.
521       const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
522       // Skip the start node and begin from the second one (note that DFS uses
523       // 1-based indexing).
524       for (unsigned x = 2; x <= Num; ++x) {
525         const NodePtr N = SNCA.NumToNode[x];
526         // If we wound another root in a (forward) DFS walk, remove the current
527         // root from the set of roots, as it is reverse-reachable from the other
528         // one.
529         if (llvm::is_contained(Roots, N)) {
530           LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
531                             << BlockNamePrinter(N) << "\n\tRemoving root "
532                             << BlockNamePrinter(Root) << "\n");
533           std::swap(Root, Roots.back());
534           Roots.pop_back();
535 
536           // Root at the back takes the current root's place.
537           // Start the next loop iteration with the same index.
538           --i;
539           break;
540         }
541       }
542     }
543   }
544 
545   template <typename DescendCondition>
546   void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
547     if (!IsPostDom) {
548       assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
549       runDFS(DT.Roots[0], 0, DC, 0);
550       return;
551     }
552 
553     addVirtualRoot();
554     unsigned Num = 1;
555     for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
556   }
557 
558   static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
559     auto *Parent = DT.Parent;
560     DT.reset();
561     DT.Parent = Parent;
562     // If the update is using the actual CFG, BUI is null. If it's using a view,
563     // BUI is non-null and the PreCFGView is used. When calculating from
564     // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
565     BatchUpdatePtr PostViewBUI = nullptr;
566     if (BUI && BUI->PostViewCFG) {
567       BUI->PreViewCFG = *BUI->PostViewCFG;
568       PostViewBUI = BUI;
569     }
570     // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
571     // used in case the caller needs a DT update with a CFGView.
572     SemiNCAInfo SNCA(PostViewBUI);
573 
574     // Step #0: Number blocks in depth-first order and initialize variables used
575     // in later stages of the algorithm.
576     DT.Roots = FindRoots(DT, PostViewBUI);
577     SNCA.doFullDFSWalk(DT, AlwaysDescend);
578 
579     SNCA.runSemiNCA(DT);
580     if (BUI) {
581       BUI->IsRecalculated = true;
582       LLVM_DEBUG(
583           dbgs() << "DomTree recalculated, skipping future batch updates\n");
584     }
585 
586     if (DT.Roots.empty()) return;
587 
588     // Add a node for the root. If the tree is a PostDominatorTree it will be
589     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
590     // all real exits (including multiple exit blocks, infinite loops).
591     NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
592 
593     DT.RootNode = DT.createNode(Root);
594     SNCA.attachNewSubtree(DT, DT.RootNode);
595   }
596 
597   void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
598     // Attach the first unreachable block to AttachTo.
599     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
600     // Loop over all of the discovered blocks in the function...
601     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
602       NodePtr W = NumToNode[i];
603 
604       // Don't replace this with 'count', the insertion side effect is important
605       if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
606 
607       NodePtr ImmDom = getIDom(W);
608 
609       // Get or calculate the node for the immediate dominator.
610       TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
611 
612       // Add a new tree node for this BasicBlock, and link it as a child of
613       // IDomNode.
614       DT.createChild(W, IDomNode);
615     }
616   }
617 
618   void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
619     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
620     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
621       const NodePtr N = NumToNode[i];
622       const TreeNodePtr TN = DT.getNode(N);
623       assert(TN);
624       const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
625       TN->setIDom(NewIDom);
626     }
627   }
628 
629   // Helper struct used during edge insertions.
630   struct InsertionInfo {
631     struct Compare {
632       bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
633         return LHS->getLevel() < RHS->getLevel();
634       }
635     };
636 
637     // Bucket queue of tree nodes ordered by descending level. For simplicity,
638     // we use a priority_queue here.
639     std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
640                         Compare>
641         Bucket;
642     SmallDenseSet<TreeNodePtr, 8> Visited;
643     SmallVector<TreeNodePtr, 8> Affected;
644 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
645     SmallVector<TreeNodePtr, 8> VisitedUnaffected;
646 #endif
647   };
648 
649   static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
650                          const NodePtr From, const NodePtr To) {
651     assert((From || IsPostDom) &&
652            "From has to be a valid CFG node or a virtual root");
653     assert(To && "Cannot be a nullptr");
654     LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
655                       << BlockNamePrinter(To) << "\n");
656     TreeNodePtr FromTN = DT.getNode(From);
657 
658     if (!FromTN) {
659       // Ignore edges from unreachable nodes for (forward) dominators.
660       if (!IsPostDom) return;
661 
662       // The unreachable node becomes a new root -- a tree node for it.
