1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - this file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 ///   [1] Linear-Time Algorithms for Dominators and Related Problems
15 ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19 /// faster than Simple Lengauer-Tarjan in practice.
20 ///
21 /// O(n^2) worst cases happen when the computation of nearest common ancestors
22 /// requires O(n) average time, which is very unlikely in real world. If this
23 /// ever turns out to be an issue, consider implementing a hybrid algorithm
24 /// that uses SLT to perform full constructions and SemiNCA for incremental
25 /// updates.
26 ///
27 /// The file uses the Depth Based Search algorithm to perform incremental
28 /// updates (insertion and deletions). The implemented algorithm is based on
29 /// this publication:
30 ///
31 ///   [2] An Experimental Study of Dynamic Dominators
32 ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
33 ///   https://arxiv.org/pdf/1604.02711.pdf
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
38 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
39 
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseSet.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/PointerIntPair.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/GenericDomTree.h"
47 #include <optional>
48 #include <queue>
49 
50 #define DEBUG_TYPE "dom-tree-builder"
51 
52 namespace llvm {
53 namespace DomTreeBuilder {
54 
55 template <typename DomTreeT>
56 struct SemiNCAInfo {
57   using NodePtr = typename DomTreeT::NodePtr;
58   using NodeT = typename DomTreeT::NodeType;
59   using TreeNodePtr = DomTreeNodeBase<NodeT> *;
60   using RootsT = decltype(DomTreeT::Roots);
61   static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
62   using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
63 
64   // Information record used by Semi-NCA during tree construction.
65   struct InfoRec {
66     unsigned DFSNum = 0;
67     unsigned Parent = 0;
68     unsigned Semi = 0;
69     NodePtr Label = nullptr;
70     NodePtr IDom = nullptr;
71     SmallVector<NodePtr, 2> ReverseChildren;
72   };
73 
74   // Number to node mapping is 1-based. Initialize the mapping to start with
75   // a dummy element.
76   std::vector<NodePtr> NumToNode = {nullptr};
77   DenseMap<NodePtr, InfoRec> NodeToInfo;
78 
79   using UpdateT = typename DomTreeT::UpdateType;
80   using UpdateKind = typename DomTreeT::UpdateKind;
81   struct BatchUpdateInfo {
82     // Note: Updates inside PreViewCFG are already legalized.
83     BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
84         : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
85           NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
86 
87     // Remembers if the whole tree was recalculated at some point during the
88     // current batch update.
89     bool IsRecalculated = false;
90     GraphDiffT &PreViewCFG;
91     GraphDiffT *PostViewCFG;
92     const size_t NumLegalized;
93   };
94 
95   BatchUpdateInfo *BatchUpdates;
96   using BatchUpdatePtr = BatchUpdateInfo *;
97 
98   // If BUI is a nullptr, then there's no batch update in progress.
99   SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
100 
101   void clear() {
102     NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
103     NodeToInfo.clear();
104     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
105     // in progress, we need this information to continue it.
106   }
107 
108   template <bool Inversed>
109   static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
110     if (BUI)
111       return BUI->PreViewCFG.template getChildren<Inversed>(N);
112     return getChildren<Inversed>(N);
113   }
114 
115   template <bool Inversed>
116   static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
117     using DirectedNodeT =
118         std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
119     auto R = children<DirectedNodeT>(N);
120     SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
121 
122     // Remove nullptr children for clang.
123     llvm::erase_value(Res, nullptr);
124     return Res;
125   }
126 
127   NodePtr getIDom(NodePtr BB) const {
128     auto InfoIt = NodeToInfo.find(BB);
129     if (InfoIt == NodeToInfo.end()) return nullptr;
130 
131     return InfoIt->second.IDom;
132   }
133 
134   TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
135     if (TreeNodePtr Node = DT.getNode(BB)) return Node;
136 
137     // Haven't calculated this node yet?  Get or calculate the node for the
138     // immediate dominator.
139     NodePtr IDom = getIDom(BB);
140 
141     assert(IDom || DT.DomTreeNodes[nullptr]);
142     TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
143 
144     // Add a new tree node for this NodeT, and link it as a child of
145     // IDomNode
146     return DT.createChild(BB, IDomNode);
147   }
148 
149   static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
150 
151   struct BlockNamePrinter {
152     NodePtr N;
153 
154     BlockNamePrinter(NodePtr Block) : N(Block) {}
155     BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
156 
157     friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
158       if (!BP.N)
159         O << "nullptr";
160       else
161         BP.N->printAsOperand(O, false);
162 
163       return O;
164     }
165   };
166 
167   using NodeOrderMap = DenseMap<NodePtr, unsigned>;
168 
169   // Custom DFS implementation which can skip nodes based on a provided
170   // predicate. It also collects ReverseChildren so that we don't have to spend
171   // time getting predecessors in SemiNCA.
172   //
173   // If IsReverse is set to true, the DFS walk will be performed backwards
174   // relative to IsPostDom -- using reverse edges for dominators and forward
175   // edges for postdominators.
176   //
177   // If SuccOrder is specified then in this order the DFS traverses the children
178   // otherwise the order is implied by the results of getChildren().
179   template <bool IsReverse = false, typename DescendCondition>
180   unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
181                   unsigned AttachToNum,
182                   const NodeOrderMap *SuccOrder = nullptr) {
183     assert(V);
184     SmallVector<NodePtr, 64> WorkList = {V};
185     if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
186 
187     while (!WorkList.empty()) {
188       const NodePtr BB = WorkList.pop_back_val();
189       auto &BBInfo = NodeToInfo[BB];
190 
191       // Visited nodes always have positive DFS numbers.
192       if (BBInfo.DFSNum != 0) continue;
193       BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
194       BBInfo.Label = BB;
195       NumToNode.push_back(BB);
196 
197       constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
198       auto Successors = getChildren<Direction>(BB, BatchUpdates);
199       if (SuccOrder && Successors.size() > 1)
200         llvm::sort(
201             Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
202               return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
203             });
204 
205       for (const NodePtr Succ : Successors) {
206         const auto SIT = NodeToInfo.find(Succ);
207         // Don't visit nodes more than once but remember to collect
208         // ReverseChildren.
209         if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
210           if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
211           continue;
212         }
213 
214         if (!Condition(BB, Succ)) continue;
215 
216         // It's fine to add Succ to the map, because we know that it will be
217         // visited later.
218         auto &SuccInfo = NodeToInfo[Succ];
219         WorkList.push_back(Succ);
220         SuccInfo.Parent = LastNum;
221         SuccInfo.ReverseChildren.push_back(BB);
222       }
223     }
224 
225     return LastNum;
226   }
227 
228   // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
229   // of sdom(U), where U > W and there is a virtual forest path from U to V. The
230   // virtual forest consists of linked edges of processed vertices.
