1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - this file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 ///   [1] Linear-Time Algorithms for Dominators and Related Problems
15 ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19 /// faster than Simple Lengauer-Tarjan in practice.
20 ///
21 /// O(n^2) worst cases happen when the computation of nearest common ancestors
22 /// requires O(n) average time, which is very unlikely in real world. If this
23 /// ever turns out to be an issue, consider implementing a hybrid algorithm
24 /// that uses SLT to perform full constructions and SemiNCA for incremental
25 /// updates.
26 ///
27 /// The file uses the Depth Based Search algorithm to perform incremental
28 /// updates (insertion and deletions). The implemented algorithm is based on
29 /// this publication:
30 ///
31 ///   [2] An Experimental Study of Dynamic Dominators
32 ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
33 ///   https://arxiv.org/pdf/1604.02711.pdf
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
38 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
39 
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseSet.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/PointerIntPair.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/GenericDomTree.h"
47 #include <queue>
48 
49 #define DEBUG_TYPE "dom-tree-builder"
50 
51 namespace llvm {
52 namespace DomTreeBuilder {
53 
54 template <typename DomTreeT>
55 struct SemiNCAInfo {
56   using NodePtr = typename DomTreeT::NodePtr;
57   using NodeT = typename DomTreeT::NodeType;
58   using TreeNodePtr = DomTreeNodeBase<NodeT> *;
59   using RootsT = decltype(DomTreeT::Roots);
60   static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
61   using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
62 
63   // Information record used by Semi-NCA during tree construction.
64   struct InfoRec {
65     unsigned DFSNum = 0;
66     unsigned Parent = 0;
67     unsigned Semi = 0;
68     NodePtr Label = nullptr;
69     NodePtr IDom = nullptr;
70     SmallVector<NodePtr, 2> ReverseChildren;
71   };
72 
73   // Number to node mapping is 1-based. Initialize the mapping to start with
74   // a dummy element.
75   std::vector<NodePtr> NumToNode = {nullptr};
76   DenseMap<NodePtr, InfoRec> NodeToInfo;
77 
78   using UpdateT = typename DomTreeT::UpdateType;
79   using UpdateKind = typename DomTreeT::UpdateKind;
80   struct BatchUpdateInfo {
81     // Note: Updates inside PreViewCFG are aleady legalized.
82     BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
83         : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
84           NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
85 
86     // Remembers if the whole tree was recalculated at some point during the
87     // current batch update.
88     bool IsRecalculated = false;
89     GraphDiffT &PreViewCFG;
90     GraphDiffT *PostViewCFG;
91     const size_t NumLegalized;
92   };
93 
94   BatchUpdateInfo *BatchUpdates;
95   using BatchUpdatePtr = BatchUpdateInfo *;
96 
97   // If BUI is a nullptr, then there's no batch update in progress.
98   SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
99 
100   void clear() {
101     NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
102     NodeToInfo.clear();
103     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
104     // in progress, we need this information to continue it.
105   }
106 
107   template <bool Inversed>
108   static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
109     if (BUI)
110       return BUI->PreViewCFG.template getChildren<Inversed>(N);
111     return getChildren<Inversed>(N);
112   }
113 
114   template <bool Inversed>
115   static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
116     using DirectedNodeT =
117         std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
118     auto R = children<DirectedNodeT>(N);
119     SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
120 
121     // Remove nullptr children for clang.
122     llvm::erase_value(Res, nullptr);
123     return Res;
124   }
125 
126   NodePtr getIDom(NodePtr BB) const {
127     auto InfoIt = NodeToInfo.find(BB);
128     if (InfoIt == NodeToInfo.end()) return nullptr;
129 
130     return InfoIt->second.IDom;
131   }
132 
133   TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
134     if (TreeNodePtr Node = DT.getNode(BB)) return Node;
135 
136     // Haven't calculated this node yet?  Get or calculate the node for the
137     // immediate dominator.
138     NodePtr IDom = getIDom(BB);
139 
140     assert(IDom || DT.DomTreeNodes[nullptr]);
141     TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
142 
143     // Add a new tree node for this NodeT, and link it as a child of
144     // IDomNode
145     return DT.createChild(BB, IDomNode);
146   }
147 
148   static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
149 
150   struct BlockNamePrinter {
151     NodePtr N;
152 
153     BlockNamePrinter(NodePtr Block) : N(Block) {}
154     BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
155 
156     friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
157       if (!BP.N)
158         O << "nullptr";
159       else
160         BP.N->printAsOperand(O, false);
161 
162       return O;
163     }
164   };
165 
166   using NodeOrderMap = DenseMap<NodePtr, unsigned>;
167 
168   // Custom DFS implementation which can skip nodes based on a provided
169   // predicate. It also collects ReverseChildren so that we don't have to spend
170   // time getting predecessors in SemiNCA.
171   //
172   // If IsReverse is set to true, the DFS walk will be performed backwards
173   // relative to IsPostDom -- using reverse edges for dominators and forward
174   // edges for postdominators.
175   //
176   // If SuccOrder is specified then in this order the DFS traverses the children
177   // otherwise the order is implied by the results of getChildren().
178   template <bool IsReverse = false, typename DescendCondition>
179   unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
180                   unsigned AttachToNum,
181                   const NodeOrderMap *SuccOrder = nullptr) {
182     assert(V);
183     SmallVector<NodePtr, 64> WorkList = {V};
184     if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
185 
186     while (!WorkList.empty()) {
187       const NodePtr BB = WorkList.pop_back_val();
188       auto &BBInfo = NodeToInfo[BB];
189 
190       // Visited nodes always have positive DFS numbers.
191       if (BBInfo.DFSNum != 0) continue;
192       BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
193       BBInfo.Label = BB;
194       NumToNode.push_back(BB);
195 
196       constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
197       auto Successors = getChildren<Direction>(BB, BatchUpdates);
198       if (SuccOrder && Successors.size() > 1)
199         llvm::sort(
200             Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
201               return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
202             });
203 
204       for (const NodePtr Succ : Successors) {
205         const auto SIT = NodeToInfo.find(Succ);
206         // Don't visit nodes more than once but remember to collect
207         // ReverseChildren.
208         if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
209           if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
210           continue;
211         }
212 
213         if (!Condition(BB, Succ)) continue;
214 
215         // It's fine to add Succ to the map, because we know that it will be
216         // visited later.
217         auto &SuccInfo = NodeToInfo[Succ];
218         WorkList.push_back(Succ);
219         SuccInfo.Parent = LastNum;
220         SuccInfo.ReverseChildren.push_back(BB);
221       }
222     }
223 
224     return LastNum;
225   }
226 
227   // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
228   // of sdom(U), where U > W and there is a virtual forest path from U to V. The
229   // virtual forest consists of linked edges of processed vertices.