663       TreeNodePtr VirtualRoot = DT.getNode(nullptr);
664       FromTN = DT.createChild(From, VirtualRoot);
665       DT.Roots.push_back(From);
666     }
667 
668     DT.DFSInfoValid = false;
669 
670     const TreeNodePtr ToTN = DT.getNode(To);
671     if (!ToTN)
672       InsertUnreachable(DT, BUI, FromTN, To);
673     else
674       InsertReachable(DT, BUI, FromTN, ToTN);
675   }
676 
677   // Determines if some existing root becomes reverse-reachable after the
678   // insertion. Rebuilds the whole tree if that situation happens.
679   static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
680                                          const TreeNodePtr From,
681                                          const TreeNodePtr To) {
682     assert(IsPostDom && "This function is only for postdominators");
683     // Destination node is not attached to the virtual root, so it cannot be a
684     // root.
685     if (!DT.isVirtualRoot(To->getIDom())) return false;
686 
687     if (!llvm::is_contained(DT.Roots, To->getBlock()))
688       return false;  // To is not a root, nothing to update.
689 
690     LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
691                       << " is no longer a root\n\t\tRebuilding the tree!!!\n");
692 
693     CalculateFromScratch(DT, BUI);
694     return true;
695   }
696 
697   static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
698                             const SmallVectorImpl<NodePtr> &B) {
699     if (A.size() != B.size())
700       return false;
701     SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
702     for (NodePtr N : B)
703       if (Set.count(N) == 0)
704         return false;
705     return true;
706   }
707 
708   // Updates the set of roots after insertion or deletion. This ensures that
709   // roots are the same when after a series of updates and when the tree would
710   // be built from scratch.
711   static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
712     assert(IsPostDom && "This function is only for postdominators");
713 
714     // The tree has only trivial roots -- nothing to update.
715     if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
716           return HasForwardSuccessors(N, BUI);
717         }))
718       return;
719 
720     // Recalculate the set of roots.
721     RootsT Roots = FindRoots(DT, BUI);
722     if (!isPermutation(DT.Roots, Roots)) {
723       // The roots chosen in the CFG have changed. This is because the
724       // incremental algorithm does not really know or use the set of roots and
725       // can make a different (implicit) decision about which node within an
726       // infinite loop becomes a root.
727 
728       LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
729                         << "The entire tree needs to be rebuilt\n");
730       // It may be possible to update the tree without recalculating it, but
731       // we do not know yet how to do it, and it happens rarely in practice.
732       CalculateFromScratch(DT, BUI);
733     }
734   }
735 
736   // Handles insertion to a node already in the dominator tree.
737   static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
738                               const TreeNodePtr From, const TreeNodePtr To) {
739     LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
740                       << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
741     if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
742     // DT.findNCD expects both pointers to be valid. When From is a virtual
743     // root, then its CFG block pointer is a nullptr, so we have to 'compute'
744     // the NCD manually.
745     const NodePtr NCDBlock =
746         (From->getBlock() && To->getBlock())
747             ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
748             : nullptr;
749     assert(NCDBlock || DT.isPostDominator());
750     const TreeNodePtr NCD = DT.getNode(NCDBlock);
751     assert(NCD);
752 
753     LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
754     const unsigned NCDLevel = NCD->getLevel();
755 
756     // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
757     // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
758     // w on P s.t. depth(v) <= depth(w)
759     //
760     // This reduces to a widest path problem (maximizing the depth of the
761     // minimum vertex in the path) which can be solved by a modified version of
762     // Dijkstra with a bucket queue (named depth-based search in [2]).
763 
764     // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
765     // affected if this does not hold.
766     if (NCDLevel + 1 >= To->getLevel())
767       return;
768 
769     InsertionInfo II;
770     SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
771     II.Bucket.push(To);
772     II.Visited.insert(To);
773 
774     while (!II.Bucket.empty()) {
775       TreeNodePtr TN = II.Bucket.top();
776       II.Bucket.pop();
777       II.Affected.push_back(TN);
778 
779       const unsigned CurrentLevel = TN->getLevel();
780       LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
781                  "as affected, CurrentLevel " << CurrentLevel << "\n");
782 
783       assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
784 
785       while (true) {
786         // Unlike regular Dijkstra, we have an inner loop to expand more
787         // vertices. The first iteration is for the (affected) vertex popped
788         // from II.Bucket and the rest are for vertices in
789         // UnaffectedOnCurrentLevel, which may eventually expand to affected
790         // vertices.
791         //
792         // Invariant: there is an optimal path from `To` to TN with the minimum
793         // depth being CurrentLevel.
794         for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
795           const TreeNodePtr SuccTN = DT.getNode(Succ);
796           assert(SuccTN &&
797                  "Unreachable successor found at reachable insertion");
798           const unsigned SuccLevel = SuccTN->getLevel();
799 
800           LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
801                             << ", level = " << SuccLevel << "\n");
802 
803           // There is an optimal path from `To` to Succ with the minimum depth
804           // being min(CurrentLevel, SuccLevel).
