1 //===- GenericLoopInfoImp.h - Generic Loop Info Implementation --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This fle contains the implementation of GenericLoopInfo. It should only be
10 // included in files that explicitly instantiate a GenericLoopInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
15 #define LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
16 
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/Support/GenericLoopInfo.h"
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 // APIs for simple analysis of the loop. See header notes.
27 
28 /// getExitingBlocks - Return all blocks inside the loop that have successors
29 /// outside of the loop.  These are the blocks _inside of the current loop_
30 /// which branch out.  The returned list is always unique.
31 ///
32 template <class BlockT, class LoopT>
33 void LoopBase<BlockT, LoopT>::getExitingBlocks(
34     SmallVectorImpl<BlockT *> &ExitingBlocks) const {
35   assert(!isInvalid() && "Loop not in a valid state!");
36   for (const auto BB : blocks())
37     for (auto *Succ : children<BlockT *>(BB))
38       if (!contains(Succ)) {
39         // Not in current loop? It must be an exit block.
40         ExitingBlocks.push_back(BB);
41         break;
42       }
43 }
44 
45 /// getExitingBlock - If getExitingBlocks would return exactly one block,
46 /// return that block. Otherwise return null.
47 template <class BlockT, class LoopT>
48 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
49   assert(!isInvalid() && "Loop not in a valid state!");
50   auto notInLoop = [&](BlockT *BB) { return !contains(BB); };
51   auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * {
52     assert(!AllowRepeats && "Unexpected parameter value.");
53     // Child not in current loop?  It must be an exit block.
54     return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr;
55   };
56 
57   return find_singleton<BlockT>(blocks(), isExitBlock);
58 }
59 
60 /// getExitBlocks - Return all of the successor blocks of this loop.  These
61 /// are the blocks _outside of the current loop_ which are branched to.
62 ///
63 template <class BlockT, class LoopT>
64 void LoopBase<BlockT, LoopT>::getExitBlocks(
65     SmallVectorImpl<BlockT *> &ExitBlocks) const {
66   assert(!isInvalid() && "Loop not in a valid state!");
67   for (const auto BB : blocks())
68     for (auto *Succ : children<BlockT *>(BB))
69       if (!contains(Succ))
70         // Not in current loop? It must be an exit block.
71         ExitBlocks.push_back(Succ);
72 }
73 
74 /// getExitBlock - If getExitBlocks would return exactly one block,
75 /// return that block. Otherwise return null.
76 template <class BlockT, class LoopT>
77 std::pair<BlockT *, bool> getExitBlockHelper(const LoopBase<BlockT, LoopT> *L,
78                                              bool Unique) {
79   assert(!L->isInvalid() && "Loop not in a valid state!");
80   auto notInLoop = [&](BlockT *BB,
81                        bool AllowRepeats) -> std::pair<BlockT *, bool> {
82     assert(AllowRepeats == Unique && "Unexpected parameter value.");
83     return {!L->contains(BB) ? BB : nullptr, false};
84   };
85   auto singleExitBlock = [&](BlockT *BB,
86                              bool AllowRepeats) -> std::pair<BlockT *, bool> {
87     assert(AllowRepeats == Unique && "Unexpected parameter value.");
88     return find_singleton_nested<BlockT>(children<BlockT *>(BB), notInLoop,
89                                          AllowRepeats);
90   };
91   return find_singleton_nested<BlockT>(L->blocks(), singleExitBlock, Unique);
92 }
93 
94 template <class BlockT, class LoopT>
95 bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const {
96   auto RC = getExitBlockHelper(this, false);
97   if (RC.second)
98     // found multiple exit blocks
99     return false;
100   // return true if there is no exit block
101   return !RC.first;
102 }
103 
104 /// getExitBlock - If getExitBlocks would return exactly one block,
105 /// return that block. Otherwise return null.
106 template <class BlockT, class LoopT>
107 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
108   return getExitBlockHelper(this, false).first;
109 }
110 
111 template <class BlockT, class LoopT>
112 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
113   // Each predecessor of each exit block of a normal loop is contained
114   // within the loop.
