1 //===--- JSON.h - JSON values, parsing and serialization -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file supports working with JSON data.
11 ///
12 /// It comprises:
13 ///
14 /// - classes which hold dynamically-typed parsed JSON structures
15 ///   These are value types that can be composed, inspected, and modified.
16 ///   See json::Value, and the related types json::Object and json::Array.
17 ///
18 /// - functions to parse JSON text into Values, and to serialize Values to text.
19 ///   See parse(), operator<<, and format_provider.
20 ///
21 /// - a convention and helpers for mapping between json::Value and user-defined
22 ///   types. See fromJSON(), ObjectMapper, and the class comment on Value.
23 ///
24 /// - an output API json::OStream which can emit JSON without materializing
25 ///   all structures as json::Value.
26 ///
27 /// Typically, JSON data would be read from an external source, parsed into
28 /// a Value, and then converted into some native data structure before doing
29 /// real work on it. (And vice versa when writing).
30 ///
31 /// Other serialization mechanisms you may consider:
32 ///
33 /// - YAML is also text-based, and more human-readable than JSON. It's a more
34 ///   complex format and data model, and YAML parsers aren't ubiquitous.
35 ///   YAMLParser.h is a streaming parser suitable for parsing large documents
36 ///   (including JSON, as YAML is a superset). It can be awkward to use
37 ///   directly. YAML I/O (YAMLTraits.h) provides data mapping that is more
38 ///   declarative than the toJSON/fromJSON conventions here.
39 ///
40 /// - LLVM bitstream is a space- and CPU- efficient binary format. Typically it
41 ///   encodes LLVM IR ("bitcode"), but it can be a container for other data.
42 ///   Low-level reader/writer libraries are in Bitstream/Bitstream*.h
43 ///
44 //===---------------------------------------------------------------------===//
45 
46 #ifndef LLVM_SUPPORT_JSON_H
47 #define LLVM_SUPPORT_JSON_H
48 
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringRef.h"
52 #include "llvm/Support/Error.h"
53 #include "llvm/Support/FormatVariadic.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <map>
56 
57 namespace llvm {
58 namespace json {
59 
60 // === String encodings ===
61 //
62 // JSON strings are character sequences (not byte sequences like std::string).
63 // We need to know the encoding, and for simplicity only support UTF-8.
64 //
65 //   - When parsing, invalid UTF-8 is a syntax error like any other
66 //
67 //   - When creating Values from strings, callers must ensure they are UTF-8.
68 //        with asserts on, invalid UTF-8 will crash the program
69 //        with asserts off, we'll substitute the replacement character (U+FFFD)
70 //     Callers can use json::isUTF8() and json::fixUTF8() for validation.
71 //
72 //   - When retrieving strings from Values (e.g. asString()), the result will
73 //     always be valid UTF-8.
74 
75 /// Returns true if \p S is valid UTF-8, which is required for use as JSON.
76 /// If it returns false, \p Offset is set to a byte offset near the first error.
77 bool isUTF8(llvm::StringRef S, size_t *ErrOffset = nullptr);
78 /// Replaces invalid UTF-8 sequences in \p S with the replacement character
79 /// (U+FFFD). The returned string is valid UTF-8.
80 /// This is much slower than isUTF8, so test that first.
81 std::string fixUTF8(llvm::StringRef S);
82 
83 class Array;
84 class ObjectKey;
85 class Value;
86 template <typename T> Value toJSON(const llvm::Optional<T> &Opt);
87 
88 /// An Object is a JSON object, which maps strings to heterogenous JSON values.
89 /// It simulates DenseMap<ObjectKey, Value>. ObjectKey is a maybe-owned string.
90 class Object {
91   using Storage = DenseMap<ObjectKey, Value, llvm::DenseMapInfo<StringRef>>;
92   Storage M;
93 
94 public:
95   using key_type = ObjectKey;
96   using mapped_type = Value;
97   using value_type = Storage::value_type;
98   using iterator = Storage::iterator;
99   using const_iterator = Storage::const_iterator;
100 
101   Object() = default;
102   // KV is a trivial key-value struct for list-initialization.
103   // (using std::pair forces extra copies).