231   //
232   // We can follow Parent pointers (virtual forest edges) to determine the
233   // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
234   // compression technique to speed up to O(m*log(n)). Theoretically the virtual
235   // forest can be organized as balanced trees to achieve almost linear
236   // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
237   // and Child) and is unlikely to be faster than the simple implementation.
238   //
239   // For each vertex V, its Label points to the vertex with the minimal sdom(U)
240   // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
241   NodePtr eval(NodePtr V, unsigned LastLinked,
242                SmallVectorImpl<InfoRec *> &Stack) {
243     InfoRec *VInfo = &NodeToInfo[V];
244     if (VInfo->Parent < LastLinked)
245       return VInfo->Label;
246 
247     // Store ancestors except the last (root of a virtual tree) into a stack.
248     assert(Stack.empty());
249     do {
250       Stack.push_back(VInfo);
251       VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
252     } while (VInfo->Parent >= LastLinked);
253 
254     // Path compression. Point each vertex's Parent to the root and update its
255     // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
256     const InfoRec *PInfo = VInfo;
257     const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
258     do {
259       VInfo = Stack.pop_back_val();
260       VInfo->Parent = PInfo->Parent;
261       const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
262       if (PLabelInfo->Semi < VLabelInfo->Semi)
263         VInfo->Label = PInfo->Label;
264       else
265         PLabelInfo = VLabelInfo;
266       PInfo = VInfo;
267     } while (!Stack.empty());
268     return VInfo->Label;
269   }
270 
271   // This function requires DFS to be run before calling it.
272   void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
273     const unsigned NextDFSNum(NumToNode.size());
274     // Initialize IDoms to spanning tree parents.
275     for (unsigned i = 1; i < NextDFSNum; ++i) {
276       const NodePtr V = NumToNode[i];
277       auto &VInfo = NodeToInfo[V];
278       VInfo.IDom = NumToNode[VInfo.Parent];
279     }
280 
281     // Step #1: Calculate the semidominators of all vertices.
282     SmallVector<InfoRec *, 32> EvalStack;
283     for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
284       NodePtr W = NumToNode[i];
285       auto &WInfo = NodeToInfo[W];
286 
287       // Initialize the semi dominator to point to the parent node.
288       WInfo.Semi = WInfo.Parent;
289       for (const auto &N : WInfo.ReverseChildren) {
290         if (NodeToInfo.count(N) == 0)  // Skip unreachable predecessors.
291           continue;
292 
293         const TreeNodePtr TN = DT.getNode(N);
294         // Skip predecessors whose level is above the subtree we are processing.
295         if (TN && TN->getLevel() < MinLevel)
296           continue;
297 
298         unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
299         if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
300       }
301     }
302 
303     // Step #2: Explicitly define the immediate dominator of each vertex.
304     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
305     // Note that the parents were stored in IDoms and later got invalidated
306     // during path compression in Eval.
307     for (unsigned i = 2; i < NextDFSNum; ++i) {
308       const NodePtr W = NumToNode[i];
309       auto &WInfo = NodeToInfo[W];
310       const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
311       NodePtr WIDomCandidate = WInfo.IDom;
312       while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
313         WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
314 
315       WInfo.IDom = WIDomCandidate;
316     }
317   }
318 
319   // PostDominatorTree always has a virtual root that represents a virtual CFG
320   // node that serves as a single exit from the function. All the other exits
321   // (CFG nodes with terminators and nodes in infinite loops are logically
322   // connected to this virtual CFG exit node).
323   // This functions maps a nullptr CFG node to the virtual root tree node.
324   void addVirtualRoot() {
325     assert(IsPostDom && "Only postdominators have a virtual root");
326     assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
327 
328     auto &BBInfo = NodeToInfo[nullptr];
329     BBInfo.DFSNum = BBInfo.Semi = 1;
330     BBInfo.Label = nullptr;
331 
332     NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
333   }
334 
335   // For postdominators, nodes with no forward successors are trivial roots that
336   // are always selected as tree roots. Roots with forward successors correspond
337   // to CFG nodes within infinite loops.
338   static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
339     assert(N && "N must be a valid node");
340     return !getChildren<false>(N, BUI).empty();
341   }
342 
343   static NodePtr GetEntryNode(const DomTreeT &DT) {
344     assert(DT.Parent && "Parent not set");
345     return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
346   }
347 
348   // Finds all roots without relaying on the set of roots already stored in the
349   // tree.
350   // We define roots to be some non-redundant set of the CFG nodes
351   static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
352     assert(DT.Parent && "Parent pointer is not set");
353     RootsT Roots;
354 
355     // For dominators, function entry CFG node is always a tree root node.
356     if (!IsPostDom) {
357       Roots.push_back(GetEntryNode(DT));
358       return Roots;
359     }
360 
361     SemiNCAInfo SNCA(BUI);
362 
363     // PostDominatorTree always has a virtual root.
364     SNCA.addVirtualRoot();
365     unsigned Num = 1;
366 
367     LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
368 
369     // Step #1: Find all the trivial roots that are going to will definitely
370     // remain tree roots.
371     unsigned Total = 0;
372     // It may happen that there are some new nodes in the CFG that are result of
373     // the ongoing batch update, but we cannot really pretend that they don't
374     // exist -- we won't see any outgoing or incoming edges to them, so it's
375     // fine to discover them here, as they would end up appearing in the CFG at
376     // some point anyway.
377     for (const NodePtr N : nodes(DT.Parent)) {
378       ++Total;
379       // If it has no *successors*, it is definitely a root.
380       if (!HasForwardSuccessors(N, BUI)) {
381         Roots.push_back(N);
382         // Run DFS not to walk this part of CFG later.
383         Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
384         LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
385                           << "\n");
386         LLVM_DEBUG(dbgs() << "Last visited node: "
387                           << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
388       }
389     }
390 
391     LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
392 
393     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
394     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
395     // nodes in infinite loops).
396     bool HasNonTrivialRoots = false;
397     // Accounting for the virtual exit, see if we had any reverse-unreachable
398     // nodes.
399     if (Total + 1 != Num) {
400       HasNonTrivialRoots = true;
401 
402       // SuccOrder is the order of blocks in the function. It is needed to make
403       // the calculation of the FurthestAway node and the whole PostDomTree
404       // immune to swap successors transformation (e.g. canonicalizing branch
405       // predicates). SuccOrder is initialized lazily only for successors of
406       // reverse unreachable nodes.
407       std::optional<NodeOrderMap> SuccOrder;
408       auto InitSuccOrderOnce = [&]() {
409         SuccOrder = NodeOrderMap();
410         for (const auto Node : nodes(DT.Parent))
411           if (SNCA.NodeToInfo.count(Node) == 0)
412             for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
413               SuccOrder->try_emplace(Succ, 0);
414 
415         // Add mapping for all entries of SuccOrder.