115   SmallVector<BlockT *, 4> UniqueExitBlocks;
116   getUniqueExitBlocks(UniqueExitBlocks);
117   for (BlockT *EB : UniqueExitBlocks)
118     for (BlockT *Predecessor : inverse_children<BlockT *>(EB))
119       if (!contains(Predecessor))
120         return false;
121   // All the requirements are met.
122   return true;
123 }
124 
125 // Helper function to get unique loop exits. Pred is a predicate pointing to
126 // BasicBlocks in a loop which should be considered to find loop exits.
127 template <class BlockT, class LoopT, typename PredicateT>
128 void getUniqueExitBlocksHelper(const LoopT *L,
129                                SmallVectorImpl<BlockT *> &ExitBlocks,
130                                PredicateT Pred) {
131   assert(!L->isInvalid() && "Loop not in a valid state!");
132   SmallPtrSet<BlockT *, 32> Visited;
133   auto Filtered = make_filter_range(L->blocks(), Pred);
134   for (BlockT *BB : Filtered)
135     for (BlockT *Successor : children<BlockT *>(BB))
136       if (!L->contains(Successor))
137         if (Visited.insert(Successor).second)
138           ExitBlocks.push_back(Successor);
139 }
140 
141 template <class BlockT, class LoopT>
142 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
143     SmallVectorImpl<BlockT *> &ExitBlocks) const {
144   getUniqueExitBlocksHelper(this, ExitBlocks,
145                             [](const BlockT *BB) { return true; });
146 }
147 
148 template <class BlockT, class LoopT>
149 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
150     SmallVectorImpl<BlockT *> &ExitBlocks) const {
151   const BlockT *Latch = getLoopLatch();
152   assert(Latch && "Latch block must exists");
153   getUniqueExitBlocksHelper(this, ExitBlocks,
154                             [Latch](const BlockT *BB) { return BB != Latch; });
155 }
156 
157 template <class BlockT, class LoopT>
158 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
159   return getExitBlockHelper(this, true).first;
160 }
161 
162 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
163 template <class BlockT, class LoopT>
164 void LoopBase<BlockT, LoopT>::getExitEdges(
165     SmallVectorImpl<Edge> &ExitEdges) const {
166   assert(!isInvalid() && "Loop not in a valid state!");
167   for (const auto BB : blocks())
168     for (auto *Succ : children<BlockT *>(BB))
169       if (!contains(Succ))
170         // Not in current loop? It must be an exit block.
171         ExitEdges.emplace_back(BB, Succ);
172 }
173 
174 namespace detail {
175 template <class BlockT>
176 using has_hoist_check = decltype(&BlockT::isLegalToHoistInto);
177 
178 template <class BlockT>
179 using detect_has_hoist_check = llvm::is_detected<has_hoist_check, BlockT>;
180 
181 /// SFINAE functions that dispatch to the isLegalToHoistInto member function or
182 /// return false, if it doesn't exist.
183 template <class BlockT> bool isLegalToHoistInto(BlockT *Block) {
184   if constexpr (detect_has_hoist_check<BlockT>::value)
185     return Block->isLegalToHoistInto();
186   return false;
187 }
188 } // namespace detail
189 
190 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
191 /// loop has a preheader if there is only one edge to the header of the loop
192 /// from outside of the loop and it is legal to hoist instructions into the
193 /// predecessor. If this is the case, the block branching to the header of the
194 /// loop is the preheader node.
195 ///
196 /// This method returns null if there is no preheader for the loop.
197 ///
198 template <class BlockT, class LoopT>
199 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
200   assert(!isInvalid() && "Loop not in a valid state!");
201   // Keep track of nodes outside the loop branching to the header...
202   BlockT *Out = getLoopPredecessor();
203   if (!Out)
204     return nullptr;
205 
206   // Make sure we are allowed to hoist instructions into the predecessor.
207   if (!detail::isLegalToHoistInto(Out))
208     return nullptr;
209 
210   // Make sure there is only one exit out of the preheader.