805           //
806           // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
807           // and no affected vertex may be reached by a path passing through it.
808           // Stop here. Also, Succ may be visited by other predecessors but the
809           // first visit has the optimal path. Stop if Succ has been visited.
810           if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
811             continue;
812 
813           if (SuccLevel > CurrentLevel) {
814             // Succ is unaffected but it may (transitively) expand to affected
815             // vertices. Store it in UnaffectedOnCurrentLevel.
816             LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
817                               << BlockNamePrinter(Succ) << "\n");
818             UnaffectedOnCurrentLevel.push_back(SuccTN);
819 #ifndef NDEBUG
820             II.VisitedUnaffected.push_back(SuccTN);
821 #endif
822           } else {
823             // The condition is satisfied (Succ is affected). Add Succ to the
824             // bucket queue.
825             LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
826                               << " to a Bucket\n");
827             II.Bucket.push(SuccTN);
828           }
829         }
830 
831         if (UnaffectedOnCurrentLevel.empty())
832           break;
833         TN = UnaffectedOnCurrentLevel.pop_back_val();
834         LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
835       }
836     }
837 
838     // Finish by updating immediate dominators and levels.
839     UpdateInsertion(DT, BUI, NCD, II);
840   }
841 
842   // Updates immediate dominators and levels after insertion.
843   static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
844                               const TreeNodePtr NCD, InsertionInfo &II) {
845     LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
846 
847     for (const TreeNodePtr TN : II.Affected) {
848       LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
849                         << ") = " << BlockNamePrinter(NCD) << "\n");
850       TN->setIDom(NCD);
851     }
852 
853 #if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG)
854     for (const TreeNodePtr TN : II.VisitedUnaffected)
855       assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
856              "TN should have been updated by an affected ancestor");
857 #endif
858 
859     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
860   }
861 
862   // Handles insertion to previously unreachable nodes.
863   static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
864                                 const TreeNodePtr From, const NodePtr To) {
865     LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
866                       << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
867 
868     // Collect discovered edges to already reachable nodes.
869     SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
870     // Discover and connect nodes that became reachable with the insertion.
871     ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
872 
873     LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
874                       << " -> (prev unreachable) " << BlockNamePrinter(To)
875                       << "\n");
876 
877     // Used the discovered edges and inset discovered connecting (incoming)
878     // edges.
879     for (const auto &Edge : DiscoveredEdgesToReachable) {
880       LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
881                         << BlockNamePrinter(Edge.first) << " -> "
882                         << BlockNamePrinter(Edge.second) << "\n");
883       InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
884     }
885   }
886 
887   // Connects nodes that become reachable with an insertion.
888   static void ComputeUnreachableDominators(
889       DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
890       const TreeNodePtr Incoming,
891       SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
892           &DiscoveredConnectingEdges) {
893     assert(!DT.getNode(Root) && "Root must not be reachable");
894 
895     // Visit only previously unreachable nodes.
896     auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
897                                                                   NodePtr To) {
898       const TreeNodePtr ToTN = DT.getNode(To);
899       if (!ToTN) return true;
900 
901       DiscoveredConnectingEdges.push_back({From, ToTN});
902       return false;
903     };
904 
905     SemiNCAInfo SNCA(BUI);
906     SNCA.runDFS(Root, 0, UnreachableDescender, 0);
907     SNCA.runSemiNCA(DT);
908     SNCA.attachNewSubtree(DT, Incoming);
909 
910     LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
911   }
912 
913   static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
914                          const NodePtr From, const NodePtr To) {
915     assert(From && To && "Cannot disconnect nullptrs");
916     LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
917                       << BlockNamePrinter(To) << "\n");
918 
919 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
920     // Ensure that the edge was in fact deleted from the CFG before informing
921     // the DomTree about it.
922     // The check is O(N), so run it only in debug configuration.
923     auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
924       auto Successors = getChildren<IsPostDom>(Of, BUI);
925       return llvm::is_contained(Successors, SuccCandidate);
926     };
927     (void)IsSuccessor;
928     assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
929 #endif
930 
931     const TreeNodePtr FromTN = DT.getNode(From);
932     // Deletion in an unreachable subtree -- nothing to do.
933     if (!FromTN) return;
934 
935     const TreeNodePtr ToTN = DT.getNode(To);
936     if (!ToTN) {
937       LLVM_DEBUG(
938           dbgs() << "\tTo (" << BlockNamePrinter(To)
939                  << ") already unreachable -- there is no edge to delete\n");
940       return;
941     }
942 
943     const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
944     const TreeNodePtr NCD = DT.getNode(NCDBlock);
945 
946     // If To dominates From -- nothing to do.