416         unsigned NodeNum = 0;
417         for (const auto Node : nodes(DT.Parent)) {
418           ++NodeNum;
419           auto Order = SuccOrder->find(Node);
420           if (Order != SuccOrder->end()) {
421             assert(Order->second == 0);
422             Order->second = NodeNum;
423           }
424         }
425       };
426 
427       // Make another DFS pass over all other nodes to find the
428       // reverse-unreachable blocks, and find the furthest paths we'll be able
429       // to make.
430       // Note that this looks N^2, but it's really 2N worst case, if every node
431       // is unreachable. This is because we are still going to only visit each
432       // unreachable node once, we may just visit it in two directions,
433       // depending on how lucky we get.
434       for (const NodePtr I : nodes(DT.Parent)) {
435         if (SNCA.NodeToInfo.count(I) == 0) {
436           LLVM_DEBUG(dbgs()
437                      << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
438           // Find the furthest away we can get by following successors, then
439           // follow them in reverse.  This gives us some reasonable answer about
440           // the post-dom tree inside any infinite loop. In particular, it
441           // guarantees we get to the farthest away point along *some*
442           // path. This also matches the GCC's behavior.
443           // If we really wanted a totally complete picture of dominance inside
444           // this infinite loop, we could do it with SCC-like algorithms to find
445           // the lowest and highest points in the infinite loop.  In theory, it
446           // would be nice to give the canonical backedge for the loop, but it's
447           // expensive and does not always lead to a minimal set of roots.
448           LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
449 
450           if (!SuccOrder)
451             InitSuccOrderOnce();
452           assert(SuccOrder);
453 
454           const unsigned NewNum =
455               SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
456           const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
457           LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
458                             << "(non-trivial root): "
459                             << BlockNamePrinter(FurthestAway) << "\n");
460           Roots.push_back(FurthestAway);
461           LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
462                             << NewNum << "\n\t\t\tRemoving DFS info\n");
463           for (unsigned i = NewNum; i > Num; --i) {
464             const NodePtr N = SNCA.NumToNode[i];
465             LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
466                               << BlockNamePrinter(N) << "\n");
467             SNCA.NodeToInfo.erase(N);
468             SNCA.NumToNode.pop_back();
469           }
470           const unsigned PrevNum = Num;
471           LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
472           Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
473           for (unsigned i = PrevNum + 1; i <= Num; ++i)
474             LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
475                               << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
476         }
477       }
478     }
479 
480     LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
481     LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
482     LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
483                << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
484 
485     assert((Total + 1 == Num) && "Everything should have been visited");
486 
487     // Step #3: If we found some non-trivial roots, make them non-redundant.
488     if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
489 
490     LLVM_DEBUG(dbgs() << "Found roots: ");
491     LLVM_DEBUG(for (auto *Root
492                     : Roots) dbgs()
493                << BlockNamePrinter(Root) << " ");
494     LLVM_DEBUG(dbgs() << "\n");
495 
496     return Roots;
497   }
498 
499   // This function only makes sense for postdominators.
500   // We define roots to be some set of CFG nodes where (reverse) DFS walks have
501   // to start in order to visit all the CFG nodes (including the
502   // reverse-unreachable ones).
503   // When the search for non-trivial roots is done it may happen that some of
504   // the non-trivial roots are reverse-reachable from other non-trivial roots,
505   // which makes them redundant. This function removes them from the set of
506   // input roots.
507   static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
508                                    RootsT &Roots) {
509     assert(IsPostDom && "This function is for postdominators only");
510     LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
511 
512     SemiNCAInfo SNCA(BUI);
513 
514     for (unsigned i = 0; i < Roots.size(); ++i) {
515       auto &Root = Roots[i];
516       // Trivial roots are always non-redundant.
517       if (!HasForwardSuccessors(Root, BUI)) continue;
518       LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
519                         << " remains a root\n");
520       SNCA.clear();
521       // Do a forward walk looking for the other roots.
522       const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
523       // Skip the start node and begin from the second one (note that DFS uses
524       // 1-based indexing).
525       for (unsigned x = 2; x <= Num; ++x) {
526         const NodePtr N = SNCA.NumToNode[x];
527         // If we wound another root in a (forward) DFS walk, remove the current
528         // root from the set of roots, as it is reverse-reachable from the other
529         // one.
530         if (llvm::is_contained(Roots, N)) {
531           LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
532                             << BlockNamePrinter(N) << "\n\tRemoving root "
533                             << BlockNamePrinter(Root) << "\n");
534           std::swap(Root, Roots.back());
535           Roots.pop_back();
536 
537           // Root at the back takes the current root's place.
538           // Start the next loop iteration with the same index.
539           --i;
540           break;
541         }
542       }
543     }
544   }
545 
546   template <typename DescendCondition>
547   void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
548     if (!IsPostDom) {
549       assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
550       runDFS(DT.Roots[0], 0, DC, 0);
551       return;
552     }
553 
554     addVirtualRoot();
555     unsigned Num = 1;
556     for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
557   }
558 
559   static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
560     auto *Parent = DT.Parent;
561     DT.reset();
562     DT.Parent = Parent;
563     // If the update is using the actual CFG, BUI is null. If it's using a view,
564     // BUI is non-null and the PreCFGView is used. When calculating from
565     // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
566     BatchUpdatePtr PostViewBUI = nullptr;
567     if (BUI && BUI->PostViewCFG) {
568       BUI->PreViewCFG = *BUI->PostViewCFG;
569       PostViewBUI = BUI;
570     }
571     // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
572     // used in case the caller needs a DT update with a CFGView.
573     SemiNCAInfo SNCA(PostViewBUI);
574 
575     // Step #0: Number blocks in depth-first order and initialize variables used
576     // in later stages of the algorithm.
577     DT.Roots = FindRoots(DT, PostViewBUI);
578     SNCA.doFullDFSWalk(DT, AlwaysDescend);
579 
580     SNCA.runSemiNCA(DT);
581     if (BUI) {
582       BUI->IsRecalculated = true;
583       LLVM_DEBUG(
584           dbgs() << "DomTree recalculated, skipping future batch updates\n");
585     }
586 
587     if (DT.Roots.empty()) return;
588 
589     // Add a node for the root. If the tree is a PostDominatorTree it will be
590     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
591     // all real exits (including multiple exit blocks, infinite loops).
592     NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
593 
594     DT.RootNode = DT.createNode(Root);
595     SNCA.attachNewSubtree(DT, DT.RootNode);
596   }
597 
598   void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
599     // Attach the first unreachable block to AttachTo.
600     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
601     // Loop over all of the discovered blocks in the function...
602     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
603       NodePtr W = NumToNode[i];
604 
605       // Don't replace this with 'count', the insertion side effect is important
606       if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
607 
608       NodePtr ImmDom = getIDom(W);
609 
610       // Get or calculate the node for the immediate dominator.
611       TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
612 
613       // Add a new tree node for this BasicBlock, and link it as a child of
614       // IDomNode.