211   if (llvm::size(llvm::children<BlockT *>(Out)) != 1)
212     return nullptr; // Multiple exits from the block, must not be a preheader.
213 
214   // The predecessor has exactly one successor, so it is a preheader.
215   return Out;
216 }
217 
218 /// getLoopPredecessor - If the given loop's header has exactly one unique
219 /// predecessor outside the loop, return it. Otherwise return null.
220 /// This is less strict that the loop "preheader" concept, which requires
221 /// the predecessor to have exactly one successor.
222 ///
223 template <class BlockT, class LoopT>
224 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
225   assert(!isInvalid() && "Loop not in a valid state!");
226   // Keep track of nodes outside the loop branching to the header...
227   BlockT *Out = nullptr;
228 
229   // Loop over the predecessors of the header node...
230   BlockT *Header = getHeader();
231   for (const auto Pred : inverse_children<BlockT *>(Header)) {
232     if (!contains(Pred)) { // If the block is not in the loop...
233       if (Out && Out != Pred)
234         return nullptr; // Multiple predecessors outside the loop
235       Out = Pred;
236     }
237   }
238 
239   return Out;
240 }
241 
242 /// getLoopLatch - If there is a single latch block for this loop, return it.
243 /// A latch block is a block that contains a branch back to the header.
244 template <class BlockT, class LoopT>
245 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
246   assert(!isInvalid() && "Loop not in a valid state!");
247   BlockT *Header = getHeader();
248   BlockT *Latch = nullptr;
249   for (const auto Pred : inverse_children<BlockT *>(Header)) {
250     if (contains(Pred)) {
251       if (Latch)
252         return nullptr;
253       Latch = Pred;
254     }
255   }
256 
257   return Latch;
258 }
259 
260 //===----------------------------------------------------------------------===//
261 // APIs for updating loop information after changing the CFG
262 //
263 
264 /// addBasicBlockToLoop - This method is used by other analyses to update loop
265 /// information.  NewBB is set to be a new member of the current loop.
266 /// Because of this, it is added as a member of all parent loops, and is added
267 /// to the specified LoopInfo object as being in the current basic block.  It
268 /// is not valid to replace the loop header with this method.
269 ///
270 template <class BlockT, class LoopT>
271 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
272     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
273   assert(!isInvalid() && "Loop not in a valid state!");
274 #ifndef NDEBUG
275   if (!Blocks.empty()) {
276     auto SameHeader = LIB[getHeader()];
277     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
278            "Incorrect LI specified for this loop!");
279   }
280 #endif
281   assert(NewBB && "Cannot add a null basic block to the loop!");
282   assert(!LIB[NewBB] && "BasicBlock already in the loop!");
283 
284   LoopT *L = static_cast<LoopT *>(this);
285 
286   // Add the loop mapping to the LoopInfo object...
287   LIB.BBMap[NewBB] = L;
288 
289   // Add the basic block to this loop and all parent loops...
290   while (L) {
291     L->addBlockEntry(NewBB);
292     L = L->getParentLoop();
293   }
294 }
295 
296 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
297 /// the OldChild entry in our children list with NewChild, and updates the
298 /// parent pointer of OldChild to be null and the NewChild to be this loop.
299 /// This updates the loop depth of the new child.
300 template <class BlockT, class LoopT>
301 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
302                                                    LoopT *NewChild) {
303   assert(!isInvalid() && "Loop not in a valid state!");
304   assert(OldChild->ParentLoop == this && "This loop is already broken!");
305   assert(!NewChild->ParentLoop && "NewChild already has a parent!");
306   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
307   assert(I != SubLoops.end() && "OldChild not in loop!");
308   *I = NewChild;
309   OldChild->ParentLoop = nullptr;
310   NewChild->ParentLoop = static_cast<LoopT *>(this);
311 }
312 
313 /// verifyLoop - Verify loop structure
314 template <class BlockT, class LoopT>
315 void LoopBase<BlockT, LoopT>::verifyLoop() const {
316   assert(!isInvalid() && "Loop not in a valid state!");
317 #ifndef NDEBUG
318   assert(!Blocks.empty() && "Loop header is missing");
319 
320   // Setup for using a depth-first iterator to visit every block in the loop.