230   //
231   // We can follow Parent pointers (virtual forest edges) to determine the
232   // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
233   // compression technique to speed up to O(m*log(n)). Theoretically the virtual
234   // forest can be organized as balanced trees to achieve almost linear
235   // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
236   // and Child) and is unlikely to be faster than the simple implementation.
237   //
238   // For each vertex V, its Label points to the vertex with the minimal sdom(U)
239   // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
240   NodePtr eval(NodePtr V, unsigned LastLinked,
241                SmallVectorImpl<InfoRec *> &Stack) {
242     InfoRec *VInfo = &NodeToInfo[V];
243     if (VInfo->Parent < LastLinked)
244       return VInfo->Label;
245 
246     // Store ancestors except the last (root of a virtual tree) into a stack.
247     assert(Stack.empty());
248     do {
249       Stack.push_back(VInfo);
250       VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
251     } while (VInfo->Parent >= LastLinked);
252 
253     // Path compression. Point each vertex's Parent to the root and update its
254     // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
255     const InfoRec *PInfo = VInfo;
256     const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
257     do {
258       VInfo = Stack.pop_back_val();
259       VInfo->Parent = PInfo->Parent;
260       const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
261       if (PLabelInfo->Semi < VLabelInfo->Semi)
262         VInfo->Label = PInfo->Label;
263       else
264         PLabelInfo = VLabelInfo;
265       PInfo = VInfo;
266     } while (!Stack.empty());
267     return VInfo->Label;
268   }
269 
270   // This function requires DFS to be run before calling it.
271   void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
272     const unsigned NextDFSNum(NumToNode.size());
273     // Initialize IDoms to spanning tree parents.
274     for (unsigned i = 1; i < NextDFSNum; ++i) {
275       const NodePtr V = NumToNode[i];
276       auto &VInfo = NodeToInfo[V];
277       VInfo.IDom = NumToNode[VInfo.Parent];
278     }
279 
280     // Step #1: Calculate the semidominators of all vertices.
281     SmallVector<InfoRec *, 32> EvalStack;
282     for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
283       NodePtr W = NumToNode[i];
284       auto &WInfo = NodeToInfo[W];
285 
286       // Initialize the semi dominator to point to the parent node.
287       WInfo.Semi = WInfo.Parent;
288       for (const auto &N : WInfo.ReverseChildren) {
289         if (NodeToInfo.count(N) == 0)  // Skip unreachable predecessors.
290           continue;
291 
292         const TreeNodePtr TN = DT.getNode(N);
293         // Skip predecessors whose level is above the subtree we are processing.
294         if (TN && TN->getLevel() < MinLevel)
295           continue;
296 
297         unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
298         if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
299       }
300     }
301 
302     // Step #2: Explicitly define the immediate dominator of each vertex.
303     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
304     // Note that the parents were stored in IDoms and later got invalidated
305     // during path compression in Eval.
306     for (unsigned i = 2; i < NextDFSNum; ++i) {
307       const NodePtr W = NumToNode[i];
308       auto &WInfo = NodeToInfo[W];
309       const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
310       NodePtr WIDomCandidate = WInfo.IDom;
311       while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
312         WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
313 
314       WInfo.IDom = WIDomCandidate;
315     }
316   }
317 
318   // PostDominatorTree always has a virtual root that represents a virtual CFG
319   // node that serves as a single exit from the function. All the other exits
320   // (CFG nodes with terminators and nodes in infinite loops are logically
321   // connected to this virtual CFG exit node).
322   // This functions maps a nullptr CFG node to the virtual root tree node.
323   void addVirtualRoot() {
324     assert(IsPostDom && "Only postdominators have a virtual root");
325     assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
326 
327     auto &BBInfo = NodeToInfo[nullptr];
328     BBInfo.DFSNum = BBInfo.Semi = 1;
329     BBInfo.Label = nullptr;
330 
331     NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
332   }
333 
334   // For postdominators, nodes with no forward successors are trivial roots that
335   // are always selected as tree roots. Roots with forward successors correspond
336   // to CFG nodes within infinite loops.
337   static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
338     assert(N && "N must be a valid node");
339     return !getChildren<false>(N, BUI).empty();
340   }
341 
342   static NodePtr GetEntryNode(const DomTreeT &DT) {
343     assert(DT.Parent && "Parent not set");
344     return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
345   }
346 
347   // Finds all roots without relaying on the set of roots already stored in the
348   // tree.
349   // We define roots to be some non-redundant set of the CFG nodes
350   static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
351     assert(DT.Parent && "Parent pointer is not set");
352     RootsT Roots;
353 
354     // For dominators, function entry CFG node is always a tree root node.
355     if (!IsPostDom) {
356       Roots.push_back(GetEntryNode(DT));
357       return Roots;
358     }
359 
360     SemiNCAInfo SNCA(BUI);
361 
362     // PostDominatorTree always has a virtual root.
363     SNCA.addVirtualRoot();
364     unsigned Num = 1;
365 
366     LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
367 
368     // Step #1: Find all the trivial roots that are going to will definitely
369     // remain tree roots.
370     unsigned Total = 0;
371     // It may happen that there are some new nodes in the CFG that are result of
372     // the ongoing batch update, but we cannot really pretend that they don't
373     // exist -- we won't see any outgoing or incoming edges to them, so it's
374     // fine to discover them here, as they would end up appearing in the CFG at
375     // some point anyway.
376     for (const NodePtr N : nodes(DT.Parent)) {
377       ++Total;
378       // If it has no *successors*, it is definitely a root.
379       if (!HasForwardSuccessors(N, BUI)) {
380         Roots.push_back(N);
381         // Run DFS not to walk this part of CFG later.
382         Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
383         LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
384                           << "\n");
385         LLVM_DEBUG(dbgs() << "Last visited node: "
386                           << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
387       }
388     }
389 
390     LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
391 
392     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
393     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
394     // nodes in infinite loops).
395     bool HasNonTrivialRoots = false;
396     // Accounting for the virtual exit, see if we had any reverse-unreachable
397     // nodes.
398     if (Total + 1 != Num) {
399       HasNonTrivialRoots = true;
400 
401       // SuccOrder is the order of blocks in the function. It is needed to make
402       // the calculation of the FurthestAway node and the whole PostDomTree
403       // immune to swap successors transformation (e.g. canonicalizing branch
404       // predicates). SuccOrder is initialized lazily only for successors of
405       // reverse unreachable nodes.
406       Optional<NodeOrderMap> SuccOrder;
407       auto InitSuccOrderOnce = [&]() {
408         SuccOrder = NodeOrderMap();
409         for (const auto Node : nodes(DT.Parent))
410           if (SNCA.NodeToInfo.count(Node) == 0)
411             for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
412               SuccOrder->try_emplace(Succ, 0);
413 
414         // Add mapping for all entries of SuccOrder.
