1 //===- GenericLoopInfo - Generic Loop Info for graphs -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfoBase class that is used to identify natural
10 // loops and determine the loop depth of various nodes in a generic graph of
11 // blocks.  A natural loop has exactly one entry-point, which is called the
12 // header. Note that natural loops may actually be several loops that share the
13 // same header node.
14 //
15 // This analysis calculates the nesting structure of loops in a function.  For
16 // each natural loop identified, this analysis identifies natural loops
17 // contained entirely within the loop and the basic blocks that make up the
18 // loop.
19 //
20 // It can calculate on the fly various bits of information, for example:
21 //
22 //  * whether there is a preheader for the loop
23 //  * the number of back edges to the header
24 //  * whether or not a particular block branches out of the loop
25 //  * the successor blocks of the loop
26 //  * the loop depth
27 //  * etc...
28 //
29 // Note that this analysis specifically identifies *Loops* not cycles or SCCs
30 // in the graph.  There can be strongly connected components in the graph which
31 // this analysis will not recognize and that will not be represented by a Loop
32 // instance.  In particular, a Loop might be inside such a non-loop SCC, or a
33 // non-loop SCC might contain a sub-SCC which is a Loop.
34 //
35 // For an overview of terminology used in this API (and thus all of our loop
36 // analyses or transforms), see docs/LoopTerminology.rst.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #ifndef LLVM_SUPPORT_GENERICLOOPINFO_H
41 #define LLVM_SUPPORT_GENERICLOOPINFO_H
42 
43 #include "llvm/ADT/DenseSet.h"
44 #include "llvm/ADT/PostOrderIterator.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/ADT/SetOperations.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/GenericDomTree.h"
49 
50 namespace llvm {
51 
52 template <class N, class M> class LoopInfoBase;
53 template <class N, class M> class LoopBase;
54 
55 //===----------------------------------------------------------------------===//
56 /// Instances of this class are used to represent loops that are detected in the
57 /// flow graph.
58 ///
59 template <class BlockT, class LoopT> class LoopBase {
60   LoopT *ParentLoop;
61   // Loops contained entirely within this one.
62   std::vector<LoopT *> SubLoops;
63 
64   // The list of blocks in this loop. First entry is the header node.
65   std::vector<BlockT *> Blocks;
66 
67   SmallPtrSet<const BlockT *, 8> DenseBlockSet;
68 
69 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
70   /// Indicator that this loop is no longer a valid loop.
71   bool IsInvalid = false;
72 #endif
73 
74   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
75   const LoopBase<BlockT, LoopT> &
76   operator=(const LoopBase<BlockT, LoopT> &) = delete;
77 
78 public:
79   /// Return the nesting level of this loop.  An outer-most loop has depth 1,
80   /// for consistency with loop depth values used for basic blocks, where depth
81   /// 0 is used for blocks not inside any loops.
82   unsigned getLoopDepth() const {
83     assert(!isInvalid() && "Loop not in a valid state!");
84     unsigned D = 1;
85     for (const LoopT *CurLoop = ParentLoop; CurLoop;
86          CurLoop = CurLoop->ParentLoop)
87       ++D;
88     return D;
89   }
90   BlockT *getHeader() const { return getBlocks().front(); }
91   /// Return the parent loop if it exists or nullptr for top
92   /// level loops.
93 
94   /// A loop is either top-level in a function (that is, it is not
95   /// contained in any other loop) or it is entirely enclosed in
96   /// some other loop.
97   /// If a loop is top-level, it has no parent, otherwise its
98   /// parent is the innermost loop in which it is enclosed.
99   LoopT *getParentLoop() const { return ParentLoop; }
100 
101   /// Get the outermost loop in which this loop is contained.
102   /// This may be the loop itself, if it already is the outermost loop.
103   const LoopT *getOutermostLoop() const {
104     const LoopT *L = static_cast<const LoopT *>(this);
105     while (L->ParentLoop)
106       L = L->ParentLoop;
107     return L;
108   }
109 
110   LoopT *getOutermostLoop() {
111     LoopT *L = static_cast<LoopT *>(this);
112     while (L->ParentLoop)
113       L = L->ParentLoop;
114     return L;
115   }
116 
117   /// This is a raw interface for bypassing addChildLoop.
118   void setParentLoop(LoopT *L) {
119     assert(!isInvalid() && "Loop not in a valid state!");
120     ParentLoop = L;
121   }
122 
123   /// Return true if the specified loop is contained within in this loop.