321   SmallVector<BlockT *, 8> ExitBBs;
322   getExitBlocks(ExitBBs);
323   df_iterator_default_set<BlockT *> VisitSet;
324   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
325 
326   // Keep track of the BBs visited.
327   SmallPtrSet<BlockT *, 8> VisitedBBs;
328 
329   // Check the individual blocks.
330   for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) {
331     assert(llvm::any_of(children<BlockT *>(BB),
332                         [&](BlockT *B) { return contains(B); }) &&
333            "Loop block has no in-loop successors!");
334 
335     assert(llvm::any_of(inverse_children<BlockT *>(BB),
336                         [&](BlockT *B) { return contains(B); }) &&
337            "Loop block has no in-loop predecessors!");
338 
339     SmallVector<BlockT *, 2> OutsideLoopPreds;
340     for (BlockT *B : inverse_children<BlockT *>(BB))
341       if (!contains(B))
342         OutsideLoopPreds.push_back(B);
343 
344     if (BB == getHeader()) {
345       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
346     } else if (!OutsideLoopPreds.empty()) {
347       // A non-header loop shouldn't be reachable from outside the loop,
348       // though it is permitted if the predecessor is not itself actually
349       // reachable.
350       BlockT *EntryBB = &BB->getParent()->front();
351       for (BlockT *CB : depth_first(EntryBB))
352         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
353           assert(CB != OutsideLoopPreds[i] &&
354                  "Loop has multiple entry points!");
355     }
356     assert(BB != &getHeader()->getParent()->front() &&
357            "Loop contains function entry block!");
358 
359     VisitedBBs.insert(BB);
360   }
361 
362   if (VisitedBBs.size() != getNumBlocks()) {
363     dbgs() << "The following blocks are unreachable in the loop: ";
364     for (auto *BB : Blocks) {
365       if (!VisitedBBs.count(BB)) {
366         dbgs() << *BB << "\n";
367       }
368     }
369     assert(false && "Unreachable block in loop");
370   }
371 
372   // Check the subloops.
373   for (iterator I = begin(), E = end(); I != E; ++I)
374     // Each block in each subloop should be contained within this loop.
375     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
376          BI != BE; ++BI) {
377       assert(contains(*BI) &&
378              "Loop does not contain all the blocks of a subloop!");
379     }
380 
381   // Check the parent loop pointer.
382   if (ParentLoop) {
383     assert(is_contained(ParentLoop->getSubLoops(), this) &&
384            "Loop is not a subloop of its parent!");
385   }
386 #endif
387 }
388 
389 /// verifyLoop - Verify loop structure of this loop and all nested loops.
390 template <class BlockT, class LoopT>
391 void LoopBase<BlockT, LoopT>::verifyLoopNest(
392     DenseSet<const LoopT *> *Loops) const {
393   assert(!isInvalid() && "Loop not in a valid state!");
394   Loops->insert(static_cast<const LoopT *>(this));
395   // Verify this loop.
396   verifyLoop();
397   // Verify the subloops.
398   for (iterator I = begin(), E = end(); I != E; ++I)
399     (*I)->verifyLoopNest(Loops);
400 }
401 
402 template <class BlockT, class LoopT>
403 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose,
404                                     bool PrintNested, unsigned Depth) const {
405   OS.indent(Depth * 2);
406   if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
407     OS << "Parallel ";
408   OS << "Loop at depth " << getLoopDepth() << " containing: ";
409 
410   BlockT *H = getHeader();
411   for (unsigned i = 0; i < getBlocks().size(); ++i) {
412     BlockT *BB = getBlocks()[i];
413     if (!Verbose) {
414       if (i)
415         OS << ",";
416       BB->printAsOperand(OS, false);
417     } else
418       OS << "\n";
419 
420     if (BB == H)
421       OS << "<header>";
422     if (isLoopLatch(BB))
423       OS << "<latch>";
424     if (isLoopExiting(BB))
425       OS << "<exiting>";
426     if (Verbose)
427       BB->print(OS);
428   }
429 
430   if (PrintNested) {
431     OS << "\n";
432 
433     for (iterator I = begin(), E = end(); I != E; ++I)
434       (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2);
435   }
436 }
437 
438 //===----------------------------------------------------------------------===//
439 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
440 /// result does / not depend on use list (block predecessor) order.