104   struct KV;
105   explicit Object(std::initializer_list<KV> Properties);
106 
107   iterator begin() { return M.begin(); }
108   const_iterator begin() const { return M.begin(); }
109   iterator end() { return M.end(); }
110   const_iterator end() const { return M.end(); }
111 
112   bool empty() const { return M.empty(); }
113   size_t size() const { return M.size(); }
114 
115   void clear() { M.clear(); }
116   std::pair<iterator, bool> insert(KV E);
117   template <typename... Ts>
118   std::pair<iterator, bool> try_emplace(const ObjectKey &K, Ts &&... Args) {
119     return M.try_emplace(K, std::forward<Ts>(Args)...);
120   }
121   template <typename... Ts>
122   std::pair<iterator, bool> try_emplace(ObjectKey &&K, Ts &&... Args) {
123     return M.try_emplace(std::move(K), std::forward<Ts>(Args)...);
124   }
125   bool erase(StringRef K);
126   void erase(iterator I) { M.erase(I); }
127 
128   iterator find(StringRef K) { return M.find_as(K); }
129   const_iterator find(StringRef K) const { return M.find_as(K); }
130   // operator[] acts as if Value was default-constructible as null.
131   Value &operator[](const ObjectKey &K);
132   Value &operator[](ObjectKey &&K);
133   // Look up a property, returning nullptr if it doesn't exist.
134   Value *get(StringRef K);
135   const Value *get(StringRef K) const;
136   // Typed accessors return None/nullptr if
137   //   - the property doesn't exist
138   //   - or it has the wrong type
139   llvm::Optional<std::nullptr_t> getNull(StringRef K) const;
140   llvm::Optional<bool> getBoolean(StringRef K) const;
141   llvm::Optional<double> getNumber(StringRef K) const;
142   llvm::Optional<int64_t> getInteger(StringRef K) const;
143   llvm::Optional<llvm::StringRef> getString(StringRef K) const;
144   const json::Object *getObject(StringRef K) const;
145   json::Object *getObject(StringRef K);
146   const json::Array *getArray(StringRef K) const;
147   json::Array *getArray(StringRef K);
148 };
149 bool operator==(const Object &LHS, const Object &RHS);
150 inline bool operator!=(const Object &LHS, const Object &RHS) {
151   return !(LHS == RHS);
152 }
153 
154 /// An Array is a JSON array, which contains heterogeneous JSON values.
155 /// It simulates std::vector<Value>.
156 class Array {
157   std::vector<Value> V;
158 
159 public:
160   using value_type = Value;
161   using iterator = std::vector<Value>::iterator;
162   using const_iterator = std::vector<Value>::const_iterator;
163 
164   Array() = default;
165   explicit Array(std::initializer_list<Value> Elements);
166   template <typename Collection> explicit Array(const Collection &C) {
167     for (const auto &V : C)
168       emplace_back(V);
169   }
170 
171   Value &operator[](size_t I) { return V[I]; }
172   const Value &operator[](size_t I) const { return V[I]; }
173   Value &front() { return V.front(); }
174   const Value &front() const { return V.front(); }
175   Value &back() { return V.back(); }
176   const Value &back() const { return V.back(); }
177   Value *data() { return V.data(); }
178   const Value *data() const { return V.data(); }
179 
180   iterator begin() { return V.begin(); }
181   const_iterator begin() const { return V.begin(); }
182   iterator end() { return V.end(); }
183   const_iterator end() const { return V.end(); }
184 
185   bool empty() const { return V.empty(); }
186   size_t size() const { return V.size(); }
187   void reserve(size_t S) { V.reserve(S); }
188 
189   void clear() { V.clear(); }
190   void push_back(const Value &E) { V.push_back(E); }
191   void push_back(Value &&E) { V.push_back(std::move(E)); }
192   template <typename... Args> void emplace_back(Args &&... A) {
193     V.emplace_back(std::forward<Args>(A)...);
194   }
195   void pop_back() { V.pop_back(); }
196   // FIXME: insert() takes const_iterator since C++11, old libstdc++ disagrees.
197   iterator insert(iterator P, const Value &E) { return V.insert(P, E); }
198   iterator insert(iterator P, Value &&E) {
199     return V.insert(P, std::move(E));
200   }
201   template <typename It> iterator insert(iterator P, It A, It Z) {
202     return V.insert(P, A, Z);
203   }
204   template <typename... Args> iterator emplace(const_iterator P, Args &&... A) {
205     return V.emplace(P, std::forward<Args>(A)...);
206   }
207 
208   friend bool operator==(const Array &L, const Array &R) { return L.V == R.V; }
209 };
210 inline bool operator!=(const Array &L, const Array &R) { return !(L == R); }
211 
212 /// A Value is an JSON value of unknown type.