615       DT.createChild(W, IDomNode);
616     }
617   }
618 
619   void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
620     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
621     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
622       const NodePtr N = NumToNode[i];
623       const TreeNodePtr TN = DT.getNode(N);
624       assert(TN);
625       const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
626       TN->setIDom(NewIDom);
627     }
628   }
629 
630   // Helper struct used during edge insertions.
631   struct InsertionInfo {
632     struct Compare {
633       bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
634         return LHS->getLevel() < RHS->getLevel();
635       }
636     };
637 
638     // Bucket queue of tree nodes ordered by descending level. For simplicity,
639     // we use a priority_queue here.
640     std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
641                         Compare>
642         Bucket;
643     SmallDenseSet<TreeNodePtr, 8> Visited;
644     SmallVector<TreeNodePtr, 8> Affected;
645 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
646     SmallVector<TreeNodePtr, 8> VisitedUnaffected;
647 #endif
648   };
649 
650   static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
651                          const NodePtr From, const NodePtr To) {
652     assert((From || IsPostDom) &&
653            "From has to be a valid CFG node or a virtual root");
654     assert(To && "Cannot be a nullptr");
655     LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
656                       << BlockNamePrinter(To) << "\n");
657     TreeNodePtr FromTN = DT.getNode(From);
658 
659     if (!FromTN) {
660       // Ignore edges from unreachable nodes for (forward) dominators.
661       if (!IsPostDom) return;
662 
663       // The unreachable node becomes a new root -- a tree node for it.
664       TreeNodePtr VirtualRoot = DT.getNode(nullptr);
665       FromTN = DT.createChild(From, VirtualRoot);
666       DT.Roots.push_back(From);
667     }
668 
669     DT.DFSInfoValid = false;
670 
671     const TreeNodePtr ToTN = DT.getNode(To);
672     if (!ToTN)
673       InsertUnreachable(DT, BUI, FromTN, To);
674     else
675       InsertReachable(DT, BUI, FromTN, ToTN);
676   }
677 
678   // Determines if some existing root becomes reverse-reachable after the
679   // insertion. Rebuilds the whole tree if that situation happens.
680   static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
681                                          const TreeNodePtr From,
682                                          const TreeNodePtr To) {
683     assert(IsPostDom && "This function is only for postdominators");
684     // Destination node is not attached to the virtual root, so it cannot be a
685     // root.
686     if (!DT.isVirtualRoot(To->getIDom())) return false;
687 
688     if (!llvm::is_contained(DT.Roots, To->getBlock()))
689       return false;  // To is not a root, nothing to update.
690 
691     LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
692                       << " is no longer a root\n\t\tRebuilding the tree!!!\n");
693 
694     CalculateFromScratch(DT, BUI);
695     return true;
696   }
697 
698   static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
699                             const SmallVectorImpl<NodePtr> &B) {
700     if (A.size() != B.size())
701       return false;
702     SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
703     for (NodePtr N : B)
704       if (Set.count(N) == 0)
705         return false;
706     return true;
707   }
708 
709   // Updates the set of roots after insertion or deletion. This ensures that
710   // roots are the same when after a series of updates and when the tree would
711   // be built from scratch.
712   static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
713     assert(IsPostDom && "This function is only for postdominators");
714 
715     // The tree has only trivial roots -- nothing to update.
716     if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) {
717           return HasForwardSuccessors(N, BUI);
718         }))
719       return;
720 
721     // Recalculate the set of roots.
722     RootsT Roots = FindRoots(DT, BUI);
723     if (!isPermutation(DT.Roots, Roots)) {
724       // The roots chosen in the CFG have changed. This is because the
725       // incremental algorithm does not really know or use the set of roots and
726       // can make a different (implicit) decision about which node within an
727       // infinite loop becomes a root.
728 
729       LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
730                         << "The entire tree needs to be rebuilt\n");
731       // It may be possible to update the tree without recalculating it, but
732       // we do not know yet how to do it, and it happens rarely in practice.
733       CalculateFromScratch(DT, BUI);
734     }
735   }
736 
737   // Handles insertion to a node already in the dominator tree.
738   static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
739                               const TreeNodePtr From, const TreeNodePtr To) {
740     LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
741                       << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
742     if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
743     // DT.findNCD expects both pointers to be valid. When From is a virtual
744     // root, then its CFG block pointer is a nullptr, so we have to 'compute'
745     // the NCD manually.
746     const NodePtr NCDBlock =
747         (From->getBlock() && To->getBlock())
748             ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
749             : nullptr;
750     assert(NCDBlock || DT.isPostDominator());
751     const TreeNodePtr NCD = DT.getNode(NCDBlock);
752     assert(NCD);
753 
754     LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
755     const unsigned NCDLevel = NCD->getLevel();
756 
757     // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
758     // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
759     // w on P s.t. depth(v) <= depth(w)
760     //
761     // This reduces to a widest path problem (maximizing the depth of the
762     // minimum vertex in the path) which can be solved by a modified version of
763     // Dijkstra with a bucket queue (named depth-based search in [2]).
764 
765     // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
766     // affected if this does not hold.
767     if (NCDLevel + 1 >= To->getLevel())
768       return;
769 
770     InsertionInfo II;
771     SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
772     II.Bucket.push(To);
773     II.Visited.insert(To);
774 
775     while (!II.Bucket.empty()) {
776       TreeNodePtr TN = II.Bucket.top();
777       II.Bucket.pop();
778       II.Affected.push_back(TN);
779 
780       const unsigned CurrentLevel = TN->getLevel();
781       LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
782                  "as affected, CurrentLevel " << CurrentLevel << "\n");
783 
784       assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
785 
786       while (true) {
787         // Unlike regular Dijkstra, we have an inner loop to expand more
788         // vertices. The first iteration is for the (affected) vertex popped
789         // from II.Bucket and the rest are for vertices in
790         // UnaffectedOnCurrentLevel, which may eventually expand to affected
791         // vertices.
792         //
793         // Invariant: there is an optimal path from `To` to TN with the minimum
794         // depth being CurrentLevel.
795         for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
796           const TreeNodePtr SuccTN = DT.getNode(Succ);
797           assert(SuccTN &&
798                  "Unreachable successor found at reachable insertion");
799           const unsigned SuccLevel = SuccTN->getLevel();
800 
801           LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
802                             << ", level = " << SuccLevel << "\n");
803 
804           // There is an optimal path from `To` to Succ with the minimum depth
805           // being min(CurrentLevel, SuccLevel).
806           //
807           // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
808           // and no affected vertex may be reached by a path passing through it.
809           // Stop here. Also, Succ may be visited by other predecessors but the
810           // first visit has the optimal path. Stop if Succ has been visited.
811           if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
812             continue;
813 
814           if (SuccLevel > CurrentLevel) {
815             // Succ is unaffected but it may (transitively) expand to affected
816             // vertices. Store it in UnaffectedOnCurrentLevel.