441 ///
442 
443 /// Discover a subloop with the specified backedges such that: All blocks within
444 /// this loop are mapped to this loop or a subloop. And all subloops within this
445 /// loop have their parent loop set to this loop or a subloop.
446 template <class BlockT, class LoopT>
447 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
448                                   LoopInfoBase<BlockT, LoopT> *LI,
449                                   const DomTreeBase<BlockT> &DomTree) {
450   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
451 
452   unsigned NumBlocks = 0;
453   unsigned NumSubloops = 0;
454 
455   // Perform a backward CFG traversal using a worklist.
456   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
457   while (!ReverseCFGWorklist.empty()) {
458     BlockT *PredBB = ReverseCFGWorklist.back();
459     ReverseCFGWorklist.pop_back();
460 
461     LoopT *Subloop = LI->getLoopFor(PredBB);
462     if (!Subloop) {
463       if (!DomTree.isReachableFromEntry(PredBB))
464         continue;
465 
466       // This is an undiscovered block. Map it to the current loop.
467       LI->changeLoopFor(PredBB, L);
468       ++NumBlocks;
469       if (PredBB == L->getHeader())
470         continue;
471       // Push all block predecessors on the worklist.
472       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
473                                 InvBlockTraits::child_begin(PredBB),
474                                 InvBlockTraits::child_end(PredBB));
475     } else {
476       // This is a discovered block. Find its outermost discovered loop.
477       Subloop = Subloop->getOutermostLoop();
478 
479       // If it is already discovered to be a subloop of this loop, continue.
480       if (Subloop == L)
481         continue;
482 
483       // Discover a subloop of this loop.
484       Subloop->setParentLoop(L);
485       ++NumSubloops;
486       NumBlocks += Subloop->getBlocksVector().capacity();
487       PredBB = Subloop->getHeader();
488       // Continue traversal along predecessors that are not loop-back edges from
489       // within this subloop tree itself. Note that a predecessor may directly
490       // reach another subloop that is not yet discovered to be a subloop of
491       // this loop, which we must traverse.
492       for (const auto Pred : inverse_children<BlockT *>(PredBB)) {
493         if (LI->getLoopFor(Pred) != Subloop)
494           ReverseCFGWorklist.push_back(Pred);
495       }
496     }
497   }
498   L->getSubLoopsVector().reserve(NumSubloops);
499   L->reserveBlocks(NumBlocks);
500 }
501 
502 /// Populate all loop data in a stable order during a single forward DFS.
503 template <class BlockT, class LoopT> class PopulateLoopsDFS {
504   typedef GraphTraits<BlockT *> BlockTraits;
505   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
506 
507   LoopInfoBase<BlockT, LoopT> *LI;
508 
509 public:
510   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
511 
512   void traverse(BlockT *EntryBlock);
513 
514 protected:
515   void insertIntoLoop(BlockT *Block);
516 };
517 
518 /// Top-level driver for the forward DFS within the loop.
519 template <class BlockT, class LoopT>
520 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
521   for (BlockT *BB : post_order(EntryBlock))
522     insertIntoLoop(BB);
523 }
524 
525 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
526 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
527 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
528 template <class BlockT, class LoopT>
529 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
530   LoopT *Subloop = LI->getLoopFor(Block);
531   if (Subloop && Block == Subloop->getHeader()) {
532     // We reach this point once per subloop after processing all the blocks in
533     // the subloop.
534     if (!Subloop->isOutermost())
535       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
536     else
537       LI->addTopLevelLoop(Subloop);
538 
539     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
540     // the lists, except for the loop header, which is always at the beginning.