213 /// They can be copied, but should generally be moved.
214 ///
215 /// === Composing values ===
216 ///
217 /// You can implicitly construct Values from:
218 ///   - strings: std::string, SmallString, formatv, StringRef, char*
219 ///              (char*, and StringRef are references, not copies!)
220 ///   - numbers
221 ///   - booleans
222 ///   - null: nullptr
223 ///   - arrays: {"foo", 42.0, false}
224 ///   - serializable things: types with toJSON(const T&)->Value, found by ADL
225 ///
226 /// They can also be constructed from object/array helpers:
227 ///   - json::Object is a type like map<ObjectKey, Value>
228 ///   - json::Array is a type like vector<Value>
229 /// These can be list-initialized, or used to build up collections in a loop.
230 /// json::ary(Collection) converts all items in a collection to Values.
231 ///
232 /// === Inspecting values ===
233 ///
234 /// Each Value is one of the JSON kinds:
235 ///   null    (nullptr_t)
236 ///   boolean (bool)
237 ///   number  (double or int64)
238 ///   string  (StringRef)
239 ///   array   (json::Array)
240 ///   object  (json::Object)
241 ///
242 /// The kind can be queried directly, or implicitly via the typed accessors:
243 ///   if (Optional<StringRef> S = E.getAsString()
244 ///     assert(E.kind() == Value::String);
245 ///
246 /// Array and Object also have typed indexing accessors for easy traversal:
247 ///   Expected<Value> E = parse(R"( {"options": {"font": "sans-serif"}} )");
248 ///   if (Object* O = E->getAsObject())
249 ///     if (Object* Opts = O->getObject("options"))
250 ///       if (Optional<StringRef> Font = Opts->getString("font"))
251 ///         assert(Opts->at("font").kind() == Value::String);
252 ///
253 /// === Converting JSON values to C++ types ===
254 ///
255 /// The convention is to have a deserializer function findable via ADL:
256 ///     fromJSON(const json::Value&, T&)->bool
257 /// Deserializers are provided for:
258 ///   - bool
259 ///   - int and int64_t
260 ///   - double
261 ///   - std::string
262 ///   - vector<T>, where T is deserializable
263 ///   - map<string, T>, where T is deserializable
264 ///   - Optional<T>, where T is deserializable
265 /// ObjectMapper can help writing fromJSON() functions for object types.
266 ///
267 /// For conversion in the other direction, the serializer function is:
268 ///    toJSON(const T&) -> json::Value
269 /// If this exists, then it also allows constructing Value from T, and can
270 /// be used to serialize vector<T>, map<string, T>, and Optional<T>.
271 ///
272 /// === Serialization ===
273 ///
274 /// Values can be serialized to JSON:
275 ///   1) raw_ostream << Value                    // Basic formatting.
276 ///   2) raw_ostream << formatv("{0}", Value)    // Basic formatting.
277 ///   3) raw_ostream << formatv("{0:2}", Value)  // Pretty-print with indent 2.
278 ///
279 /// And parsed:
280 ///   Expected<Value> E = json::parse("[1, 2, null]");
281 ///   assert(E && E->kind() == Value::Array);
282 class Value {
283 public:
284   enum Kind {
285     Null,
286     Boolean,
287     /// Number values can store both int64s and doubles at full precision,
288     /// depending on what they were constructed/parsed from.
289     Number,
290     String,
291     Array,
292     Object,
293   };
294 
295   // It would be nice to have Value() be null. But that would make {} null too.
296   Value(const Value &M) { copyFrom(M); }
297   Value(Value &&M) { moveFrom(std::move(M)); }
298   Value(std::initializer_list<Value> Elements);
299   Value(json::Array &&Elements) : Type(T_Array) {
300     create<json::Array>(std::move(Elements));
301   }
302   template <typename Elt>
303   Value(const std::vector<Elt> &C) : Value(json::Array(C)) {}
304   Value(json::Object &&Properties) : Type(T_Object) {
305     create<json::Object>(std::move(Properties));
306   }
307   template <typename Elt>
308   Value(const std::map<std::string, Elt> &C) : Value(json::Object(C)) {}
309   // Strings: types with value semantics. Must be valid UTF-8.