817             LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
818                               << BlockNamePrinter(Succ) << "\n");
819             UnaffectedOnCurrentLevel.push_back(SuccTN);
820 #ifndef NDEBUG
821             II.VisitedUnaffected.push_back(SuccTN);
822 #endif
823           } else {
824             // The condition is satisfied (Succ is affected). Add Succ to the
825             // bucket queue.
826             LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
827                               << " to a Bucket\n");
828             II.Bucket.push(SuccTN);
829           }
830         }
831 
832         if (UnaffectedOnCurrentLevel.empty())
833           break;
834         TN = UnaffectedOnCurrentLevel.pop_back_val();
835         LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
836       }
837     }
838 
839     // Finish by updating immediate dominators and levels.
840     UpdateInsertion(DT, BUI, NCD, II);
841   }
842 
843   // Updates immediate dominators and levels after insertion.
844   static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
845                               const TreeNodePtr NCD, InsertionInfo &II) {
846     LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
847 
848     for (const TreeNodePtr TN : II.Affected) {
849       LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
850                         << ") = " << BlockNamePrinter(NCD) << "\n");
851       TN->setIDom(NCD);
852     }
853 
854 #if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG)
855     for (const TreeNodePtr TN : II.VisitedUnaffected)
856       assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
857              "TN should have been updated by an affected ancestor");
858 #endif
859 
860     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
861   }
862 
863   // Handles insertion to previously unreachable nodes.
864   static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
865                                 const TreeNodePtr From, const NodePtr To) {
866     LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
867                       << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
868 
869     // Collect discovered edges to already reachable nodes.
870     SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
871     // Discover and connect nodes that became reachable with the insertion.
872     ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
873 
874     LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
875                       << " -> (prev unreachable) " << BlockNamePrinter(To)
876                       << "\n");
877 
878     // Used the discovered edges and inset discovered connecting (incoming)
879     // edges.
880     for (const auto &Edge : DiscoveredEdgesToReachable) {
881       LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
882                         << BlockNamePrinter(Edge.first) << " -> "
883                         << BlockNamePrinter(Edge.second) << "\n");
884       InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
885     }
886   }
887 
888   // Connects nodes that become reachable with an insertion.
889   static void ComputeUnreachableDominators(
890       DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
891       const TreeNodePtr Incoming,
892       SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
893           &DiscoveredConnectingEdges) {
894     assert(!DT.getNode(Root) && "Root must not be reachable");
895 
896     // Visit only previously unreachable nodes.
897     auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
898                                                                   NodePtr To) {
899       const TreeNodePtr ToTN = DT.getNode(To);
900       if (!ToTN) return true;
901 
902       DiscoveredConnectingEdges.push_back({From, ToTN});
903       return false;
904     };
905 
906     SemiNCAInfo SNCA(BUI);
907     SNCA.runDFS(Root, 0, UnreachableDescender, 0);
908     SNCA.runSemiNCA(DT);
909     SNCA.attachNewSubtree(DT, Incoming);
910 
911     LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
912   }
913 
914   static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
915                          const NodePtr From, const NodePtr To) {
916     assert(From && To && "Cannot disconnect nullptrs");
917     LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
918                       << BlockNamePrinter(To) << "\n");
919 
920 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
921     // Ensure that the edge was in fact deleted from the CFG before informing
922     // the DomTree about it.
923     // The check is O(N), so run it only in debug configuration.
924     auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
925       auto Successors = getChildren<IsPostDom>(Of, BUI);
926       return llvm::is_contained(Successors, SuccCandidate);
927     };
928     (void)IsSuccessor;
929     assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
930 #endif
931 
932     const TreeNodePtr FromTN = DT.getNode(From);
933     // Deletion in an unreachable subtree -- nothing to do.
934     if (!FromTN) return;
935 
936     const TreeNodePtr ToTN = DT.getNode(To);
937     if (!ToTN) {
938       LLVM_DEBUG(
939           dbgs() << "\tTo (" << BlockNamePrinter(To)
940                  << ") already unreachable -- there is no edge to delete\n");
941       return;
942     }
943 
944     const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
945     const TreeNodePtr NCD = DT.getNode(NCDBlock);
946 
947     // If To dominates From -- nothing to do.
948     if (ToTN != NCD) {
949       DT.DFSInfoValid = false;
950 
951       const TreeNodePtr ToIDom = ToTN->getIDom();
952       LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
953                         << BlockNamePrinter(ToIDom) << "\n");
954 
955       // To remains reachable after deletion.
956       // (Based on the caption under Figure 4. from [2].)
957       if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
958         DeleteReachable(DT, BUI, FromTN, ToTN);
959       else
960         DeleteUnreachable(DT, BUI, ToTN);
961     }
962 
963     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
964   }
965 
966   // Handles deletions that leave destination nodes reachable.
967   static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
968                               const TreeNodePtr FromTN,
969                               const TreeNodePtr ToTN) {
970     LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
971                       << " -> " << BlockNamePrinter(ToTN) << "\n");
972     LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
973 
974     // Find the top of the subtree that needs to be rebuilt.
975     // (Based on the lemma 2.6 from [2].)
976     const NodePtr ToIDom =
977         DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
978     assert(ToIDom || DT.isPostDominator());
979     const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
980     assert(ToIDomTN);
981     const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
982     // Top of the subtree to rebuild is the root node. Rebuild the tree from
983     // scratch.
984     if (!PrevIDomSubTree) {
985       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
986       CalculateFromScratch(DT, BUI);
987       return;
988     }
989 
990     // Only visit nodes in the subtree starting at To.
991     const unsigned Level = ToIDomTN->getLevel();
992     auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
993       return DT.getNode(To)->getLevel() > Level;
994     };
995 
996     LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
997                       << "\n");
998 
999     SemiNCAInfo SNCA(BUI);
1000     SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
1001     LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
1002     SNCA.runSemiNCA(DT, Level);
1003     SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1004   }
1005 
1006   // Checks if a node has proper support, as defined on the page 3 and later
1007   // explained on the page 7 of [2].
1008   static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1009                                const TreeNodePtr TN) {
1010     LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1011                       << "\n");
1012     auto TNB = TN->getBlock();
1013     for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
1014       LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1015       if (!DT.getNode(Pred)) continue;
1016 
1017       const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
1018       LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1019       if (Support != TNB) {
1020         LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1021                           << " is reachable from support "
1022                           << BlockNamePrinter(Support) << "\n");
1023         return true;
1024       }
1025     }
1026 
1027     return false;
1028   }
1029 
1030   // Handle deletions that make destination node unreachable.
1031   // (Based on the lemma 2.7 from the [2].)
1032   static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1033                                 const TreeNodePtr ToTN) {
1034     LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1035                       << BlockNamePrinter(ToTN) << "\n");
1036     assert(ToTN);
1037     assert(ToTN->getBlock());
1038 
1039     if (IsPostDom) {
1040       // Deletion makes a region reverse-unreachable and creates a new root.