124   bool contains(const LoopT *L) const {
125     assert(!isInvalid() && "Loop not in a valid state!");
126     if (L == this)
127       return true;
128     if (!L)
129       return false;
130     return contains(L->getParentLoop());
131   }
132 
133   /// Return true if the specified basic block is in this loop.
134   bool contains(const BlockT *BB) const {
135     assert(!isInvalid() && "Loop not in a valid state!");
136     return DenseBlockSet.count(BB);
137   }
138 
139   /// Return true if the specified instruction is in this loop.
140   template <class InstT> bool contains(const InstT *Inst) const {
141     return contains(Inst->getParent());
142   }
143 
144   /// Return the loops contained entirely within this loop.
145   const std::vector<LoopT *> &getSubLoops() const {
146     assert(!isInvalid() && "Loop not in a valid state!");
147     return SubLoops;
148   }
149   std::vector<LoopT *> &getSubLoopsVector() {
150     assert(!isInvalid() && "Loop not in a valid state!");
151     return SubLoops;
152   }
153   typedef typename std::vector<LoopT *>::const_iterator iterator;
154   typedef
155       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
156   iterator begin() const { return getSubLoops().begin(); }
157   iterator end() const { return getSubLoops().end(); }
158   reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
159   reverse_iterator rend() const { return getSubLoops().rend(); }
160 
161   // LoopInfo does not detect irreducible control flow, just natural
162   // loops. That is, it is possible that there is cyclic control
163   // flow within the "innermost loop" or around the "outermost
164   // loop".
165 
166   /// Return true if the loop does not contain any (natural) loops.
167   bool isInnermost() const { return getSubLoops().empty(); }
168   /// Return true if the loop does not have a parent (natural) loop
169   // (i.e. it is outermost, which is the same as top-level).
170   bool isOutermost() const { return getParentLoop() == nullptr; }
171 
172   /// Get a list of the basic blocks which make up this loop.
173   ArrayRef<BlockT *> getBlocks() const {
174     assert(!isInvalid() && "Loop not in a valid state!");
175     return Blocks;
176   }
177   typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
178   block_iterator block_begin() const { return getBlocks().begin(); }
179   block_iterator block_end() const { return getBlocks().end(); }
180   inline iterator_range<block_iterator> blocks() const {
181     assert(!isInvalid() && "Loop not in a valid state!");
182     return make_range(block_begin(), block_end());
183   }
184 
185   /// Get the number of blocks in this loop in constant time.
186   /// Invalidate the loop, indicating that it is no longer a loop.
187   unsigned getNumBlocks() const {
188     assert(!isInvalid() && "Loop not in a valid state!");
189     return Blocks.size();
190   }
191 
192   /// Return a direct, mutable handle to the blocks vector so that we can
193   /// mutate it efficiently with techniques like `std::remove`.
194   std::vector<BlockT *> &getBlocksVector() {
195     assert(!isInvalid() && "Loop not in a valid state!");
196     return Blocks;
197   }
198   /// Return a direct, mutable handle to the blocks set so that we can
199   /// mutate it efficiently.
200   SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
201     assert(!isInvalid() && "Loop not in a valid state!");
202     return DenseBlockSet;
203   }
204 
205   /// Return a direct, immutable handle to the blocks set.
206   const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
207     assert(!isInvalid() && "Loop not in a valid state!");
208     return DenseBlockSet;
209   }
210 
211   /// Return true if this loop is no longer valid.  The only valid use of this
212   /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
213   /// true by the destructor.  In other words, if this accessor returns true,
214   /// the caller has already triggered UB by calling this accessor; and so it
215   /// can only be called in a context where a return value of true indicates a
216   /// programmer error.
217   bool isInvalid() const {
218 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
219     return IsInvalid;
220 #else
221     return false;
222 #endif
223   }
224 
225   /// True if terminator in the block can branch to another block that is
226   /// outside of the current loop. \p BB must be inside the loop.
227   bool isLoopExiting(const BlockT *BB) const {
228     assert(!isInvalid() && "Loop not in a valid state!");
229     assert(contains(BB) && "Exiting block must be part of the loop");
230     for (const auto *Succ : children<const BlockT *>(BB)) {
231       if (!contains(Succ))
232         return true;
233     }
234     return false;
235   }
236 
237   /// Returns true if \p BB is a loop-latch.
238   /// A latch block is a block that contains a branch back to the header.