415         unsigned NodeNum = 0;
416         for (const auto Node : nodes(DT.Parent)) {
417           ++NodeNum;
418           auto Order = SuccOrder->find(Node);
419           if (Order != SuccOrder->end()) {
420             assert(Order->second == 0);
421             Order->second = NodeNum;
422           }
423         }
424       };
425 
426       // Make another DFS pass over all other nodes to find the
427       // reverse-unreachable blocks, and find the furthest paths we'll be able
428       // to make.
429       // Note that this looks N^2, but it's really 2N worst case, if every node
430       // is unreachable. This is because we are still going to only visit each
431       // unreachable node once, we may just visit it in two directions,
432       // depending on how lucky we get.
433       SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
434       for (const NodePtr I : nodes(DT.Parent)) {
435         if (SNCA.NodeToInfo.count(I) == 0) {
436           LLVM_DEBUG(dbgs()
437                      << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
438           // Find the furthest away we can get by following successors, then
439           // follow them in reverse.  This gives us some reasonable answer about
440           // the post-dom tree inside any infinite loop. In particular, it
441           // guarantees we get to the farthest away point along *some*
442           // path. This also matches the GCC's behavior.
443           // If we really wanted a totally complete picture of dominance inside
444           // this infinite loop, we could do it with SCC-like algorithms to find
445           // the lowest and highest points in the infinite loop.  In theory, it
446           // would be nice to give the canonical backedge for the loop, but it's
447           // expensive and does not always lead to a minimal set of roots.
448           LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
449 
450           if (!SuccOrder)
451             InitSuccOrderOnce();
452           assert(SuccOrder);
453 
454           const unsigned NewNum =
455               SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
456           const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
457           LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
458                             << "(non-trivial root): "
459                             << BlockNamePrinter(FurthestAway) << "\n");
460           ConnectToExitBlock.insert(FurthestAway);
461           Roots.push_back(FurthestAway);
462           LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
463                             << NewNum << "\n\t\t\tRemoving DFS info\n");
464           for (unsigned i = NewNum; i > Num; --i) {
465             const NodePtr N = SNCA.NumToNode[i];
466             LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
467                               << BlockNamePrinter(N) << "\n");
468             SNCA.NodeToInfo.erase(N);
469             SNCA.NumToNode.pop_back();
470           }
471           const unsigned PrevNum = Num;
472           LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
473           Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
474           for (unsigned i = PrevNum + 1; i <= Num; ++i)
475             LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
476                               << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
477         }
478       }
479     }
480 
481     LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
482     LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
483     LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
484                << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
485 
486     assert((Total + 1 == Num) && "Everything should have been visited");
487 
488     // Step #3: If we found some non-trivial roots, make them non-redundant.
489     if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
490 
491     LLVM_DEBUG(dbgs() << "Found roots: ");
492     LLVM_DEBUG(for (auto *Root
493                     : Roots) dbgs()
494                << BlockNamePrinter(Root) << " ");
495     LLVM_DEBUG(dbgs() << "\n");
496 
497     return Roots;
498   }
499 
500   // This function only makes sense for postdominators.
501   // We define roots to be some set of CFG nodes where (reverse) DFS walks have
502   // to start in order to visit all the CFG nodes (including the
503   // reverse-unreachable ones).
504   // When the search for non-trivial roots is done it may happen that some of
505   // the non-trivial roots are reverse-reachable from other non-trivial roots,
506   // which makes them redundant. This function removes them from the set of
507   // input roots.
508   static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
509                                    RootsT &Roots) {
510     assert(IsPostDom && "This function is for postdominators only");
511     LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
512 
513     SemiNCAInfo SNCA(BUI);
514 
515     for (unsigned i = 0; i < Roots.size(); ++i) {
516       auto &Root = Roots[i];
517       // Trivial roots are always non-redundant.
518       if (!HasForwardSuccessors(Root, BUI)) continue;
519       LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
520                         << " remains a root\n");
521       SNCA.clear();
522       // Do a forward walk looking for the other roots.
523       const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
524       // Skip the start node and begin from the second one (note that DFS uses
525       // 1-based indexing).
526       for (unsigned x = 2; x <= Num; ++x) {
527         const NodePtr N = SNCA.NumToNode[x];
528         // If we wound another root in a (forward) DFS walk, remove the current
529         // root from the set of roots, as it is reverse-reachable from the other
530         // one.
531         if (llvm::is_contained(Roots, N)) {
532           LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
533                             << BlockNamePrinter(N) << "\n\tRemoving root "
534                             << BlockNamePrinter(Root) << "\n");
535           std::swap(Root, Roots.back());
536           Roots.pop_back();
537 
538           // Root at the back takes the current root's place.
539           // Start the next loop iteration with the same index.
540           --i;
541           break;
542         }
543       }
544     }
545   }
546 
547   template <typename DescendCondition>
548   void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
549     if (!IsPostDom) {
550       assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
551       runDFS(DT.Roots[0], 0, DC, 0);
552       return;
553     }
554 
555     addVirtualRoot();
556     unsigned Num = 1;
557     for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
558   }
559 
560   static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
561     auto *Parent = DT.Parent;
562     DT.reset();
563     DT.Parent = Parent;
564     // If the update is using the actual CFG, BUI is null. If it's using a view,
565     // BUI is non-null and the PreCFGView is used. When calculating from
566     // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
567     BatchUpdatePtr PostViewBUI = nullptr;
568     if (BUI && BUI->PostViewCFG) {
569       BUI->PreViewCFG = *BUI->PostViewCFG;
570       PostViewBUI = BUI;
571     }
572     // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
573     // used in case the caller needs a DT update with a CFGView.
574     SemiNCAInfo SNCA(PostViewBUI);
575 
576     // Step #0: Number blocks in depth-first order and initialize variables used
577     // in later stages of the algorithm.
578     DT.Roots = FindRoots(DT, PostViewBUI);
579     SNCA.doFullDFSWalk(DT, AlwaysDescend);
580 
581     SNCA.runSemiNCA(DT);
582     if (BUI) {
583       BUI->IsRecalculated = true;
584       LLVM_DEBUG(
585           dbgs() << "DomTree recalculated, skipping future batch updates\n");
586     }
587 
588     if (DT.Roots.empty()) return;
589 
590     // Add a node for the root. If the tree is a PostDominatorTree it will be
591     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
592     // all real exits (including multiple exit blocks, infinite loops).
593     NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
594 
595     DT.RootNode = DT.createNode(Root);
596     SNCA.attachNewSubtree(DT, DT.RootNode);
597   }
598 
599   void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
600     // Attach the first unreachable block to AttachTo.
601     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
602     // Loop over all of the discovered blocks in the function...
603     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
604       NodePtr W = NumToNode[i];
605 
606       // Don't replace this with 'count', the insertion side effect is important
607       if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
608 
609       NodePtr ImmDom = getIDom(W);
610 
611       // Get or calculate the node for the immediate dominator.
612       TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
613 
614       // Add a new tree node for this BasicBlock, and link it as a child of
615       // IDomNode.