1041       // Simulate that by inserting an edge from the virtual root to ToTN and
1042       // adding it as a new root.
1043       LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1044       LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1045                         << "\n");
1046       DT.Roots.push_back(ToTN->getBlock());
1047       InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1048       return;
1049     }
1050 
1051     SmallVector<NodePtr, 16> AffectedQueue;
1052     const unsigned Level = ToTN->getLevel();
1053 
1054     // Traverse destination node's descendants with greater level in the tree
1055     // and collect visited nodes.
1056     auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1057       const TreeNodePtr TN = DT.getNode(To);
1058       assert(TN);
1059       if (TN->getLevel() > Level) return true;
1060       if (!llvm::is_contained(AffectedQueue, To))
1061         AffectedQueue.push_back(To);
1062 
1063       return false;
1064     };
1065 
1066     SemiNCAInfo SNCA(BUI);
1067     unsigned LastDFSNum =
1068         SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1069 
1070     TreeNodePtr MinNode = ToTN;
1071 
1072     // Identify the top of the subtree to rebuild by finding the NCD of all
1073     // the affected nodes.
1074     for (const NodePtr N : AffectedQueue) {
1075       const TreeNodePtr TN = DT.getNode(N);
1076       const NodePtr NCDBlock =
1077           DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1078       assert(NCDBlock || DT.isPostDominator());
1079       const TreeNodePtr NCD = DT.getNode(NCDBlock);
1080       assert(NCD);
1081 
1082       LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1083                         << " with NCD = " << BlockNamePrinter(NCD)
1084                         << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1085       if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1086     }
1087 
1088     // Root reached, rebuild the whole tree from scratch.
1089     if (!MinNode->getIDom()) {
1090       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1091       CalculateFromScratch(DT, BUI);
1092       return;
1093     }
1094 
1095     // Erase the unreachable subtree in reverse preorder to process all children
1096     // before deleting their parent.
1097     for (unsigned i = LastDFSNum; i > 0; --i) {
1098       const NodePtr N = SNCA.NumToNode[i];
1099       const TreeNodePtr TN = DT.getNode(N);
1100       LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1101 
1102       EraseNode(DT, TN);
1103     }
1104 
1105     // The affected subtree start at the To node -- there's no extra work to do.
1106     if (MinNode == ToTN) return;
1107 
1108     LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1109                       << BlockNamePrinter(MinNode) << "\n");
1110     const unsigned MinLevel = MinNode->getLevel();
1111     const TreeNodePtr PrevIDom = MinNode->getIDom();
1112     assert(PrevIDom);
1113     SNCA.clear();
1114 
1115     // Identify nodes that remain in the affected subtree.
1116     auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1117       const TreeNodePtr ToTN = DT.getNode(To);
1118       return ToTN && ToTN->getLevel() > MinLevel;
1119     };
1120     SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1121 
1122     LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1123                       << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1124 
1125     // Rebuild the remaining part of affected subtree.
1126     SNCA.runSemiNCA(DT, MinLevel);
1127     SNCA.reattachExistingSubtree(DT, PrevIDom);
1128   }
1129 
1130   // Removes leaf tree nodes from the dominator tree.
1131   static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1132     assert(TN);
1133     assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1134 
1135     const TreeNodePtr IDom = TN->getIDom();
1136     assert(IDom);
1137 
1138     auto ChIt = llvm::find(IDom->Children, TN);
1139     assert(ChIt != IDom->Children.end());
1140     std::swap(*ChIt, IDom->Children.back());
1141     IDom->Children.pop_back();
1142 
1143     DT.DomTreeNodes.erase(TN->getBlock());
1144   }
1145 
1146   //~~
1147   //===--------------------- DomTree Batch Updater --------------------------===
1148   //~~
1149 
1150   static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
1151                            GraphDiffT *PostViewCFG) {
1152     // Note: the PostViewCFG is only used when computing from scratch. It's data
1153     // should already included in the PreViewCFG for incremental updates.
1154     const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
1155     if (NumUpdates == 0)
1156       return;
1157 
1158     // Take the fast path for a single update and avoid running the batch update
1159     // machinery.
1160     if (NumUpdates == 1) {
1161       UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
1162       if (!PostViewCFG) {
1163         if (Update.getKind() == UpdateKind::Insert)
1164           InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1165         else
1166           DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1167       } else {
1168         BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
1169         if (Update.getKind() == UpdateKind::Insert)
1170           InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1171         else
1172           DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1173       }
1174       return;
1175     }
1176 
1177     BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
1178     // Recalculate the DominatorTree when the number of updates
1179     // exceeds a threshold, which usually makes direct updating slower than
1180     // recalculation. We select this threshold proportional to the
1181     // size of the DominatorTree. The constant is selected
1182     // by choosing the one with an acceptable performance on some real-world
1183     // inputs.
1184 
1185     // Make unittests of the incremental algorithm work
1186     if (DT.DomTreeNodes.size() <= 100) {
1187       if (BUI.NumLegalized > DT.DomTreeNodes.size())
1188         CalculateFromScratch(DT, &BUI);
1189     } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
1190       CalculateFromScratch(DT, &BUI);
1191 
1192     // If the DominatorTree was recalculated at some point, stop the batch
1193     // updates. Full recalculations ignore batch updates and look at the actual
1194     // CFG.
1195     for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
1196       ApplyNextUpdate(DT, BUI);
1197   }
1198 
1199   static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1200     // Popping the next update, will move the PreViewCFG to the next snapshot.
1201     UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
1202 #if 0
1203     // FIXME: The LLVM_DEBUG macro only plays well with a modular
1204     // build of LLVM when the header is marked as textual, but doing
1205     // so causes redefinition errors.
1206     LLVM_DEBUG(dbgs() << "Applying update: ");
1207     LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1208 #endif
1209 
1210     if (CurrentUpdate.getKind() == UpdateKind::Insert)
1211       InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1212     else
1213       DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1214   }
1215 
1216   //~~
1217   //===--------------- DomTree correctness verification ---------------------===
1218   //~~
1219 
1220   // Check if the tree has correct roots. A DominatorTree always has a single
1221   // root which is the function's entry node. A PostDominatorTree can have
1222   // multiple roots - one for each node with no successors and for infinite
1223   // loops.
1224   // Running time: O(N).