947     if (ToTN != NCD) {
948       DT.DFSInfoValid = false;
949 
950       const TreeNodePtr ToIDom = ToTN->getIDom();
951       LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
952                         << BlockNamePrinter(ToIDom) << "\n");
953 
954       // To remains reachable after deletion.
955       // (Based on the caption under Figure 4. from [2].)
956       if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
957         DeleteReachable(DT, BUI, FromTN, ToTN);
958       else
959         DeleteUnreachable(DT, BUI, ToTN);
960     }
961 
962     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
963   }
964 
965   // Handles deletions that leave destination nodes reachable.
966   static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
967                               const TreeNodePtr FromTN,
968                               const TreeNodePtr ToTN) {
969     LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
970                       << " -> " << BlockNamePrinter(ToTN) << "\n");
971     LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
972 
973     // Find the top of the subtree that needs to be rebuilt.
974     // (Based on the lemma 2.6 from [2].)
975     const NodePtr ToIDom =
976         DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
977     assert(ToIDom || DT.isPostDominator());
978     const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
979     assert(ToIDomTN);
980     const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
981     // Top of the subtree to rebuild is the root node. Rebuild the tree from
982     // scratch.
983     if (!PrevIDomSubTree) {
984       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
985       CalculateFromScratch(DT, BUI);
986       return;
987     }
988 
989     // Only visit nodes in the subtree starting at To.
990     const unsigned Level = ToIDomTN->getLevel();
991     auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
992       return DT.getNode(To)->getLevel() > Level;
993     };
994 
995     LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
996                       << "\n");
997 
998     SemiNCAInfo SNCA(BUI);
999     SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
1000     LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
1001     SNCA.runSemiNCA(DT, Level);
1002     SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1003   }
1004 
1005   // Checks if a node has proper support, as defined on the page 3 and later
1006   // explained on the page 7 of [2].
1007   static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1008                                const TreeNodePtr TN) {
1009     LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1010                       << "\n");
1011     auto TNB = TN->getBlock();
1012     for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
1013       LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1014       if (!DT.getNode(Pred)) continue;
1015 
1016       const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
1017       LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1018       if (Support != TNB) {
1019         LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1020                           << " is reachable from support "
1021                           << BlockNamePrinter(Support) << "\n");
1022         return true;
1023       }
1024     }
1025 
1026     return false;
1027   }
1028 
1029   // Handle deletions that make destination node unreachable.
1030   // (Based on the lemma 2.7 from the [2].)
1031   static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1032                                 const TreeNodePtr ToTN) {
1033     LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1034                       << BlockNamePrinter(ToTN) << "\n");
1035     assert(ToTN);
1036     assert(ToTN->getBlock());
1037 
1038     if (IsPostDom) {
1039       // Deletion makes a region reverse-unreachable and creates a new root.
1040       // Simulate that by inserting an edge from the virtual root to ToTN and
1041       // adding it as a new root.
1042       LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1043       LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1044                         << "\n");
1045       DT.Roots.push_back(ToTN->getBlock());
1046       InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1047       return;
1048     }
1049 
1050     SmallVector<NodePtr, 16> AffectedQueue;
1051     const unsigned Level = ToTN->getLevel();
1052 
1053     // Traverse destination node's descendants with greater level in the tree
1054     // and collect visited nodes.
1055     auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1056       const TreeNodePtr TN = DT.getNode(To);
1057       assert(TN);
1058       if (TN->getLevel() > Level) return true;
1059       if (!llvm::is_contained(AffectedQueue, To))
1060         AffectedQueue.push_back(To);
1061 
1062       return false;
1063     };
1064 
1065     SemiNCAInfo SNCA(BUI);
1066     unsigned LastDFSNum =
1067         SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1068 
1069     TreeNodePtr MinNode = ToTN;
1070 
1071     // Identify the top of the subtree to rebuild by finding the NCD of all
1072     // the affected nodes.
1073     for (const NodePtr N : AffectedQueue) {
1074       const TreeNodePtr TN = DT.getNode(N);
1075       const NodePtr NCDBlock =
1076           DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1077       assert(NCDBlock || DT.isPostDominator());
1078       const TreeNodePtr NCD = DT.getNode(NCDBlock);
1079       assert(NCD);
1080 
1081       LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1082                         << " with NCD = " << BlockNamePrinter(NCD)
1083                         << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1084       if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1085     }
1086 
1087     // Root reached, rebuild the whole tree from scratch.