616       DT.createChild(W, IDomNode);
617     }
618   }
619 
620   void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
621     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
622     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
623       const NodePtr N = NumToNode[i];
624       const TreeNodePtr TN = DT.getNode(N);
625       assert(TN);
626       const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
627       TN->setIDom(NewIDom);
628     }
629   }
630 
631   // Helper struct used during edge insertions.
632   struct InsertionInfo {
633     struct Compare {
634       bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
635         return LHS->getLevel() < RHS->getLevel();
636       }
637     };
638 
639     // Bucket queue of tree nodes ordered by descending level. For simplicity,
640     // we use a priority_queue here.
641     std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
642                         Compare>
643         Bucket;
644     SmallDenseSet<TreeNodePtr, 8> Visited;
645     SmallVector<TreeNodePtr, 8> Affected;
646 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
647     SmallVector<TreeNodePtr, 8> VisitedUnaffected;
648 #endif
649   };
650 
651   static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
652                          const NodePtr From, const NodePtr To) {
653     assert((From || IsPostDom) &&
654            "From has to be a valid CFG node or a virtual root");
655     assert(To && "Cannot be a nullptr");
656     LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
657                       << BlockNamePrinter(To) << "\n");
658     TreeNodePtr FromTN = DT.getNode(From);
659 
660     if (!FromTN) {
661       // Ignore edges from unreachable nodes for (forward) dominators.
662       if (!IsPostDom) return;
663 
664       // The unreachable node becomes a new root -- a tree node for it.
665       TreeNodePtr VirtualRoot = DT.getNode(nullptr);
666       FromTN = DT.createChild(From, VirtualRoot);
667       DT.Roots.push_back(From);
668     }
669 
670     DT.DFSInfoValid = false;
671 
672     const TreeNodePtr ToTN = DT.getNode(To);
673     if (!ToTN)
674       InsertUnreachable(DT, BUI, FromTN, To);
675     else
676       InsertReachable(DT, BUI, FromTN, ToTN);
677   }
678 
679   // Determines if some existing root becomes reverse-reachable after the
680   // insertion. Rebuilds the whole tree if that situation happens.
681   static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
682                                          const TreeNodePtr From,
683                                          const TreeNodePtr To) {
684     assert(IsPostDom && "This function is only for postdominators");
685     // Destination node is not attached to the virtual root, so it cannot be a
686     // root.
687     if (!DT.isVirtualRoot(To->getIDom())) return false;
688 
689     if (!llvm::is_contained(DT.Roots, To->getBlock()))
690       return false;  // To is not a root, nothing to update.
691 
692     LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
693                       << " is no longer a root\n\t\tRebuilding the tree!!!\n");
694 
695     CalculateFromScratch(DT, BUI);
696     return true;
697   }
698 
699   static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
700                             const SmallVectorImpl<NodePtr> &B) {
701     if (A.size() != B.size())
702       return false;
703     SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
704     for (NodePtr N : B)
705       if (Set.count(N) == 0)
706         return false;
707     return true;
708   }
709 
710   // Updates the set of roots after insertion or deletion. This ensures that
711   // roots are the same when after a series of updates and when the tree would
712   // be built from scratch.
713   static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
714     assert(IsPostDom && "This function is only for postdominators");
715 
716     // The tree has only trivial roots -- nothing to update.
717     if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
718           return HasForwardSuccessors(N, BUI);
719         }))
720       return;
721 
722     // Recalculate the set of roots.
723     RootsT Roots = FindRoots(DT, BUI);
724     if (!isPermutation(DT.Roots, Roots)) {
725       // The roots chosen in the CFG have changed. This is because the
726       // incremental algorithm does not really know or use the set of roots and
727       // can make a different (implicit) decision about which node within an
728       // infinite loop becomes a root.
729 
730       LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
731                         << "The entire tree needs to be rebuilt\n");
732       // It may be possible to update the tree without recalculating it, but
733       // we do not know yet how to do it, and it happens rarely in practice.
734       CalculateFromScratch(DT, BUI);
735     }
736   }
737 
738   // Handles insertion to a node already in the dominator tree.
739   static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
740                               const TreeNodePtr From, const TreeNodePtr To) {
741     LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
742                       << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
743     if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
744     // DT.findNCD expects both pointers to be valid. When From is a virtual
745     // root, then its CFG block pointer is a nullptr, so we have to 'compute'
746     // the NCD manually.
747     const NodePtr NCDBlock =
748         (From->getBlock() && To->getBlock())
749             ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
750             : nullptr;
751     assert(NCDBlock || DT.isPostDominator());
752     const TreeNodePtr NCD = DT.getNode(NCDBlock);
753     assert(NCD);
754 
755     LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
756     const unsigned NCDLevel = NCD->getLevel();
757 
758     // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
759     // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
760     // w on P s.t. depth(v) <= depth(w)
761     //
762     // This reduces to a widest path problem (maximizing the depth of the
763     // minimum vertex in the path) which can be solved by a modified version of
764     // Dijkstra with a bucket queue (named depth-based search in [2]).
765 
766     // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
767     // affected if this does not hold.
768     if (NCDLevel + 1 >= To->getLevel())
769       return;
770 
771     InsertionInfo II;
772     SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
773     II.Bucket.push(To);
774     II.Visited.insert(To);
775 
776     while (!II.Bucket.empty()) {
777       TreeNodePtr TN = II.Bucket.top();
778       II.Bucket.pop();
779       II.Affected.push_back(TN);
780 
781       const unsigned CurrentLevel = TN->getLevel();
782       LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
783                  "as affected, CurrentLevel " << CurrentLevel << "\n");
784 
785       assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
786 
787       while (true) {
788         // Unlike regular Dijkstra, we have an inner loop to expand more
789         // vertices. The first iteration is for the (affected) vertex popped
790         // from II.Bucket and the rest are for vertices in
791         // UnaffectedOnCurrentLevel, which may eventually expand to affected
792         // vertices.
793         //
794         // Invariant: there is an optimal path from `To` to TN with the minimum
795         // depth being CurrentLevel.
796         for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
797           const TreeNodePtr SuccTN = DT.getNode(Succ);
798           assert(SuccTN &&
799                  "Unreachable successor found at reachable insertion");
800           const unsigned SuccLevel = SuccTN->getLevel();
801 
802           LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
803                             << ", level = " << SuccLevel << "\n");
804 
805           // There is an optimal path from `To` to Succ with the minimum depth
806           // being min(CurrentLevel, SuccLevel).
807           //
808           // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
809           // and no affected vertex may be reached by a path passing through it.
810           // Stop here. Also, Succ may be visited by other predecessors but the
811           // first visit has the optimal path. Stop if Succ has been visited.
812           if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
813             continue;
814 
815           if (SuccLevel > CurrentLevel) {
816             // Succ is unaffected but it may (transitively) expand to affected
817             // vertices. Store it in UnaffectedOnCurrentLevel.