541     Subloop->reverseBlock(1);
542     std::reverse(Subloop->getSubLoopsVector().begin(),
543                  Subloop->getSubLoopsVector().end());
544 
545     Subloop = Subloop->getParentLoop();
546   }
547   for (; Subloop; Subloop = Subloop->getParentLoop())
548     Subloop->addBlockEntry(Block);
549 }
550 
551 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
552 /// interleaved with backward CFG traversals within each subloop
553 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
554 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
555 /// Block vectors are then populated during a single forward CFG traversal
556 /// (PopulateLoopDFS).
557 ///
558 /// During the two CFG traversals each block is seen three times:
559 /// 1) Discovered and mapped by a reverse CFG traversal.
560 /// 2) Visited during a forward DFS CFG traversal.
561 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
562 ///
563 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
564 /// insertions per block.
565 template <class BlockT, class LoopT>
566 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
567   // Postorder traversal of the dominator tree.
568   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
569   for (auto DomNode : post_order(DomRoot)) {
570 
571     BlockT *Header = DomNode->getBlock();
572     SmallVector<BlockT *, 4> Backedges;
573 
574     // Check each predecessor of the potential loop header.
575     for (const auto Backedge : inverse_children<BlockT *>(Header)) {
576       // If Header dominates predBB, this is a new loop. Collect the backedges.
577       const DomTreeNodeBase<BlockT> *BackedgeNode = DomTree.getNode(Backedge);
578       if (BackedgeNode && DomTree.dominates(DomNode, BackedgeNode))
579         Backedges.push_back(Backedge);
580     }
581     // Perform a backward CFG traversal to discover and map blocks in this loop.
582     if (!Backedges.empty()) {
583       LoopT *L = AllocateLoop(Header);
584       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
585     }
586   }
587   // Perform a single forward CFG traversal to populate block and subloop
588   // vectors for all loops.
589   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
590   DFS.traverse(DomRoot->getBlock());
591 }
592 
593 template <class BlockT, class LoopT>
594 SmallVector<LoopT *, 4>
595 LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() const {
596   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
597   // The outer-most loop actually goes into the result in the same relative
598   // order as we walk it. But LoopInfo stores the top level loops in reverse
599   // program order so for here we reverse it to get forward program order.
600   // FIXME: If we change the order of LoopInfo we will want to remove the
601   // reverse here.
602   for (LoopT *RootL : reverse(*this)) {
603     auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
604     PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
605                          PreOrderLoopsInRootL.end());
606   }
607 
608   return PreOrderLoops;
609 }
610 
611 template <class BlockT, class LoopT>
612 SmallVector<LoopT *, 4>
613 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() const {
614   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
615   // The outer-most loop actually goes into the result in the same relative
616   // order as we walk it. LoopInfo stores the top level loops in reverse
617   // program order so we walk in order here.
618   // FIXME: If we change the order of LoopInfo we will want to add a reverse
619   // here.
620   for (LoopT *RootL : *this) {
621     assert(PreOrderWorklist.empty() &&
622            "Must start with an empty preorder walk worklist.");
623     PreOrderWorklist.push_back(RootL);
624     do {
625       LoopT *L = PreOrderWorklist.pop_back_val();
626       // Sub-loops are stored in forward program order, but will process the
627       // worklist backwards so we can just append them in order.