1088     if (!MinNode->getIDom()) {
1089       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1090       CalculateFromScratch(DT, BUI);
1091       return;
1092     }
1093 
1094     // Erase the unreachable subtree in reverse preorder to process all children
1095     // before deleting their parent.
1096     for (unsigned i = LastDFSNum; i > 0; --i) {
1097       const NodePtr N = SNCA.NumToNode[i];
1098       const TreeNodePtr TN = DT.getNode(N);
1099       LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1100 
1101       EraseNode(DT, TN);
1102     }
1103 
1104     // The affected subtree start at the To node -- there's no extra work to do.
1105     if (MinNode == ToTN) return;
1106 
1107     LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1108                       << BlockNamePrinter(MinNode) << "\n");
1109     const unsigned MinLevel = MinNode->getLevel();
1110     const TreeNodePtr PrevIDom = MinNode->getIDom();
1111     assert(PrevIDom);
1112     SNCA.clear();
1113 
1114     // Identify nodes that remain in the affected subtree.
1115     auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1116       const TreeNodePtr ToTN = DT.getNode(To);
1117       return ToTN && ToTN->getLevel() > MinLevel;
1118     };
1119     SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1120 
1121     LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1122                       << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1123 
1124     // Rebuild the remaining part of affected subtree.
1125     SNCA.runSemiNCA(DT, MinLevel);
1126     SNCA.reattachExistingSubtree(DT, PrevIDom);
1127   }
1128 
1129   // Removes leaf tree nodes from the dominator tree.
1130   static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1131     assert(TN);
1132     assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1133 
1134     const TreeNodePtr IDom = TN->getIDom();
1135     assert(IDom);
1136 
1137     auto ChIt = llvm::find(IDom->Children, TN);
1138     assert(ChIt != IDom->Children.end());
1139     std::swap(*ChIt, IDom->Children.back());
1140     IDom->Children.pop_back();
1141 
1142     DT.DomTreeNodes.erase(TN->getBlock());
1143   }
1144 
1145   //~~
1146   //===--------------------- DomTree Batch Updater --------------------------===
1147   //~~
1148 
1149   static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
1150                            GraphDiffT *PostViewCFG) {
1151     // Note: the PostViewCFG is only used when computing from scratch. It's data
1152     // should already included in the PreViewCFG for incremental updates.
1153     const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
1154     if (NumUpdates == 0)
1155       return;
1156 
1157     // Take the fast path for a single update and avoid running the batch update
1158     // machinery.
1159     if (NumUpdates == 1) {
1160       UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
1161       if (!PostViewCFG) {
1162         if (Update.getKind() == UpdateKind::Insert)
1163           InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1164         else
1165           DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1166       } else {
1167         BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
1168         if (Update.getKind() == UpdateKind::Insert)
1169           InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1170         else
1171           DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1172       }
1173       return;
1174     }
1175 
1176     BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
1177     // Recalculate the DominatorTree when the number of updates
1178     // exceeds a threshold, which usually makes direct updating slower than
1179     // recalculation. We select this threshold proportional to the
1180     // size of the DominatorTree. The constant is selected
1181     // by choosing the one with an acceptable performance on some real-world
1182     // inputs.
1183 
1184     // Make unittests of the incremental algorithm work
1185     if (DT.DomTreeNodes.size() <= 100) {
1186       if (BUI.NumLegalized > DT.DomTreeNodes.size())
1187         CalculateFromScratch(DT, &BUI);
1188     } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
1189       CalculateFromScratch(DT, &BUI);
1190 
1191     // If the DominatorTree was recalculated at some point, stop the batch
1192     // updates. Full recalculations ignore batch updates and look at the actual
1193     // CFG.
1194     for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
1195       ApplyNextUpdate(DT, BUI);
1196   }
1197 
1198   static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1199     // Popping the next update, will move the PreViewCFG to the next snapshot.
1200     UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
1201 #if 0
1202     // FIXME: The LLVM_DEBUG macro only plays well with a modular
1203     // build of LLVM when the header is marked as textual, but doing
1204     // so causes redefinition errors.
1205     LLVM_DEBUG(dbgs() << "Applying update: ");
1206     LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1207 #endif
1208 
1209     if (CurrentUpdate.getKind() == UpdateKind::Insert)
1210       InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1211     else
1212       DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1213   }
1214 
1215   //~~
1216   //===--------------- DomTree correctness verification ---------------------===
1217   //~~
1218 
1219   // Check if the tree has correct roots. A DominatorTree always has a single
1220   // root which is the function's entry node. A PostDominatorTree can have
1221   // multiple roots - one for each node with no successors and for infinite
1222   // loops.
1223   // Running time: O(N).