818             LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
819                               << BlockNamePrinter(Succ) << "\n");
820             UnaffectedOnCurrentLevel.push_back(SuccTN);
821 #ifndef NDEBUG
822             II.VisitedUnaffected.push_back(SuccTN);
823 #endif
824           } else {
825             // The condition is satisfied (Succ is affected). Add Succ to the
826             // bucket queue.
827             LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
828                               << " to a Bucket\n");
829             II.Bucket.push(SuccTN);
830           }
831         }
832 
833         if (UnaffectedOnCurrentLevel.empty())
834           break;
835         TN = UnaffectedOnCurrentLevel.pop_back_val();
836         LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
837       }
838     }
839 
840     // Finish by updating immediate dominators and levels.
841     UpdateInsertion(DT, BUI, NCD, II);
842   }
843 
844   // Updates immediate dominators and levels after insertion.
845   static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
846                               const TreeNodePtr NCD, InsertionInfo &II) {
847     LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
848 
849     for (const TreeNodePtr TN : II.Affected) {
850       LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
851                         << ") = " << BlockNamePrinter(NCD) << "\n");
852       TN->setIDom(NCD);
853     }
854 
855 #if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG)
856     for (const TreeNodePtr TN : II.VisitedUnaffected)
857       assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
858              "TN should have been updated by an affected ancestor");
859 #endif
860 
861     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
862   }
863 
864   // Handles insertion to previously unreachable nodes.
865   static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
866                                 const TreeNodePtr From, const NodePtr To) {
867     LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
868                       << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
869 
870     // Collect discovered edges to already reachable nodes.
871     SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
872     // Discover and connect nodes that became reachable with the insertion.
873     ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
874 
875     LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
876                       << " -> (prev unreachable) " << BlockNamePrinter(To)
877                       << "\n");
878 
879     // Used the discovered edges and inset discovered connecting (incoming)
880     // edges.
881     for (const auto &Edge : DiscoveredEdgesToReachable) {
882       LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
883                         << BlockNamePrinter(Edge.first) << " -> "
884                         << BlockNamePrinter(Edge.second) << "\n");
885       InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
886     }
887   }
888 
889   // Connects nodes that become reachable with an insertion.
890   static void ComputeUnreachableDominators(
891       DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
892       const TreeNodePtr Incoming,
893       SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
894           &DiscoveredConnectingEdges) {
895     assert(!DT.getNode(Root) && "Root must not be reachable");
896 
897     // Visit only previously unreachable nodes.
898     auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
899                                                                   NodePtr To) {
900       const TreeNodePtr ToTN = DT.getNode(To);
901       if (!ToTN) return true;
902 
903       DiscoveredConnectingEdges.push_back({From, ToTN});
904       return false;
905     };
906 
907     SemiNCAInfo SNCA(BUI);
908     SNCA.runDFS(Root, 0, UnreachableDescender, 0);
909     SNCA.runSemiNCA(DT);
910     SNCA.attachNewSubtree(DT, Incoming);
911 
912     LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
913   }
914 
915   static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
916                          const NodePtr From, const NodePtr To) {
917     assert(From && To && "Cannot disconnect nullptrs");
918     LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
919                       << BlockNamePrinter(To) << "\n");
920 
921 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
922     // Ensure that the edge was in fact deleted from the CFG before informing
923     // the DomTree about it.
924     // The check is O(N), so run it only in debug configuration.
925     auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
926       auto Successors = getChildren<IsPostDom>(Of, BUI);
927       return llvm::is_contained(Successors, SuccCandidate);
928     };
929     (void)IsSuccessor;
930     assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
931 #endif
932 
933     const TreeNodePtr FromTN = DT.getNode(From);
934     // Deletion in an unreachable subtree -- nothing to do.
935     if (!FromTN) return;
936 
937     const TreeNodePtr ToTN = DT.getNode(To);
938     if (!ToTN) {
939       LLVM_DEBUG(
940           dbgs() << "\tTo (" << BlockNamePrinter(To)
941                  << ") already unreachable -- there is no edge to delete\n");
942       return;
943     }
944 
945     const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
946     const TreeNodePtr NCD = DT.getNode(NCDBlock);
947 
948     // If To dominates From -- nothing to do.
949     if (ToTN != NCD) {
950       DT.DFSInfoValid = false;
951 
952       const TreeNodePtr ToIDom = ToTN->getIDom();
953       LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
954                         << BlockNamePrinter(ToIDom) << "\n");
955 
956       // To remains reachable after deletion.
957       // (Based on the caption under Figure 4. from [2].)
958       if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
959         DeleteReachable(DT, BUI, FromTN, ToTN);
960       else
961         DeleteUnreachable(DT, BUI, ToTN);
962     }
963 
964     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
965   }
966 
967   // Handles deletions that leave destination nodes reachable.
968   static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
969                               const TreeNodePtr FromTN,
970                               const TreeNodePtr ToTN) {
971     LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
972                       << " -> " << BlockNamePrinter(ToTN) << "\n");
973     LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
974 
975     // Find the top of the subtree that needs to be rebuilt.
976     // (Based on the lemma 2.6 from [2].)
977     const NodePtr ToIDom =
978         DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
979     assert(ToIDom || DT.isPostDominator());
980     const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
981     assert(ToIDomTN);
982     const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
983     // Top of the subtree to rebuild is the root node. Rebuild the tree from
984     // scratch.
985     if (!PrevIDomSubTree) {
986       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
987       CalculateFromScratch(DT, BUI);
988       return;
989     }
990 
991     // Only visit nodes in the subtree starting at To.
992     const unsigned Level = ToIDomTN->getLevel();
993     auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
994       return DT.getNode(To)->getLevel() > Level;
995     };
996 
997     LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
998                       << "\n");
999 
1000     SemiNCAInfo SNCA(BUI);
1001     SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
1002     LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
1003     SNCA.runSemiNCA(DT, Level);
1004     SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1005   }
1006 
1007   // Checks if a node has proper support, as defined on the page 3 and later
1008   // explained on the page 7 of [2].
1009   static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1010                                const TreeNodePtr TN) {
1011     LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1012                       << "\n");
1013     auto TNB = TN->getBlock();
1014     for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
1015       LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1016       if (!DT.getNode(Pred)) continue;
1017 
1018       const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
1019       LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1020       if (Support != TNB) {
1021         LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1022                           << " is reachable from support "
1023                           << BlockNamePrinter(Support) << "\n");
1024         return true;
1025       }
1026     }
1027 
1028     return false;
1029   }
1030 
1031   // Handle deletions that make destination node unreachable.
1032   // (Based on the lemma 2.7 from the [2].)
1033   static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1034                                 const TreeNodePtr ToTN) {
1035     LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1036                       << BlockNamePrinter(ToTN) << "\n");
1037     assert(ToTN);
1038     assert(ToTN->getBlock());
1039 
1040     if (IsPostDom) {
1041       // Deletion makes a region reverse-unreachable and creates a new root.