1225   bool verifyRoots(const DomTreeT &DT) {
1226     if (!DT.Parent && !DT.Roots.empty()) {
1227       errs() << "Tree has no parent but has roots!\n";
1228       errs().flush();
1229       return false;
1230     }
1231 
1232     if (!IsPostDom) {
1233       if (DT.Roots.empty()) {
1234         errs() << "Tree doesn't have a root!\n";
1235         errs().flush();
1236         return false;
1237       }
1238 
1239       if (DT.getRoot() != GetEntryNode(DT)) {
1240         errs() << "Tree's root is not its parent's entry node!\n";
1241         errs().flush();
1242         return false;
1243       }
1244     }
1245 
1246     RootsT ComputedRoots = FindRoots(DT, nullptr);
1247     if (!isPermutation(DT.Roots, ComputedRoots)) {
1248       errs() << "Tree has different roots than freshly computed ones!\n";
1249       errs() << "\tPDT roots: ";
1250       for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1251       errs() << "\n\tComputed roots: ";
1252       for (const NodePtr N : ComputedRoots)
1253         errs() << BlockNamePrinter(N) << ", ";
1254       errs() << "\n";
1255       errs().flush();
1256       return false;
1257     }
1258 
1259     return true;
1260   }
1261 
1262   // Checks if the tree contains all reachable nodes in the input graph.
1263   // Running time: O(N).
1264   bool verifyReachability(const DomTreeT &DT) {
1265     clear();
1266     doFullDFSWalk(DT, AlwaysDescend);
1267 
1268     for (auto &NodeToTN : DT.DomTreeNodes) {
1269       const TreeNodePtr TN = NodeToTN.second.get();
1270       const NodePtr BB = TN->getBlock();
1271 
1272       // Virtual root has a corresponding virtual CFG node.
1273       if (DT.isVirtualRoot(TN)) continue;
1274 
1275       if (NodeToInfo.count(BB) == 0) {
1276         errs() << "DomTree node " << BlockNamePrinter(BB)
1277                << " not found by DFS walk!\n";
1278         errs().flush();
1279 
1280         return false;
1281       }
1282     }
1283 
1284     for (const NodePtr N : NumToNode) {
1285       if (N && !DT.getNode(N)) {
1286         errs() << "CFG node " << BlockNamePrinter(N)
1287                << " not found in the DomTree!\n";
1288         errs().flush();
1289 
1290         return false;
1291       }
1292     }
1293 
1294     return true;
1295   }
1296 
1297   // Check if for every parent with a level L in the tree all of its children
1298   // have level L + 1.
1299   // Running time: O(N).
1300   static bool VerifyLevels(const DomTreeT &DT) {
1301     for (auto &NodeToTN : DT.DomTreeNodes) {
1302       const TreeNodePtr TN = NodeToTN.second.get();
1303       const NodePtr BB = TN->getBlock();
1304       if (!BB) continue;
1305 
1306       const TreeNodePtr IDom = TN->getIDom();
1307       if (!IDom && TN->getLevel() != 0) {
1308         errs() << "Node without an IDom " << BlockNamePrinter(BB)
1309                << " has a nonzero level " << TN->getLevel() << "!\n";
1310         errs().flush();
1311 
1312         return false;
1313       }
1314 
1315       if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1316         errs() << "Node " << BlockNamePrinter(BB) << " has level "
1317                << TN->getLevel() << " while its IDom "
1318                << BlockNamePrinter(IDom->getBlock()) << " has level "
1319                << IDom->getLevel() << "!\n";
1320         errs().flush();
1321 
1322         return false;
1323       }
1324     }
1325 
1326     return true;
1327   }
1328 
1329   // Check if the computed DFS numbers are correct. Note that DFS info may not
1330   // be valid, and when that is the case, we don't verify the numbers.
1331   // Running time: O(N log(N)).
1332   static bool VerifyDFSNumbers(const DomTreeT &DT) {
1333     if (!DT.DFSInfoValid || !DT.Parent)
1334       return true;
1335 
1336     const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
1337     const TreeNodePtr Root = DT.getNode(RootBB);
1338 
1339     auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1340       errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1341              << TN->getDFSNumOut() << '}';
1342     };
1343 
1344     // Verify the root's DFS In number. Although DFS numbering would also work
1345     // if we started from some other value, we assume 0-based numbering.
1346     if (Root->getDFSNumIn() != 0) {
1347       errs() << "DFSIn number for the tree root is not:\n\t";
1348       PrintNodeAndDFSNums(Root);
1349       errs() << '\n';
1350       errs().flush();
1351       return false;
1352     }
1353 
1354     // For each tree node verify if children's DFS numbers cover their parent's
1355     // DFS numbers with no gaps.
1356     for (const auto &NodeToTN : DT.DomTreeNodes) {
1357       const TreeNodePtr Node = NodeToTN.second.get();
1358 
1359       // Handle tree leaves.
1360       if (Node->isLeaf()) {
1361         if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1362           errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1363           PrintNodeAndDFSNums(Node);
1364           errs() << '\n';
1365           errs().flush();
1366           return false;
1367         }
1368 
1369         continue;
1370       }
1371 
1372       // Make a copy and sort it such that it is possible to check if there are
1373       // no gaps between DFS numbers of adjacent children.
1374       SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1375       llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1376         return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1377       });
1378 
1379       auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1380           const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1381         assert(FirstCh);
1382 
1383         errs() << "Incorrect DFS numbers for:\n\tParent ";
1384         PrintNodeAndDFSNums(Node);
1385 
1386         errs() << "\n\tChild ";
1387         PrintNodeAndDFSNums(FirstCh);
1388 
1389         if (SecondCh) {
1390           errs() << "\n\tSecond child ";
1391           PrintNodeAndDFSNums(SecondCh);
1392         }
1393 
1394         errs() << "\nAll children: ";
1395         for (const TreeNodePtr Ch : Children) {
1396           PrintNodeAndDFSNums(Ch);
1397           errs() << ", ";
1398         }
1399 
1400         errs() << '\n';
1401         errs().flush();
1402       };
1403 
1404       if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1405         PrintChildrenError(Children.front(), nullptr);
1406         return false;
1407       }
1408 
1409       if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1410         PrintChildrenError(Children.back(), nullptr);
1411         return false;
1412       }
1413 
1414       for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1415         if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1416           PrintChildrenError(Children[i], Children[i + 1]);
1417           return false;
1418         }
1419       }
1420     }
1421 
1422     return true;
1423   }
1424 
1425   // The below routines verify the correctness of the dominator tree relative to
1426   // the CFG it's coming from.  A tree is a dominator tree iff it has two
1427   // properties, called the parent property and the sibling property.  Tarjan
1428   // and Lengauer prove (but don't explicitly name) the properties as part of
1429   // the proofs in their 1972 paper, but the proofs are mostly part of proving
1430   // things about semidominators and idoms, and some of them are simply asserted
1431   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
1432   // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
1433   // directed bipolar orders, and independent spanning trees" by Loukas
1434   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1435   // and Vertex-Disjoint Paths " by the same authors.