239   /// This function is useful when there are multiple latches in a loop
240   /// because \fn getLoopLatch will return nullptr in that case.
241   bool isLoopLatch(const BlockT *BB) const {
242     assert(!isInvalid() && "Loop not in a valid state!");
243     assert(contains(BB) && "block does not belong to the loop");
244 
245     BlockT *Header = getHeader();
246     auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
247     auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
248     return std::find(PredBegin, PredEnd, BB) != PredEnd;
249   }
250 
251   /// Calculate the number of back edges to the loop header.
252   unsigned getNumBackEdges() const {
253     assert(!isInvalid() && "Loop not in a valid state!");
254     unsigned NumBackEdges = 0;
255     BlockT *H = getHeader();
256 
257     for (const auto Pred : children<Inverse<BlockT *>>(H))
258       if (contains(Pred))
259         ++NumBackEdges;
260 
261     return NumBackEdges;
262   }
263 
264   //===--------------------------------------------------------------------===//
265   // APIs for simple analysis of the loop.
266   //
267   // Note that all of these methods can fail on general loops (ie, there may not
268   // be a preheader, etc).  For best success, the loop simplification and
269   // induction variable canonicalization pass should be used to normalize loops
270   // for easy analysis.  These methods assume canonical loops.
271 
272   /// Return all blocks inside the loop that have successors outside of the
273   /// loop. These are the blocks _inside of the current loop_ which branch out.
274   /// The returned list is always unique.
275   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
276 
277   /// If getExitingBlocks would return exactly one block, return that block.
278   /// Otherwise return null.
279   BlockT *getExitingBlock() const;
280 
281   /// Return all of the successor blocks of this loop. These are the blocks
282   /// _outside of the current loop_ which are branched to.
283   void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
284 
285   /// If getExitBlocks would return exactly one block, return that block.
286   /// Otherwise return null.
287   BlockT *getExitBlock() const;
288 
289   /// Return true if no exit block for the loop has a predecessor that is
290   /// outside the loop.
291   bool hasDedicatedExits() const;
292 
293   /// Return all unique successor blocks of this loop.
294   /// These are the blocks _outside of the current loop_ which are branched to.
295   void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
296 
297   /// Return all unique successor blocks of this loop except successors from
298   /// Latch block are not considered. If the exit comes from Latch has also
299   /// non Latch predecessor in a loop it will be added to ExitBlocks.
300   /// These are the blocks _outside of the current loop_ which are branched to.
301   void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
302 
303   /// If getUniqueExitBlocks would return exactly one block, return that block.
304   /// Otherwise return null.
305   BlockT *getUniqueExitBlock() const;
306 
307   /// Return true if this loop does not have any exit blocks.
308   bool hasNoExitBlocks() const;
309 
310   /// Edge type.
311   typedef std::pair<BlockT *, BlockT *> Edge;
312 
313   /// Return all pairs of (_inside_block_,_outside_block_).
314   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
315 
316   /// If there is a preheader for this loop, return it. A loop has a preheader
317   /// if there is only one edge to the header of the loop from outside of the
318   /// loop. If this is the case, the block branching to the header of the loop
319   /// is the preheader node.
320   ///
321   /// This method returns null if there is no preheader for the loop.
322   BlockT *getLoopPreheader() const;
323 
324   /// If the given loop's header has exactly one unique predecessor outside the
325   /// loop, return it. Otherwise return null.
326   ///  This is less strict that the loop "preheader" concept, which requires
327   /// the predecessor to have exactly one successor.
328   BlockT *getLoopPredecessor() const;
329 
330   /// If there is a single latch block for this loop, return it.
331   /// A latch block is a block that contains a branch back to the header.
332   BlockT *getLoopLatch() const;
333 
334   /// Return all loop latch blocks of this loop. A latch block is a block that
335   /// contains a branch back to the header.
336   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
337     assert(!isInvalid() && "Loop not in a valid state!");
338     BlockT *H = getHeader();
339     for (const auto Pred : children<Inverse<BlockT *>>(H))
340       if (contains(Pred))
341         LoopLatches.push_back(Pred);
342   }
343 
344   /// Return all inner loops in the loop nest rooted by the loop in preorder,
345   /// with siblings in forward program order.
346   template <class Type>
347   static void getInnerLoopsInPreorder(const LoopT &L,
348                                       SmallVectorImpl<Type> &PreOrderLoops) {
349     SmallVector<LoopT *, 4> PreOrderWorklist;
350     PreOrderWorklist.append(L.rbegin(), L.rend());
351 
352     while (!PreOrderWorklist.empty()) {
353       LoopT *L = PreOrderWorklist.pop_back_val();
354       // Sub-loops are stored in forward program order, but will process the
355       // worklist backwards so append them in reverse order.