1042       // Simulate that by inserting an edge from the virtual root to ToTN and
1043       // adding it as a new root.
1044       LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1045       LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1046                         << "\n");
1047       DT.Roots.push_back(ToTN->getBlock());
1048       InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1049       return;
1050     }
1051 
1052     SmallVector<NodePtr, 16> AffectedQueue;
1053     const unsigned Level = ToTN->getLevel();
1054 
1055     // Traverse destination node's descendants with greater level in the tree
1056     // and collect visited nodes.
1057     auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1058       const TreeNodePtr TN = DT.getNode(To);
1059       assert(TN);
1060       if (TN->getLevel() > Level) return true;
1061       if (!llvm::is_contained(AffectedQueue, To))
1062         AffectedQueue.push_back(To);
1063 
1064       return false;
1065     };
1066 
1067     SemiNCAInfo SNCA(BUI);
1068     unsigned LastDFSNum =
1069         SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1070 
1071     TreeNodePtr MinNode = ToTN;
1072 
1073     // Identify the top of the subtree to rebuild by finding the NCD of all
1074     // the affected nodes.
1075     for (const NodePtr N : AffectedQueue) {
1076       const TreeNodePtr TN = DT.getNode(N);
1077       const NodePtr NCDBlock =
1078           DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1079       assert(NCDBlock || DT.isPostDominator());
1080       const TreeNodePtr NCD = DT.getNode(NCDBlock);
1081       assert(NCD);
1082 
1083       LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1084                         << " with NCD = " << BlockNamePrinter(NCD)
1085                         << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1086       if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1087     }
1088 
1089     // Root reached, rebuild the whole tree from scratch.
1090     if (!MinNode->getIDom()) {
1091       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1092       CalculateFromScratch(DT, BUI);
1093       return;
1094     }
1095 
1096     // Erase the unreachable subtree in reverse preorder to process all children
1097     // before deleting their parent.
1098     for (unsigned i = LastDFSNum; i > 0; --i) {
1099       const NodePtr N = SNCA.NumToNode[i];
1100       const TreeNodePtr TN = DT.getNode(N);
1101       LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1102 
1103       EraseNode(DT, TN);
1104     }
1105 
1106     // The affected subtree start at the To node -- there's no extra work to do.
1107     if (MinNode == ToTN) return;
1108 
1109     LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1110                       << BlockNamePrinter(MinNode) << "\n");
1111     const unsigned MinLevel = MinNode->getLevel();
1112     const TreeNodePtr PrevIDom = MinNode->getIDom();
1113     assert(PrevIDom);
1114     SNCA.clear();
1115 
1116     // Identify nodes that remain in the affected subtree.
1117     auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1118       const TreeNodePtr ToTN = DT.getNode(To);
1119       return ToTN && ToTN->getLevel() > MinLevel;
1120     };
1121     SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1122 
1123     LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1124                       << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1125 
1126     // Rebuild the remaining part of affected subtree.
1127     SNCA.runSemiNCA(DT, MinLevel);
1128     SNCA.reattachExistingSubtree(DT, PrevIDom);
1129   }
1130 
1131   // Removes leaf tree nodes from the dominator tree.
1132   static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1133     assert(TN);
1134     assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1135 
1136     const TreeNodePtr IDom = TN->getIDom();
1137     assert(IDom);
1138 
1139     auto ChIt = llvm::find(IDom->Children, TN);
1140     assert(ChIt != IDom->Children.end());
1141     std::swap(*ChIt, IDom->Children.back());
1142     IDom->Children.pop_back();
1143 
1144     DT.DomTreeNodes.erase(TN->getBlock());
1145   }
1146 
1147   //~~
1148   //===--------------------- DomTree Batch Updater --------------------------===
1149   //~~
1150 
1151   static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
1152                            GraphDiffT *PostViewCFG) {
1153     // Note: the PostViewCFG is only used when computing from scratch. It's data
1154     // should already included in the PreViewCFG for incremental updates.
1155     const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
1156     if (NumUpdates == 0)
1157       return;
1158 
1159     // Take the fast path for a single update and avoid running the batch update
1160     // machinery.
1161     if (NumUpdates == 1) {
1162       UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
1163       if (!PostViewCFG) {
1164         if (Update.getKind() == UpdateKind::Insert)
1165           InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1166         else
1167           DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1168       } else {
1169         BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
1170         if (Update.getKind() == UpdateKind::Insert)
1171           InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1172         else
1173           DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1174       }
1175       return;
1176     }
1177 
1178     BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
1179     // Recalculate the DominatorTree when the number of updates
1180     // exceeds a threshold, which usually makes direct updating slower than
1181     // recalculation. We select this threshold proportional to the
1182     // size of the DominatorTree. The constant is selected
1183     // by choosing the one with an acceptable performance on some real-world
1184     // inputs.
1185 
1186     // Make unittests of the incremental algorithm work
1187     if (DT.DomTreeNodes.size() <= 100) {
1188       if (BUI.NumLegalized > DT.DomTreeNodes.size())
1189         CalculateFromScratch(DT, &BUI);
1190     } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
1191       CalculateFromScratch(DT, &BUI);
1192 
1193     // If the DominatorTree was recalculated at some point, stop the batch
1194     // updates. Full recalculations ignore batch updates and look at the actual
1195     // CFG.
1196     for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
1197       ApplyNextUpdate(DT, BUI);
1198   }
1199 
1200   static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1201     // Popping the next update, will move the PreViewCFG to the next snapshot.
1202     UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
1203 #if 0
1204     // FIXME: The LLVM_DEBUG macro only plays well with a modular
1205     // build of LLVM when the header is marked as textual, but doing
1206     // so causes redefinition errors.
1207     LLVM_DEBUG(dbgs() << "Applying update: ");
1208     LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1209 #endif
1210 
1211     if (CurrentUpdate.getKind() == UpdateKind::Insert)
1212       InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1213     else
1214       DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1215   }
1216 
1217   //~~
1218   //===--------------- DomTree correctness verification ---------------------===
1219   //~~
1220 
1221   // Check if the tree has correct roots. A DominatorTree always has a single
1222   // root which is the function's entry node. A PostDominatorTree can have
1223   // multiple roots - one for each node with no successors and for infinite
1224   // loops.
1225   // Running time: O(N).