1224   bool verifyRoots(const DomTreeT &DT) {
1225     if (!DT.Parent && !DT.Roots.empty()) {
1226       errs() << "Tree has no parent but has roots!\n";
1227       errs().flush();
1228       return false;
1229     }
1230 
1231     if (!IsPostDom) {
1232       if (DT.Roots.empty()) {
1233         errs() << "Tree doesn't have a root!\n";
1234         errs().flush();
1235         return false;
1236       }
1237 
1238       if (DT.getRoot() != GetEntryNode(DT)) {
1239         errs() << "Tree's root is not its parent's entry node!\n";
1240         errs().flush();
1241         return false;
1242       }
1243     }
1244 
1245     RootsT ComputedRoots = FindRoots(DT, nullptr);
1246     if (!isPermutation(DT.Roots, ComputedRoots)) {
1247       errs() << "Tree has different roots than freshly computed ones!\n";
1248       errs() << "\tPDT roots: ";
1249       for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1250       errs() << "\n\tComputed roots: ";
1251       for (const NodePtr N : ComputedRoots)
1252         errs() << BlockNamePrinter(N) << ", ";
1253       errs() << "\n";
1254       errs().flush();
1255       return false;
1256     }
1257 
1258     return true;
1259   }
1260 
1261   // Checks if the tree contains all reachable nodes in the input graph.
1262   // Running time: O(N).
1263   bool verifyReachability(const DomTreeT &DT) {
1264     clear();
1265     doFullDFSWalk(DT, AlwaysDescend);
1266 
1267     for (auto &NodeToTN : DT.DomTreeNodes) {
1268       const TreeNodePtr TN = NodeToTN.second.get();
1269       const NodePtr BB = TN->getBlock();
1270 
1271       // Virtual root has a corresponding virtual CFG node.
1272       if (DT.isVirtualRoot(TN)) continue;
1273 
1274       if (NodeToInfo.count(BB) == 0) {
1275         errs() << "DomTree node " << BlockNamePrinter(BB)
1276                << " not found by DFS walk!\n";
1277         errs().flush();
1278 
1279         return false;
1280       }
1281     }
1282 
1283     for (const NodePtr N : NumToNode) {
1284       if (N && !DT.getNode(N)) {
1285         errs() << "CFG node " << BlockNamePrinter(N)
1286                << " not found in the DomTree!\n";
1287         errs().flush();
1288 
1289         return false;
1290       }
1291     }
1292 
1293     return true;
1294   }
1295 
1296   // Check if for every parent with a level L in the tree all of its children
1297   // have level L + 1.
1298   // Running time: O(N).
1299   static bool VerifyLevels(const DomTreeT &DT) {
1300     for (auto &NodeToTN : DT.DomTreeNodes) {
1301       const TreeNodePtr TN = NodeToTN.second.get();
1302       const NodePtr BB = TN->getBlock();
1303       if (!BB) continue;
1304 
1305       const TreeNodePtr IDom = TN->getIDom();
1306       if (!IDom && TN->getLevel() != 0) {
1307         errs() << "Node without an IDom " << BlockNamePrinter(BB)
1308                << " has a nonzero level " << TN->getLevel() << "!\n";
1309         errs().flush();
1310 
1311         return false;
1312       }
1313 
1314       if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1315         errs() << "Node " << BlockNamePrinter(BB) << " has level "
1316                << TN->getLevel() << " while its IDom "
1317                << BlockNamePrinter(IDom->getBlock()) << " has level "
1318                << IDom->getLevel() << "!\n";
1319         errs().flush();
1320 
1321         return false;
1322       }
1323     }
1324 
1325     return true;
1326   }
1327 
1328   // Check if the computed DFS numbers are correct. Note that DFS info may not
1329   // be valid, and when that is the case, we don't verify the numbers.
1330   // Running time: O(N log(N)).
1331   static bool VerifyDFSNumbers(const DomTreeT &DT) {
1332     if (!DT.DFSInfoValid || !DT.Parent)
1333       return true;
1334 
1335     const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
1336     const TreeNodePtr Root = DT.getNode(RootBB);
1337 
1338     auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1339       errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1340              << TN->getDFSNumOut() << '}';
1341     };
1342 
1343     // Verify the root's DFS In number. Although DFS numbering would also work
1344     // if we started from some other value, we assume 0-based numbering.
1345     if (Root->getDFSNumIn() != 0) {
1346       errs() << "DFSIn number for the tree root is not:\n\t";
1347       PrintNodeAndDFSNums(Root);
1348       errs() << '\n';
1349       errs().flush();
1350       return false;
1351     }
1352 
1353     // For each tree node verify if children's DFS numbers cover their parent's
1354     // DFS numbers with no gaps.
1355     for (const auto &NodeToTN : DT.DomTreeNodes) {
1356       const TreeNodePtr Node = NodeToTN.second.get();
1357 
1358       // Handle tree leaves.