356       PreOrderWorklist.append(L->rbegin(), L->rend());
357       PreOrderLoops.push_back(L);
358     }
359   }
360 
361   /// Return all loops in the loop nest rooted by the loop in preorder, with
362   /// siblings in forward program order.
363   SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
364     SmallVector<const LoopT *, 4> PreOrderLoops;
365     const LoopT *CurLoop = static_cast<const LoopT *>(this);
366     PreOrderLoops.push_back(CurLoop);
367     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
368     return PreOrderLoops;
369   }
370   SmallVector<LoopT *, 4> getLoopsInPreorder() {
371     SmallVector<LoopT *, 4> PreOrderLoops;
372     LoopT *CurLoop = static_cast<LoopT *>(this);
373     PreOrderLoops.push_back(CurLoop);
374     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
375     return PreOrderLoops;
376   }
377 
378   //===--------------------------------------------------------------------===//
379   // APIs for updating loop information after changing the CFG
380   //
381 
382   /// This method is used by other analyses to update loop information.
383   /// NewBB is set to be a new member of the current loop.
384   /// Because of this, it is added as a member of all parent loops, and is added
385   /// to the specified LoopInfo object as being in the current basic block.  It
386   /// is not valid to replace the loop header with this method.
387   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
388 
389   /// This is used when splitting loops up. It replaces the OldChild entry in
390   /// our children list with NewChild, and updates the parent pointer of
391   /// OldChild to be null and the NewChild to be this loop.
392   /// This updates the loop depth of the new child.
393   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
394 
395   /// Add the specified loop to be a child of this loop.
396   /// This updates the loop depth of the new child.
397   void addChildLoop(LoopT *NewChild) {
398     assert(!isInvalid() && "Loop not in a valid state!");
399     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
400     NewChild->ParentLoop = static_cast<LoopT *>(this);
401     SubLoops.push_back(NewChild);
402   }
403 
404   /// This removes the specified child from being a subloop of this loop. The
405   /// loop is not deleted, as it will presumably be inserted into another loop.
406   LoopT *removeChildLoop(iterator I) {
407     assert(!isInvalid() && "Loop not in a valid state!");
408     assert(I != SubLoops.end() && "Cannot remove end iterator!");
409     LoopT *Child = *I;
410     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
411     SubLoops.erase(SubLoops.begin() + (I - begin()));
412     Child->ParentLoop = nullptr;
413     return Child;
414   }
415 
416   /// This removes the specified child from being a subloop of this loop. The
417   /// loop is not deleted, as it will presumably be inserted into another loop.
418   LoopT *removeChildLoop(LoopT *Child) {
419     return removeChildLoop(llvm::find(*this, Child));
420   }
421 
422   /// This adds a basic block directly to the basic block list.
423   /// This should only be used by transformations that create new loops.  Other
424   /// transformations should use addBasicBlockToLoop.
425   void addBlockEntry(BlockT *BB) {
426     assert(!isInvalid() && "Loop not in a valid state!");
427     Blocks.push_back(BB);
428     DenseBlockSet.insert(BB);
429   }
430 
431   /// interface to reverse Blocks[from, end of loop] in this loop
432   void reverseBlock(unsigned from) {
433     assert(!isInvalid() && "Loop not in a valid state!");
434     std::reverse(Blocks.begin() + from, Blocks.end());
435   }
436 
437   /// interface to do reserve() for Blocks
438   void reserveBlocks(unsigned size) {
439     assert(!isInvalid() && "Loop not in a valid state!");
440     Blocks.reserve(size);
441   }
442 
443   /// This method is used to move BB (which must be part of this loop) to be the
444   /// loop header of the loop (the block that dominates all others).
445   void moveToHeader(BlockT *BB) {
446     assert(!isInvalid() && "Loop not in a valid state!");
447     if (Blocks[0] == BB)
448       return;
449     for (unsigned i = 0;; ++i) {
450       assert(i != Blocks.size() && "Loop does not contain BB!");
451       if (Blocks[i] == BB) {
452         Blocks[i] = Blocks[0];
453         Blocks[0] = BB;
454         return;
455       }
456     }
457   }
458 
459   /// This removes the specified basic block from the current loop, updating the
460   /// Blocks as appropriate. This does not update the mapping in the LoopInfo
461   /// class.