310   Value(std::string V) : Type(T_String) {
311     if (LLVM_UNLIKELY(!isUTF8(V))) {
312       assert(false && "Invalid UTF-8 in value used as JSON");
313       V = fixUTF8(std::move(V));
314     }
315     create<std::string>(std::move(V));
316   }
317   Value(const llvm::SmallVectorImpl<char> &V)
318       : Value(std::string(V.begin(), V.end())) {}
319   Value(const llvm::formatv_object_base &V) : Value(V.str()) {}
320   // Strings: types with reference semantics. Must be valid UTF-8.
321   Value(StringRef V) : Type(T_StringRef) {
322     create<llvm::StringRef>(V);
323     if (LLVM_UNLIKELY(!isUTF8(V))) {
324       assert(false && "Invalid UTF-8 in value used as JSON");
325       *this = Value(fixUTF8(V));
326     }
327   }
328   Value(const char *V) : Value(StringRef(V)) {}
329   Value(std::nullptr_t) : Type(T_Null) {}
330   // Boolean (disallow implicit conversions).
331   // (The last template parameter is a dummy to keep templates distinct.)
332   template <
333       typename T,
334       typename = typename std::enable_if<std::is_same<T, bool>::value>::type,
335       bool = false>
336   Value(T B) : Type(T_Boolean) {
337     create<bool>(B);
338   }
339   // Integers (except boolean). Must be non-narrowing convertible to int64_t.
340   template <
341       typename T,
342       typename = typename std::enable_if<std::is_integral<T>::value>::type,
343       typename = typename std::enable_if<!std::is_same<T, bool>::value>::type>
344   Value(T I) : Type(T_Integer) {
345     create<int64_t>(int64_t{I});
346   }
347   // Floating point. Must be non-narrowing convertible to double.
348   template <typename T,
349             typename =
350                 typename std::enable_if<std::is_floating_point<T>::value>::type,
351             double * = nullptr>
352   Value(T D) : Type(T_Double) {
353     create<double>(double{D});
354   }
355   // Serializable types: with a toJSON(const T&)->Value function, found by ADL.
356   template <typename T,
357             typename = typename std::enable_if<std::is_same<
358                 Value, decltype(toJSON(*(const T *)nullptr))>::value>,
359             Value * = nullptr>
360   Value(const T &V) : Value(toJSON(V)) {}
361 
362   Value &operator=(const Value &M) {
363     destroy();
364     copyFrom(M);
365     return *this;
366   }
367   Value &operator=(Value &&M) {
368     destroy();
369     moveFrom(std::move(M));
370     return *this;
371   }
372   ~Value() { destroy(); }
373 
374   Kind kind() const {
375     switch (Type) {
376     case T_Null:
377       return Null;
378     case T_Boolean:
379       return Boolean;
380     case T_Double:
381     case T_Integer:
382       return Number;
383     case T_String:
384     case T_StringRef:
385       return String;
386     case T_Object:
387       return Object;
388     case T_Array:
389       return Array;
390     }
391     llvm_unreachable("Unknown kind");
392   }
393 
394   // Typed accessors return None/nullptr if the Value is not of this type.
395   llvm::Optional<std::nullptr_t> getAsNull() const {
396     if (LLVM_LIKELY(Type == T_Null))
397       return nullptr;
398     return llvm::None;
399   }
400   llvm::Optional<bool> getAsBoolean() const {
401     if (LLVM_LIKELY(Type == T_Boolean))
402       return as<bool>();
403     return llvm::None;
404   }
405   llvm::Optional<double> getAsNumber() const {
406     if (LLVM_LIKELY(Type == T_Double))
407       return as<double>();
408     if (LLVM_LIKELY(Type == T_Integer))
409       return as<int64_t>();
410     return llvm::None;
411   }
412   // Succeeds if the Value is a Number, and exactly representable as int64_t.