1359       if (Node->isLeaf()) {
1360         if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1361           errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1362           PrintNodeAndDFSNums(Node);
1363           errs() << '\n';
1364           errs().flush();
1365           return false;
1366         }
1367 
1368         continue;
1369       }
1370 
1371       // Make a copy and sort it such that it is possible to check if there are
1372       // no gaps between DFS numbers of adjacent children.
1373       SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1374       llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1375         return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1376       });
1377 
1378       auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1379           const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1380         assert(FirstCh);
1381 
1382         errs() << "Incorrect DFS numbers for:\n\tParent ";
1383         PrintNodeAndDFSNums(Node);
1384 
1385         errs() << "\n\tChild ";
1386         PrintNodeAndDFSNums(FirstCh);
1387 
1388         if (SecondCh) {
1389           errs() << "\n\tSecond child ";
1390           PrintNodeAndDFSNums(SecondCh);
1391         }
1392 
1393         errs() << "\nAll children: ";
1394         for (const TreeNodePtr Ch : Children) {
1395           PrintNodeAndDFSNums(Ch);
1396           errs() << ", ";
1397         }
1398 
1399         errs() << '\n';
1400         errs().flush();
1401       };
1402 
1403       if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1404         PrintChildrenError(Children.front(), nullptr);
1405         return false;
1406       }
1407 
1408       if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1409         PrintChildrenError(Children.back(), nullptr);
1410         return false;
1411       }
1412 
1413       for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1414         if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1415           PrintChildrenError(Children[i], Children[i + 1]);
1416           return false;
1417         }
1418       }
1419     }
1420 
1421     return true;
1422   }
1423 
1424   // The below routines verify the correctness of the dominator tree relative to
1425   // the CFG it's coming from.  A tree is a dominator tree iff it has two
1426   // properties, called the parent property and the sibling property.  Tarjan
1427   // and Lengauer prove (but don't explicitly name) the properties as part of
1428   // the proofs in their 1972 paper, but the proofs are mostly part of proving
1429   // things about semidominators and idoms, and some of them are simply asserted
1430   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
1431   // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
1432   // directed bipolar orders, and independent spanning trees" by Loukas
1433   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1434   // and Vertex-Disjoint Paths " by the same authors.
1435 
1436   // A very simple and direct explanation of these properties can be found in
1437   // "An Experimental Study of Dynamic Dominators", found at
1438   // https://arxiv.org/abs/1604.02711
1439 
1440   // The easiest way to think of the parent property is that it's a requirement
1441   // of being a dominator.  Let's just take immediate dominators.  For PARENT to
1442   // be an immediate dominator of CHILD, all paths in the CFG must go through
1443   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
1444   // out of the CFG, there should be no paths to CHILD that are reachable.  If
1445   // there are, then you now have a path from PARENT to CHILD that goes around
1446   // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1447   // a dominator of CHILD (let alone an immediate one).
1448 
1449   // The sibling property is similar.  It says that for each pair of sibling
1450   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1451   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
1452   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1453   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1454   // RIGHT, not a sibling.
1455 
1456   // It is possible to verify the parent and sibling properties in linear time,
1457   // but the algorithms are complex. Instead, we do it in a straightforward
1458   // N^2 and N^3 way below, using direct path reachability.
1459 
1460   // Checks if the tree has the parent property: if for all edges from V to W in
1461   // the input graph, such that V is reachable, the parent of W in the tree is
1462   // an ancestor of V in the tree.
1463   // Running time: O(N^2).
1464   //
1465   // This means that if a node gets disconnected from the graph, then all of
1466   // the nodes it dominated previously will now become unreachable.
1467   bool verifyParentProperty(const DomTreeT &DT) {
1468     for (auto &NodeToTN : DT.DomTreeNodes) {
1469       const TreeNodePtr TN = NodeToTN.second.get();
1470       const NodePtr BB = TN->getBlock();
1471       if (!BB || TN->isLeaf())
1472         continue;
1473 
1474       LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1475                         << BlockNamePrinter(TN) << "\n");
1476       clear();
1477       doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1478         return From != BB && To != BB;
1479       });
1480 
1481       for (TreeNodePtr Child : TN->children())
1482         if (NodeToInfo.count(Child->getBlock()) != 0) {
1483           errs() << "Child " << BlockNamePrinter(Child)
1484                  << " reachable after its parent " << BlockNamePrinter(BB)
1485                  << " is removed!\n";
1486           errs().flush();
1487 
1488           return false;
1489         }
1490     }
1491 
1492     return true;
1493   }
1494 
1495   // Check if the tree has sibling property: if a node V does not dominate a
1496   // node W for all siblings V and W in the tree.