462   void removeBlockFromLoop(BlockT *BB) {
463     assert(!isInvalid() && "Loop not in a valid state!");
464     auto I = find(Blocks, BB);
465     assert(I != Blocks.end() && "N is not in this list!");
466     Blocks.erase(I);
467 
468     DenseBlockSet.erase(BB);
469   }
470 
471   /// Verify loop structure
472   void verifyLoop() const;
473 
474   /// Verify loop structure of this loop and all nested loops.
475   void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
476 
477   /// Returns true if the loop is annotated parallel.
478   ///
479   /// Derived classes can override this method using static template
480   /// polymorphism.
481   bool isAnnotatedParallel() const { return false; }
482 
483   /// Print loop with all the BBs inside it.
484   void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true,
485              unsigned Depth = 0) const;
486 
487 protected:
488   friend class LoopInfoBase<BlockT, LoopT>;
489 
490   /// This creates an empty loop.
491   LoopBase() : ParentLoop(nullptr) {}
492 
493   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
494     Blocks.push_back(BB);
495     DenseBlockSet.insert(BB);
496   }
497 
498   // Since loop passes like SCEV are allowed to key analysis results off of
499   // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
500   // This means loop passes should not be `delete` ing `Loop` objects directly
501   // (and risk a later `Loop` allocation re-using the address of a previous one)
502   // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
503   // pointer till the end of the lifetime of the `LoopInfo` object.
504   //
505   // To make it easier to follow this rule, we mark the destructor as
506   // non-public.
507   ~LoopBase() {
508     for (auto *SubLoop : SubLoops)
509       SubLoop->~LoopT();
510 
511 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
512     IsInvalid = true;
513 #endif
514     SubLoops.clear();
515     Blocks.clear();
516     DenseBlockSet.clear();
517     ParentLoop = nullptr;
518   }
519 };
520 
521 template <class BlockT, class LoopT>
522 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
523   Loop.print(OS);
524   return OS;
525 }
526 
527 //===----------------------------------------------------------------------===//
528 /// This class builds and contains all of the top-level loop
529 /// structures in the specified function.
530 ///
531 
532 template <class BlockT, class LoopT> class LoopInfoBase {
533   // BBMap - Mapping of basic blocks to the inner most loop they occur in
534   DenseMap<const BlockT *, LoopT *> BBMap;
535   std::vector<LoopT *> TopLevelLoops;
536   BumpPtrAllocator LoopAllocator;
537 
538   friend class LoopBase<BlockT, LoopT>;
539   friend class LoopInfo;
540 
541   void operator=(const LoopInfoBase &) = delete;
542   LoopInfoBase(const LoopInfoBase &) = delete;
543 
544 public:
545   LoopInfoBase() = default;
546   ~LoopInfoBase() { releaseMemory(); }
547 
548   LoopInfoBase(LoopInfoBase &&Arg)
549       : BBMap(std::move(Arg.BBMap)),
550         TopLevelLoops(std::move(Arg.TopLevelLoops)),
551         LoopAllocator(std::move(Arg.LoopAllocator)) {
552     // We have to clear the arguments top level loops as we've taken ownership.
553     Arg.TopLevelLoops.clear();
554   }
555   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
556     BBMap = std::move(RHS.BBMap);
557 
558     for (auto *L : TopLevelLoops)
559       L->~LoopT();
560 
561     TopLevelLoops = std::move(RHS.TopLevelLoops);
562     LoopAllocator = std::move(RHS.LoopAllocator);
563     RHS.TopLevelLoops.clear();
564     return *this;
565   }
566 
567   void releaseMemory() {
568     BBMap.clear();
569 
570     for (auto *L : TopLevelLoops)
571       L->~LoopT();
572     TopLevelLoops.clear();
573     LoopAllocator.Reset();
574   }
575 
576   template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&...Args) {
577     LoopT *Storage = LoopAllocator.Allocate<LoopT>();
578     return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
579   }
580 
581   /// iterator/begin/end - The interface to the top-level loops in the current
582   /// function.
583   ///
584   typedef typename std::vector<LoopT *>::const_iterator iterator;
585   typedef
586       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
587   iterator begin() const { return TopLevelLoops.begin(); }
588   iterator end() const { return TopLevelLoops.end(); }
589   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
590   reverse_iterator rend() const { return TopLevelLoops.rend(); }
591   bool empty() const { return TopLevelLoops.empty(); }
592 
593   /// Return all of the loops in the function in preorder across the loop
594   /// nests, with siblings in forward program order.