413   llvm::Optional<int64_t> getAsInteger() const {
414     if (LLVM_LIKELY(Type == T_Integer))
415       return as<int64_t>();
416     if (LLVM_LIKELY(Type == T_Double)) {
417       double D = as<double>();
418       if (LLVM_LIKELY(std::modf(D, &D) == 0.0 &&
419                       D >= double(std::numeric_limits<int64_t>::min()) &&
420                       D <= double(std::numeric_limits<int64_t>::max())))
421         return D;
422     }
423     return llvm::None;
424   }
425   llvm::Optional<llvm::StringRef> getAsString() const {
426     if (Type == T_String)
427       return llvm::StringRef(as<std::string>());
428     if (LLVM_LIKELY(Type == T_StringRef))
429       return as<llvm::StringRef>();
430     return llvm::None;
431   }
432   const json::Object *getAsObject() const {
433     return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
434   }
435   json::Object *getAsObject() {
436     return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
437   }
438   const json::Array *getAsArray() const {
439     return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
440   }
441   json::Array *getAsArray() {
442     return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
443   }
444 
445 private:
446   void destroy();
447   void copyFrom(const Value &M);
448   // We allow moving from *const* Values, by marking all members as mutable!
449   // This hack is needed to support initializer-list syntax efficiently.
450   // (std::initializer_list<T> is a container of const T).
451   void moveFrom(const Value &&M);
452   friend class Array;
453   friend class Object;
454 
455   template <typename T, typename... U> void create(U &&... V) {
456     new (reinterpret_cast<T *>(Union.buffer)) T(std::forward<U>(V)...);
457   }
458   template <typename T> T &as() const {
459     // Using this two-step static_cast via void * instead of reinterpret_cast
460     // silences a -Wstrict-aliasing false positive from GCC6 and earlier.
461     void *Storage = static_cast<void *>(Union.buffer);
462     return *static_cast<T *>(Storage);
463   }
464 
465   friend class OStream;
466 
467   enum ValueType : char {
468     T_Null,
469     T_Boolean,
470     T_Double,
471     T_Integer,
472     T_StringRef,
473     T_String,
474     T_Object,
475     T_Array,
476   };
477   // All members mutable, see moveFrom().
478   mutable ValueType Type;
479   mutable llvm::AlignedCharArrayUnion<bool, double, int64_t, llvm::StringRef,
480                                       std::string, json::Array, json::Object>
481       Union;
482   friend bool operator==(const Value &, const Value &);
483 };
484 
485 bool operator==(const Value &, const Value &);
486 inline bool operator!=(const Value &L, const Value &R) { return !(L == R); }
487 
488 /// ObjectKey is a used to capture keys in Object. Like Value but:
489 ///   - only strings are allowed
490 ///   - it's optimized for the string literal case (Owned == nullptr)
491 /// Like Value, strings must be UTF-8. See isUTF8 documentation for details.
492 class ObjectKey {
493 public:
494   ObjectKey(const char *S) : ObjectKey(StringRef(S)) {}
495   ObjectKey(std::string S) : Owned(new std::string(std::move(S))) {
496     if (LLVM_UNLIKELY(!isUTF8(*Owned))) {
497       assert(false && "Invalid UTF-8 in value used as JSON");
498       *Owned = fixUTF8(std::move(*Owned));
499     }
500     Data = *Owned;
501   }
502   ObjectKey(llvm::StringRef S) : Data(S) {
503     if (LLVM_UNLIKELY(!isUTF8(Data))) {
504       assert(false && "Invalid UTF-8 in value used as JSON");
505       *this = ObjectKey(fixUTF8(S));
506     }
507   }
508   ObjectKey(const llvm::SmallVectorImpl<char> &V)
509       : ObjectKey(std::string(V.begin(), V.end())) {}
510   ObjectKey(const llvm::formatv_object_base &V) : ObjectKey(V.str()) {}
511 
512   ObjectKey(const ObjectKey &C) { *this = C; }
513   ObjectKey(ObjectKey &&C) : ObjectKey(static_cast<const ObjectKey &&>(C)) {}
514   ObjectKey &operator=(const ObjectKey &C) {
515     if (C.Owned) {
516       Owned.reset(new std::string(*C.Owned));
517       Data = *Owned;
518     } else {
519       Data = C.Data;
520     }
521     return *this;
522   }
523   ObjectKey &operator=(ObjectKey &&) = default;
524 
525   operator llvm::StringRef() const { return Data; }
526   std::string str() const { return Data.str(); }
527 
528 private:
529   // FIXME: this is unneccesarily large (3 pointers). Pointer + length + owned
530   // could be 2 pointers at most.