1226   bool verifyRoots(const DomTreeT &DT) {
1227     if (!DT.Parent && !DT.Roots.empty()) {
1228       errs() << "Tree has no parent but has roots!\n";
1229       errs().flush();
1230       return false;
1231     }
1232 
1233     if (!IsPostDom) {
1234       if (DT.Roots.empty()) {
1235         errs() << "Tree doesn't have a root!\n";
1236         errs().flush();
1237         return false;
1238       }
1239 
1240       if (DT.getRoot() != GetEntryNode(DT)) {
1241         errs() << "Tree's root is not its parent's entry node!\n";
1242         errs().flush();
1243         return false;
1244       }
1245     }
1246 
1247     RootsT ComputedRoots = FindRoots(DT, nullptr);
1248     if (!isPermutation(DT.Roots, ComputedRoots)) {
1249       errs() << "Tree has different roots than freshly computed ones!\n";
1250       errs() << "\tPDT roots: ";
1251       for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1252       errs() << "\n\tComputed roots: ";
1253       for (const NodePtr N : ComputedRoots)
1254         errs() << BlockNamePrinter(N) << ", ";
1255       errs() << "\n";
1256       errs().flush();
1257       return false;
1258     }
1259 
1260     return true;
1261   }
1262 
1263   // Checks if the tree contains all reachable nodes in the input graph.
1264   // Running time: O(N).
1265   bool verifyReachability(const DomTreeT &DT) {
1266     clear();
1267     doFullDFSWalk(DT, AlwaysDescend);
1268 
1269     for (auto &NodeToTN : DT.DomTreeNodes) {
1270       const TreeNodePtr TN = NodeToTN.second.get();
1271       const NodePtr BB = TN->getBlock();
1272 
1273       // Virtual root has a corresponding virtual CFG node.
1274       if (DT.isVirtualRoot(TN)) continue;
1275 
1276       if (NodeToInfo.count(BB) == 0) {
1277         errs() << "DomTree node " << BlockNamePrinter(BB)
1278                << " not found by DFS walk!\n";
1279         errs().flush();
1280 
1281         return false;
1282       }
1283     }
1284 
1285     for (const NodePtr N : NumToNode) {
1286       if (N && !DT.getNode(N)) {
1287         errs() << "CFG node " << BlockNamePrinter(N)
1288                << " not found in the DomTree!\n";
1289         errs().flush();
1290 
1291         return false;
1292       }
1293     }
1294 
1295     return true;
1296   }
1297 
1298   // Check if for every parent with a level L in the tree all of its children
1299   // have level L + 1.
1300   // Running time: O(N).
1301   static bool VerifyLevels(const DomTreeT &DT) {
1302     for (auto &NodeToTN : DT.DomTreeNodes) {
1303       const TreeNodePtr TN = NodeToTN.second.get();
1304       const NodePtr BB = TN->getBlock();
1305       if (!BB) continue;
1306 
1307       const TreeNodePtr IDom = TN->getIDom();
1308       if (!IDom && TN->getLevel() != 0) {
1309         errs() << "Node without an IDom " << BlockNamePrinter(BB)
1310                << " has a nonzero level " << TN->getLevel() << "!\n";
1311         errs().flush();
1312 
1313         return false;
1314       }
1315 
1316       if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1317         errs() << "Node " << BlockNamePrinter(BB) << " has level "
1318                << TN->getLevel() << " while its IDom "
1319                << BlockNamePrinter(IDom->getBlock()) << " has level "
1320                << IDom->getLevel() << "!\n";
1321         errs().flush();
1322 
1323         return false;
1324       }
1325     }
1326 
1327     return true;
1328   }
1329 
1330   // Check if the computed DFS numbers are correct. Note that DFS info may not
1331   // be valid, and when that is the case, we don't verify the numbers.
1332   // Running time: O(N log(N)).
1333   static bool VerifyDFSNumbers(const DomTreeT &DT) {
1334     if (!DT.DFSInfoValid || !DT.Parent)
1335       return true;
1336 
1337     const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
1338     const TreeNodePtr Root = DT.getNode(RootBB);
1339 
1340     auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1341       errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1342              << TN->getDFSNumOut() << '}';
1343     };
1344 
1345     // Verify the root's DFS In number. Although DFS numbering would also work
1346     // if we started from some other value, we assume 0-based numbering.
1347     if (Root->getDFSNumIn() != 0) {
1348       errs() << "DFSIn number for the tree root is not:\n\t";
1349       PrintNodeAndDFSNums(Root);
1350       errs() << '\n';
1351       errs().flush();
1352       return false;
1353     }
1354 
1355     // For each tree node verify if children's DFS numbers cover their parent's
1356     // DFS numbers with no gaps.
1357     for (const auto &NodeToTN : DT.DomTreeNodes) {
1358       const TreeNodePtr Node = NodeToTN.second.get();
1359 
1360       // Handle tree leaves.
1361       if (Node->isLeaf()) {
1362         if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1363           errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1364           PrintNodeAndDFSNums(Node);
1365           errs() << '\n';
1366           errs().flush();
1367           return false;
1368         }
1369 
1370         continue;
1371       }
1372 
1373       // Make a copy and sort it such that it is possible to check if there are
1374       // no gaps between DFS numbers of adjacent children.
1375       SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1376       llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1377         return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1378       });
1379 
1380       auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1381           const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1382         assert(FirstCh);
1383 
1384         errs() << "Incorrect DFS numbers for:\n\tParent ";
1385         PrintNodeAndDFSNums(Node);
1386 
1387         errs() << "\n\tChild ";
1388         PrintNodeAndDFSNums(FirstCh);
1389 
1390         if (SecondCh) {
1391           errs() << "\n\tSecond child ";
1392           PrintNodeAndDFSNums(SecondCh);
1393         }
1394 
1395         errs() << "\nAll children: ";
1396         for (const TreeNodePtr Ch : Children) {
1397           PrintNodeAndDFSNums(Ch);
1398           errs() << ", ";
1399         }
1400 
1401         errs() << '\n';
1402         errs().flush();
1403       };
1404 
1405       if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1406         PrintChildrenError(Children.front(), nullptr);
1407         return false;
1408       }
1409 
1410       if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1411         PrintChildrenError(Children.back(), nullptr);
1412         return false;
1413       }
1414 
1415       for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1416         if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1417           PrintChildrenError(Children[i], Children[i + 1]);
1418           return false;
1419         }
1420       }
1421     }
1422 
1423     return true;
1424   }
1425 
1426   // The below routines verify the correctness of the dominator tree relative to
1427   // the CFG it's coming from.  A tree is a dominator tree iff it has two
1428   // properties, called the parent property and the sibling property.  Tarjan
1429   // and Lengauer prove (but don't explicitly name) the properties as part of
1430   // the proofs in their 1972 paper, but the proofs are mostly part of proving
1431   // things about semidominators and idoms, and some of them are simply asserted
1432   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
1433   // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
1434   // directed bipolar orders, and independent spanning trees" by Loukas
1435   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1436   // and Vertex-Disjoint Paths " by the same authors.