595   ///
596   /// Note that because loops form a forest of trees, preorder is equivalent to
597   /// reverse postorder.
598   SmallVector<LoopT *, 4> getLoopsInPreorder() const;
599 
600   /// Return all of the loops in the function in preorder across the loop
601   /// nests, with siblings in *reverse* program order.
602   ///
603   /// Note that because loops form a forest of trees, preorder is equivalent to
604   /// reverse postorder.
605   ///
606   /// Also note that this is *not* a reverse preorder. Only the siblings are in
607   /// reverse program order.
608   SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const;
609 
610   /// Return the inner most loop that BB lives in. If a basic block is in no
611   /// loop (for example the entry node), null is returned.
612   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
613 
614   /// Same as getLoopFor.
615   const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
616 
617   /// Return the loop nesting level of the specified block. A depth of 0 means
618   /// the block is not inside any loop.
619   unsigned getLoopDepth(const BlockT *BB) const {
620     const LoopT *L = getLoopFor(BB);
621     return L ? L->getLoopDepth() : 0;
622   }
623 
624   // True if the block is a loop header node
625   bool isLoopHeader(const BlockT *BB) const {
626     const LoopT *L = getLoopFor(BB);
627     return L && L->getHeader() == BB;
628   }
629 
630   /// Return the top-level loops.
631   const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
632 
633   /// Return the top-level loops.
634   std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
635 
636   /// This removes the specified top-level loop from this loop info object.
637   /// The loop is not deleted, as it will presumably be inserted into
638   /// another loop.
639   LoopT *removeLoop(iterator I) {
640     assert(I != end() && "Cannot remove end iterator!");
641     LoopT *L = *I;
642     assert(L->isOutermost() && "Not a top-level loop!");
643     TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
644     return L;
645   }
646 
647   /// Change the top-level loop that contains BB to the specified loop.
648   /// This should be used by transformations that restructure the loop hierarchy
649   /// tree.
650   void changeLoopFor(BlockT *BB, LoopT *L) {
651     if (!L) {
652       BBMap.erase(BB);
653       return;
654     }
655     BBMap[BB] = L;
656   }
657 
658   /// Replace the specified loop in the top-level loops list with the indicated
659   /// loop.
660   void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
661     auto I = find(TopLevelLoops, OldLoop);
662     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
663     *I = NewLoop;
664     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
665            "Loops already embedded into a subloop!");
666   }
667 
668   /// This adds the specified loop to the collection of top-level loops.
669   void addTopLevelLoop(LoopT *New) {
670     assert(New->isOutermost() && "Loop already in subloop!");
671     TopLevelLoops.push_back(New);
672   }
673 
674   /// This method completely removes BB from all data structures,
675   /// including all of the Loop objects it is nested in and our mapping from
676   /// BasicBlocks to loops.
677   void removeBlock(BlockT *BB) {
678     auto I = BBMap.find(BB);
679     if (I != BBMap.end()) {
680       for (LoopT *L = I->second; L; L = L->getParentLoop())
681         L->removeBlockFromLoop(BB);
682 
683       BBMap.erase(I);
684     }
685   }
686 
687   // Internals
688 
689   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
690                                       const LoopT *ParentLoop) {
691     if (!SubLoop)
692       return true;
693     if (SubLoop == ParentLoop)
694       return false;
695     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
696   }
697 
698   /// Create the loop forest using a stable algorithm.
699   void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
700 
701   // Debugging
702   void print(raw_ostream &OS) const;
703 
704   void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
705 
706   /// Destroy a loop that has been removed from the `LoopInfo` nest.
707   ///
708   /// This runs the destructor of the loop object making it invalid to
709   /// reference afterward. The memory is retained so that the *pointer* to the
710   /// loop remains valid.
711   ///
712   /// The caller is responsible for removing this loop from the loop nest and
713   /// otherwise disconnecting it from the broader `LoopInfo` data structures.
714   /// Callers that don't naturally handle this themselves should probably call
715   /// `erase' instead.
716   void destroy(LoopT *L) {
717     L->~LoopT();
718 
719     // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
720     // \c L, but the pointer remains valid for non-dereferencing uses.
721     LoopAllocator.Deallocate(L);
722   }
723 };
724 
725 } // namespace llvm
726 
727 #endif // LLVM_SUPPORT_GENERICLOOPINFO_H
728