531   std::unique_ptr<std::string> Owned;
532   llvm::StringRef Data;
533 };
534 
535 inline bool operator==(const ObjectKey &L, const ObjectKey &R) {
536   return llvm::StringRef(L) == llvm::StringRef(R);
537 }
538 inline bool operator!=(const ObjectKey &L, const ObjectKey &R) {
539   return !(L == R);
540 }
541 inline bool operator<(const ObjectKey &L, const ObjectKey &R) {
542   return StringRef(L) < StringRef(R);
543 }
544 
545 struct Object::KV {
546   ObjectKey K;
547   Value V;
548 };
549 
550 inline Object::Object(std::initializer_list<KV> Properties) {
551   for (const auto &P : Properties) {
552     auto R = try_emplace(P.K, nullptr);
553     if (R.second)
554       R.first->getSecond().moveFrom(std::move(P.V));
555   }
556 }
557 inline std::pair<Object::iterator, bool> Object::insert(KV E) {
558   return try_emplace(std::move(E.K), std::move(E.V));
559 }
560 inline bool Object::erase(StringRef K) {
561   return M.erase(ObjectKey(K));
562 }
563 
564 // Standard deserializers are provided for primitive types.
565 // See comments on Value.
566 inline bool fromJSON(const Value &E, std::string &Out) {
567   if (auto S = E.getAsString()) {
568     Out = *S;
569     return true;
570   }
571   return false;
572 }
573 inline bool fromJSON(const Value &E, int &Out) {
574   if (auto S = E.getAsInteger()) {
575     Out = *S;
576     return true;
577   }
578   return false;
579 }
580 inline bool fromJSON(const Value &E, int64_t &Out) {
581   if (auto S = E.getAsInteger()) {
582     Out = *S;
583     return true;
584   }
585   return false;
586 }
587 inline bool fromJSON(const Value &E, double &Out) {
588   if (auto S = E.getAsNumber()) {
589     Out = *S;
590     return true;
591   }
592   return false;
593 }
594 inline bool fromJSON(const Value &E, bool &Out) {
595   if (auto S = E.getAsBoolean()) {
596     Out = *S;
597     return true;
598   }
599   return false;
600 }
601 template <typename T> bool fromJSON(const Value &E, llvm::Optional<T> &Out) {
602   if (E.getAsNull()) {
603     Out = llvm::None;
604     return true;
605   }
606   T Result;
607   if (!fromJSON(E, Result))
608     return false;
609   Out = std::move(Result);
610   return true;
611 }
612 template <typename T> bool fromJSON(const Value &E, std::vector<T> &Out) {
613   if (auto *A = E.getAsArray()) {
614     Out.clear();
615     Out.resize(A->size());
616     for (size_t I = 0; I < A->size(); ++I)
617       if (!fromJSON((*A)[I], Out[I]))
618         return false;
619     return true;
620   }
621   return false;
622 }
623 template <typename T>
624 bool fromJSON(const Value &E, std::map<std::string, T> &Out) {
625   if (auto *O = E.getAsObject()) {
626     Out.clear();
627     for (const auto &KV : *O)
628       if (!fromJSON(KV.second, Out[llvm::StringRef(KV.first)]))
629         return false;
630     return true;
631   }
632   return false;
633 }
634 
635 // Allow serialization of Optional<T> for supported T.
636 template <typename T> Value toJSON(const llvm::Optional<T> &Opt) {
637   return Opt ? Value(*Opt) : Value(nullptr);
638 }
639 
640 /// Helper for mapping JSON objects onto protocol structs.
641 ///
642 /// Example:
643 /// \code
644 ///   bool fromJSON(const Value &E, MyStruct &R) {
645 ///     ObjectMapper O(E);
646 ///     if (!O || !O.map("mandatory_field", R.MandatoryField))
647 ///       return false;
648 ///     O.map("optional_field", R.OptionalField);
649 ///     return true;
650 ///   }
651 /// \endcode
652 class ObjectMapper {
653 public:
654   ObjectMapper(const Value &E) : O(E.getAsObject()) {}
655 
656   /// True if the expression is an object.
657   /// Must be checked before calling map().
658   operator bool() { return O; }
659 
660   /// Maps a property to a field, if it exists.
661   template <typename T> bool map(StringRef Prop, T &Out) {
662     assert(*this && "Must check this is an object before calling map()");
663     if (const Value *E = O->get(Prop))
664       return fromJSON(*E, Out);
665     return false;
666   }
667 
668   /// Maps a property to a field, if it exists.