628       PreOrderWorklist.append(L->begin(), L->end());
629       PreOrderLoops.push_back(L);
630     } while (!PreOrderWorklist.empty());
631   }
632 
633   return PreOrderLoops;
634 }
635 
636 // Debugging
637 template <class BlockT, class LoopT>
638 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
639   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
640     TopLevelLoops[i]->print(OS);
641 #if 0
642   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
643          E = BBMap.end(); I != E; ++I)
644     OS << "BB '" << I->first->getName() << "' level = "
645        << I->second->getLoopDepth() << "\n";
646 #endif
647 }
648 
649 template <typename T>
650 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
651   llvm::sort(BB1);
652   llvm::sort(BB2);
653   return BB1 == BB2;
654 }
655 
656 template <class BlockT, class LoopT>
657 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
658                                const LoopInfoBase<BlockT, LoopT> &LI,
659                                const LoopT &L) {
660   LoopHeaders[L.getHeader()] = &L;
661   for (LoopT *SL : L)
662     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
663 }
664 
665 #ifndef NDEBUG
666 template <class BlockT, class LoopT>
667 static void compareLoops(const LoopT *L, const LoopT *OtherL,
668                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
669   BlockT *H = L->getHeader();
670   BlockT *OtherH = OtherL->getHeader();
671   assert(H == OtherH &&
672          "Mismatched headers even though found in the same map entry!");
673 
674   assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
675          "Mismatched loop depth!");
676   const LoopT *ParentL = L, *OtherParentL = OtherL;
677   do {
678     assert(ParentL->getHeader() == OtherParentL->getHeader() &&
679            "Mismatched parent loop headers!");
680     ParentL = ParentL->getParentLoop();
681     OtherParentL = OtherParentL->getParentLoop();
682   } while (ParentL);
683 
684   for (const LoopT *SubL : *L) {
685     BlockT *SubH = SubL->getHeader();
686     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
687     assert(OtherSubL && "Inner loop is missing in computed loop info!");
688     OtherLoopHeaders.erase(SubH);
689     compareLoops(SubL, OtherSubL, OtherLoopHeaders);
690   }
691 
692   std::vector<BlockT *> BBs = L->getBlocks();
693   std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
694   assert(compareVectors(BBs, OtherBBs) &&
695          "Mismatched basic blocks in the loops!");
696 
697   const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
698   const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet =
699       OtherL->getBlocksSet();
700   assert(BlocksSet.size() == OtherBlocksSet.size() &&
701          llvm::set_is_subset(BlocksSet, OtherBlocksSet) &&
702          "Mismatched basic blocks in BlocksSets!");
703 }
704 #endif
705 
706 template <class BlockT, class LoopT>
707 void LoopInfoBase<BlockT, LoopT>::verify(
708     const DomTreeBase<BlockT> &DomTree) const {
709   DenseSet<const LoopT *> Loops;
710   for (iterator I = begin(), E = end(); I != E; ++I) {
711     assert((*I)->isOutermost() && "Top-level loop has a parent!");
712     (*I)->verifyLoopNest(&Loops);
713   }
714 
715 // Verify that blocks are mapped to valid loops.
716 #ifndef NDEBUG
717   for (auto &Entry : BBMap) {
718     const BlockT *BB = Entry.first;
719     LoopT *L = Entry.second;
720     assert(Loops.count(L) && "orphaned loop");
721     assert(L->contains(BB) && "orphaned block");
722     for (LoopT *ChildLoop : *L)
723       assert(!ChildLoop->contains(BB) &&
724              "BBMap should point to the innermost loop containing BB");
725   }
726 
727   // Recompute LoopInfo to verify loops structure.
728   LoopInfoBase<BlockT, LoopT> OtherLI;
729   OtherLI.analyze(DomTree);
730 
731   // Build a map we can use to move from our LI to the computed one. This
732   // allows us to ignore the particular order in any layer of the loop forest
733   // while still comparing the structure.
734   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
735   for (LoopT *L : OtherLI)
736     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
737 
738   // Walk the top level loops and ensure there is a corresponding top-level
739   // loop in the computed version and then recursively compare those loop
740   // nests.
741   for (LoopT *L : *this) {
742     BlockT *Header = L->getHeader();
743     const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
744     assert(OtherL && "Top level loop is missing in computed loop info!");
745     // Now that we've matched this loop, erase its header from the map.
746     OtherLoopHeaders.erase(Header);
747     // And recursively compare these loops.
748     compareLoops(L, OtherL, OtherLoopHeaders);
749   }
750 
751   // Any remaining entries in the map are loops which were found when computing
752   // a fresh LoopInfo but not present in the current one.
753   if (!OtherLoopHeaders.empty()) {
754     for (const auto &HeaderAndLoop : OtherLoopHeaders)
755       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
756     llvm_unreachable("Found new loops when recomputing LoopInfo!");
757   }
758 #endif
759 }
760 
761 } // namespace llvm
762 
763 #endif // LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
764