1497   // Running time: O(N^3).
1498   //
1499   // This means that if a node gets disconnected from the graph, then all of its
1500   // siblings will now still be reachable.
1501   bool verifySiblingProperty(const DomTreeT &DT) {
1502     for (auto &NodeToTN : DT.DomTreeNodes) {
1503       const TreeNodePtr TN = NodeToTN.second.get();
1504       const NodePtr BB = TN->getBlock();
1505       if (!BB || TN->isLeaf())
1506         continue;
1507 
1508       for (const TreeNodePtr N : TN->children()) {
1509         clear();
1510         NodePtr BBN = N->getBlock();
1511         doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1512           return From != BBN && To != BBN;
1513         });
1514 
1515         for (const TreeNodePtr S : TN->children()) {
1516           if (S == N) continue;
1517 
1518           if (NodeToInfo.count(S->getBlock()) == 0) {
1519             errs() << "Node " << BlockNamePrinter(S)
1520                    << " not reachable when its sibling " << BlockNamePrinter(N)
1521                    << " is removed!\n";
1522             errs().flush();
1523 
1524             return false;
1525           }
1526         }
1527       }
1528     }
1529 
1530     return true;
1531   }
1532 
1533   // Check if the given tree is the same as a freshly computed one for the same
1534   // Parent.
1535   // Running time: O(N^2), but faster in practice (same as tree construction).
1536   //
1537   // Note that this does not check if that the tree construction algorithm is
1538   // correct and should be only used for fast (but possibly unsound)
1539   // verification.
1540   static bool IsSameAsFreshTree(const DomTreeT &DT) {
1541     DomTreeT FreshTree;
1542     FreshTree.recalculate(*DT.Parent);
1543     const bool Different = DT.compare(FreshTree);
1544 
1545     if (Different) {
1546       errs() << (DT.isPostDominator() ? "Post" : "")
1547              << "DominatorTree is different than a freshly computed one!\n"
1548              << "\tCurrent:\n";
1549       DT.print(errs());
1550       errs() << "\n\tFreshly computed tree:\n";
1551       FreshTree.print(errs());
1552       errs().flush();
1553     }
1554 
1555     return !Different;
1556   }
1557 };
1558 
1559 template <class DomTreeT>
1560 void Calculate(DomTreeT &DT) {
1561   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1562 }
1563 
1564 template <typename DomTreeT>
1565 void CalculateWithUpdates(DomTreeT &DT,
1566                           ArrayRef<typename DomTreeT::UpdateType> Updates) {
1567   // FIXME: Updated to use the PreViewCFG and behave the same as until now.
1568   // This behavior is however incorrect; this actually needs the PostViewCFG.
1569   GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
1570       Updates, /*ReverseApplyUpdates=*/true);
1571   typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
1572   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1573 }
1574 
1575 template <class DomTreeT>
1576 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1577                 typename DomTreeT::NodePtr To) {
1578   if (DT.isPostDominator()) std::swap(From, To);
1579   SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1580 }
1581 
1582 template <class DomTreeT>
1583 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1584                 typename DomTreeT::NodePtr To) {
1585   if (DT.isPostDominator()) std::swap(From, To);
1586   SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1587 }
1588 
1589 template <class DomTreeT>
1590 void ApplyUpdates(DomTreeT &DT,
1591                   GraphDiff<typename DomTreeT::NodePtr,
1592                             DomTreeT::IsPostDominator> &PreViewCFG,
1593                   GraphDiff<typename DomTreeT::NodePtr,
1594                             DomTreeT::IsPostDominator> *PostViewCFG) {
1595   SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
1596 }
1597 
1598 template <class DomTreeT>
1599 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1600   SemiNCAInfo<DomTreeT> SNCA(nullptr);
1601 
1602   // Simplist check is to compare against a new tree. This will also
1603   // usefully print the old and new trees, if they are different.
1604   if (!SNCA.IsSameAsFreshTree(DT))
1605     return false;
1606 
1607   // Common checks to verify the properties of the tree. O(N log N) at worst.
1608   if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1609       !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1610     return false;
1611 
1612   // Extra checks depending on VerificationLevel. Up to O(N^3).
1613   if (VL == DomTreeT::VerificationLevel::Basic ||
1614       VL == DomTreeT::VerificationLevel::Full)
1615     if (!SNCA.verifyParentProperty(DT))
1616       return false;
1617   if (VL == DomTreeT::VerificationLevel::Full)
1618     if (!SNCA.verifySiblingProperty(DT))
1619       return false;
1620 
1621   return true;
1622 }
1623 
1624 }  // namespace DomTreeBuilder
1625 }  // namespace llvm
1626 
1627 #undef DEBUG_TYPE
1628 
1629 #endif
1630