1437 
1438   // A very simple and direct explanation of these properties can be found in
1439   // "An Experimental Study of Dynamic Dominators", found at
1440   // https://arxiv.org/abs/1604.02711
1441 
1442   // The easiest way to think of the parent property is that it's a requirement
1443   // of being a dominator.  Let's just take immediate dominators.  For PARENT to
1444   // be an immediate dominator of CHILD, all paths in the CFG must go through
1445   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
1446   // out of the CFG, there should be no paths to CHILD that are reachable.  If
1447   // there are, then you now have a path from PARENT to CHILD that goes around
1448   // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1449   // a dominator of CHILD (let alone an immediate one).
1450 
1451   // The sibling property is similar.  It says that for each pair of sibling
1452   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1453   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
1454   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1455   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1456   // RIGHT, not a sibling.
1457 
1458   // It is possible to verify the parent and sibling properties in linear time,
1459   // but the algorithms are complex. Instead, we do it in a straightforward
1460   // N^2 and N^3 way below, using direct path reachability.
1461 
1462   // Checks if the tree has the parent property: if for all edges from V to W in
1463   // the input graph, such that V is reachable, the parent of W in the tree is
1464   // an ancestor of V in the tree.
1465   // Running time: O(N^2).
1466   //
1467   // This means that if a node gets disconnected from the graph, then all of
1468   // the nodes it dominated previously will now become unreachable.
1469   bool verifyParentProperty(const DomTreeT &DT) {
1470     for (auto &NodeToTN : DT.DomTreeNodes) {
1471       const TreeNodePtr TN = NodeToTN.second.get();
1472       const NodePtr BB = TN->getBlock();
1473       if (!BB || TN->isLeaf())
1474         continue;
1475 
1476       LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1477                         << BlockNamePrinter(TN) << "\n");
1478       clear();
1479       doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1480         return From != BB && To != BB;
1481       });
1482 
1483       for (TreeNodePtr Child : TN->children())
1484         if (NodeToInfo.count(Child->getBlock()) != 0) {
1485           errs() << "Child " << BlockNamePrinter(Child)
1486                  << " reachable after its parent " << BlockNamePrinter(BB)
1487                  << " is removed!\n";
1488           errs().flush();
1489 
1490           return false;
1491         }
1492     }
1493 
1494     return true;
1495   }
1496 
1497   // Check if the tree has sibling property: if a node V does not dominate a
1498   // node W for all siblings V and W in the tree.
1499   // Running time: O(N^3).
1500   //
1501   // This means that if a node gets disconnected from the graph, then all of its
1502   // siblings will now still be reachable.
1503   bool verifySiblingProperty(const DomTreeT &DT) {
1504     for (auto &NodeToTN : DT.DomTreeNodes) {
1505       const TreeNodePtr TN = NodeToTN.second.get();
1506       const NodePtr BB = TN->getBlock();
1507       if (!BB || TN->isLeaf())
1508         continue;
1509 
1510       for (const TreeNodePtr N : TN->children()) {
1511         clear();
1512         NodePtr BBN = N->getBlock();
1513         doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1514           return From != BBN && To != BBN;
1515         });
1516 
1517         for (const TreeNodePtr S : TN->children()) {
1518           if (S == N) continue;
1519 
1520           if (NodeToInfo.count(S->getBlock()) == 0) {
1521             errs() << "Node " << BlockNamePrinter(S)
1522                    << " not reachable when its sibling " << BlockNamePrinter(N)
1523                    << " is removed!\n";
1524             errs().flush();
1525 
1526             return false;
1527           }
1528         }
1529       }
1530     }
1531 
1532     return true;
1533   }
1534 
1535   // Check if the given tree is the same as a freshly computed one for the same
1536   // Parent.
1537   // Running time: O(N^2), but faster in practice (same as tree construction).
1538   //
1539   // Note that this does not check if that the tree construction algorithm is
1540   // correct and should be only used for fast (but possibly unsound)
1541   // verification.
1542   static bool IsSameAsFreshTree(const DomTreeT &DT) {
1543     DomTreeT FreshTree;
1544     FreshTree.recalculate(*DT.Parent);
1545     const bool Different = DT.compare(FreshTree);
1546 
1547     if (Different) {
1548       errs() << (DT.isPostDominator() ? "Post" : "")
1549              << "DominatorTree is different than a freshly computed one!\n"
1550              << "\tCurrent:\n";
1551       DT.print(errs());
1552       errs() << "\n\tFreshly computed tree:\n";
1553       FreshTree.print(errs());
1554       errs().flush();
1555     }
1556 
1557     return !Different;
1558   }
1559 };
1560 
1561 template <class DomTreeT>
1562 void Calculate(DomTreeT &DT) {
1563   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1564 }
1565 
1566 template <typename DomTreeT>
1567 void CalculateWithUpdates(DomTreeT &DT,
1568                           ArrayRef<typename DomTreeT::UpdateType> Updates) {
1569   // FIXME: Updated to use the PreViewCFG and behave the same as until now.
1570   // This behavior is however incorrect; this actually needs the PostViewCFG.
1571   GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
1572       Updates, /*ReverseApplyUpdates=*/true);
1573   typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
1574   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1575 }
1576 
1577 template <class DomTreeT>
1578 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1579                 typename DomTreeT::NodePtr To) {
1580   if (DT.isPostDominator()) std::swap(From, To);
1581   SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1582 }
1583 
1584 template <class DomTreeT>
1585 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1586                 typename DomTreeT::NodePtr To) {
1587   if (DT.isPostDominator()) std::swap(From, To);
1588   SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1589 }
1590 
1591 template <class DomTreeT>
1592 void ApplyUpdates(DomTreeT &DT,
1593                   GraphDiff<typename DomTreeT::NodePtr,
1594                             DomTreeT::IsPostDominator> &PreViewCFG,
1595                   GraphDiff<typename DomTreeT::NodePtr,
1596                             DomTreeT::IsPostDominator> *PostViewCFG) {
1597   SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
1598 }
1599 
1600 template <class DomTreeT>
1601 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1602   SemiNCAInfo<DomTreeT> SNCA(nullptr);
1603 
1604   // Simplist check is to compare against a new tree. This will also
1605   // usefully print the old and new trees, if they are different.
1606   if (!SNCA.IsSameAsFreshTree(DT))
1607     return false;
1608 
1609   // Common checks to verify the properties of the tree. O(N log N) at worst.
1610   if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1611       !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1612     return false;
1613 
1614   // Extra checks depending on VerificationLevel. Up to O(N^3).
1615   if (VL == DomTreeT::VerificationLevel::Basic ||
1616       VL == DomTreeT::VerificationLevel::Full)
1617     if (!SNCA.verifyParentProperty(DT))
1618       return false;
1619   if (VL == DomTreeT::VerificationLevel::Full)
1620     if (!SNCA.verifySiblingProperty(DT))
1621       return false;
1622 
1623   return true;
1624 }
1625 
1626 }  // namespace DomTreeBuilder
1627 }  // namespace llvm
1628 
1629 #undef DEBUG_TYPE
1630 
1631 #endif
1632