1436 
1437   // A very simple and direct explanation of these properties can be found in
1438   // "An Experimental Study of Dynamic Dominators", found at
1439   // https://arxiv.org/abs/1604.02711
1440 
1441   // The easiest way to think of the parent property is that it's a requirement
1442   // of being a dominator.  Let's just take immediate dominators.  For PARENT to
1443   // be an immediate dominator of CHILD, all paths in the CFG must go through
1444   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
1445   // out of the CFG, there should be no paths to CHILD that are reachable.  If
1446   // there are, then you now have a path from PARENT to CHILD that goes around
1447   // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1448   // a dominator of CHILD (let alone an immediate one).
1449 
1450   // The sibling property is similar.  It says that for each pair of sibling
1451   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1452   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
1453   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1454   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1455   // RIGHT, not a sibling.
1456 
1457   // It is possible to verify the parent and sibling properties in linear time,
1458   // but the algorithms are complex. Instead, we do it in a straightforward
1459   // N^2 and N^3 way below, using direct path reachability.
1460 
1461   // Checks if the tree has the parent property: if for all edges from V to W in
1462   // the input graph, such that V is reachable, the parent of W in the tree is
1463   // an ancestor of V in the tree.
1464   // Running time: O(N^2).
1465   //
1466   // This means that if a node gets disconnected from the graph, then all of
1467   // the nodes it dominated previously will now become unreachable.
1468   bool verifyParentProperty(const DomTreeT &DT) {
1469     for (auto &NodeToTN : DT.DomTreeNodes) {
1470       const TreeNodePtr TN = NodeToTN.second.get();
1471       const NodePtr BB = TN->getBlock();
1472       if (!BB || TN->isLeaf())
1473         continue;
1474 
1475       LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1476                         << BlockNamePrinter(TN) << "\n");
1477       clear();
1478       doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1479         return From != BB && To != BB;
1480       });
1481 
1482       for (TreeNodePtr Child : TN->children())
1483         if (NodeToInfo.count(Child->getBlock()) != 0) {
1484           errs() << "Child " << BlockNamePrinter(Child)
1485                  << " reachable after its parent " << BlockNamePrinter(BB)
1486                  << " is removed!\n";
1487           errs().flush();
1488 
1489           return false;
1490         }
1491     }
1492 
1493     return true;
1494   }
1495 
1496   // Check if the tree has sibling property: if a node V does not dominate a
1497   // node W for all siblings V and W in the tree.
1498   // Running time: O(N^3).
1499   //
1500   // This means that if a node gets disconnected from the graph, then all of its
1501   // siblings will now still be reachable.
1502   bool verifySiblingProperty(const DomTreeT &DT) {
1503     for (auto &NodeToTN : DT.DomTreeNodes) {
1504       const TreeNodePtr TN = NodeToTN.second.get();
1505       const NodePtr BB = TN->getBlock();
1506       if (!BB || TN->isLeaf())
1507         continue;
1508 
1509       for (const TreeNodePtr N : TN->children()) {
1510         clear();
1511         NodePtr BBN = N->getBlock();
1512         doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1513           return From != BBN && To != BBN;
1514         });
1515 
1516         for (const TreeNodePtr S : TN->children()) {
1517           if (S == N) continue;
1518 
1519           if (NodeToInfo.count(S->getBlock()) == 0) {
1520             errs() << "Node " << BlockNamePrinter(S)
1521                    << " not reachable when its sibling " << BlockNamePrinter(N)
1522                    << " is removed!\n";
1523             errs().flush();
1524 
1525             return false;
1526           }
1527         }
1528       }
1529     }
1530 
1531     return true;
1532   }
1533 
1534   // Check if the given tree is the same as a freshly computed one for the same
1535   // Parent.
1536   // Running time: O(N^2), but faster in practice (same as tree construction).
1537   //
1538   // Note that this does not check if that the tree construction algorithm is
1539   // correct and should be only used for fast (but possibly unsound)
1540   // verification.
1541   static bool IsSameAsFreshTree(const DomTreeT &DT) {
1542     DomTreeT FreshTree;
1543     FreshTree.recalculate(*DT.Parent);
1544     const bool Different = DT.compare(FreshTree);
1545 
1546     if (Different) {
1547       errs() << (DT.isPostDominator() ? "Post" : "")
1548              << "DominatorTree is different than a freshly computed one!\n"
1549              << "\tCurrent:\n";
1550       DT.print(errs());
1551       errs() << "\n\tFreshly computed tree:\n";
1552       FreshTree.print(errs());
1553       errs().flush();
1554     }
1555 
1556     return !Different;
1557   }
1558 };
1559 
1560 template <class DomTreeT>
1561 void Calculate(DomTreeT &DT) {
1562   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1563 }
1564 
1565 template <typename DomTreeT>
1566 void CalculateWithUpdates(DomTreeT &DT,
1567                           ArrayRef<typename DomTreeT::UpdateType> Updates) {
1568   // FIXME: Updated to use the PreViewCFG and behave the same as until now.
1569   // This behavior is however incorrect; this actually needs the PostViewCFG.
1570   GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
1571       Updates, /*ReverseApplyUpdates=*/true);
1572   typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
1573   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1574 }
1575 
1576 template <class DomTreeT>
1577 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1578                 typename DomTreeT::NodePtr To) {
1579   if (DT.isPostDominator()) std::swap(From, To);
1580   SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1581 }
1582 
1583 template <class DomTreeT>
1584 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1585                 typename DomTreeT::NodePtr To) {
1586   if (DT.isPostDominator()) std::swap(From, To);
1587   SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1588 }
1589 
1590 template <class DomTreeT>
1591 void ApplyUpdates(DomTreeT &DT,
1592                   GraphDiff<typename DomTreeT::NodePtr,
1593                             DomTreeT::IsPostDominator> &PreViewCFG,
1594                   GraphDiff<typename DomTreeT::NodePtr,
1595                             DomTreeT::IsPostDominator> *PostViewCFG) {
1596   SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
1597 }
1598 
1599 template <class DomTreeT>
1600 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1601   SemiNCAInfo<DomTreeT> SNCA(nullptr);
1602 
1603   // Simplist check is to compare against a new tree. This will also
1604   // usefully print the old and new trees, if they are different.
1605   if (!SNCA.IsSameAsFreshTree(DT))
1606     return false;
1607 
1608   // Common checks to verify the properties of the tree. O(N log N) at worst.
1609   if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1610       !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1611     return false;
1612 
1613   // Extra checks depending on VerificationLevel. Up to O(N^3).
1614   if (VL == DomTreeT::VerificationLevel::Basic ||
1615       VL == DomTreeT::VerificationLevel::Full)
1616     if (!SNCA.verifyParentProperty(DT))
1617       return false;
1618   if (VL == DomTreeT::VerificationLevel::Full)
1619     if (!SNCA.verifySiblingProperty(DT))
1620       return false;
1621 
1622   return true;
1623 }
1624 
1625 }  // namespace DomTreeBuilder
1626 }  // namespace llvm
1627 
1628 #undef DEBUG_TYPE
1629 
1630 #endif
1631