669   /// (Optional requires special handling, because missing keys are OK).
670   template <typename T> bool map(StringRef Prop, llvm::Optional<T> &Out) {
671     assert(*this && "Must check this is an object before calling map()");
672     if (const Value *E = O->get(Prop))
673       return fromJSON(*E, Out);
674     Out = llvm::None;
675     return true;
676   }
677 
678 private:
679   const Object *O;
680 };
681 
682 /// Parses the provided JSON source, or returns a ParseError.
683 /// The returned Value is self-contained and owns its strings (they do not refer
684 /// to the original source).
685 llvm::Expected<Value> parse(llvm::StringRef JSON);
686 
687 class ParseError : public llvm::ErrorInfo<ParseError> {
688   const char *Msg;
689   unsigned Line, Column, Offset;
690 
691 public:
692   static char ID;
693   ParseError(const char *Msg, unsigned Line, unsigned Column, unsigned Offset)
694       : Msg(Msg), Line(Line), Column(Column), Offset(Offset) {}
695   void log(llvm::raw_ostream &OS) const override {
696     OS << llvm::formatv("[{0}:{1}, byte={2}]: {3}", Line, Column, Offset, Msg);
697   }
698   std::error_code convertToErrorCode() const override {
699     return llvm::inconvertibleErrorCode();
700   }
701 };
702 
703 /// json::OStream allows writing well-formed JSON without materializing
704 /// all structures as json::Value ahead of time.
705 /// It's faster, lower-level, and less safe than OS << json::Value.
706 ///
707 /// Only one "top-level" object can be written to a stream.
708 /// Simplest usage involves passing lambdas (Blocks) to fill in containers:
709 ///
710 ///   json::OStream J(OS);
711 ///   J.array([&]{
712 ///     for (const Event &E : Events)
713 ///       J.object([&] {
714 ///         J.attribute("timestamp", int64_t(E.Time));
715 ///         J.attributeArray("participants", [&] {
716 ///           for (const Participant &P : E.Participants)
717 ///             J.value(P.toString());
718 ///         });
719 ///       });
720 ///   });
721 ///
722 /// This would produce JSON like:
723 ///
724 ///   [
725 ///     {
726 ///       "timestamp": 19287398741,
727 ///       "participants": [
728 ///         "King Kong",
729 ///         "Miley Cyrus",
730 ///         "Cleopatra"
731 ///       ]
732 ///     },
733 ///     ...
734 ///   ]
735 ///
736 /// The lower level begin/end methods (arrayBegin()) are more flexible but
737 /// care must be taken to pair them correctly:
738 ///
739 ///   json::OStream J(OS);
740 //    J.arrayBegin();
741 ///   for (const Event &E : Events) {
742 ///     J.objectBegin();
743 ///     J.attribute("timestamp", int64_t(E.Time));
744 ///     J.attributeBegin("participants");
745 ///     for (const Participant &P : E.Participants)
746 ///       J.value(P.toString());
747 ///     J.attributeEnd();
748 ///     J.objectEnd();
749 ///   }
750 ///   J.arrayEnd();
751 ///
752 /// If the call sequence isn't valid JSON, asserts will fire in debug mode.
753 /// This can be mismatched begin()/end() pairs, trying to emit attributes inside
754 /// an array, and so on.
755 /// With asserts disabled, this is undefined behavior.
756 class OStream {
757  public:
758   using Block = llvm::function_ref<void()>;
759   // If IndentSize is nonzero, output is pretty-printed.
760   explicit OStream(llvm::raw_ostream &OS, unsigned IndentSize = 0)
761       : OS(OS), IndentSize(IndentSize) {
762     Stack.emplace_back();
763   }
764   ~OStream() {
765     assert(Stack.size() == 1 && "Unmatched begin()/end()");
766     assert(Stack.back().Ctx == Singleton);
767     assert(Stack.back().HasValue && "Did not write top-level value");
768   }
769 
770   /// Flushes the underlying ostream. OStream does not buffer internally.
771   void flush() { OS.flush(); }
772 
773   // High level functions to output a value.
774   // Valid at top-level (exactly once), in an attribute value (exactly once),
775   // or in an array (any number of times).
776 
777   /// Emit a self-contained value (number, string, vector<string> etc).
778   void value(const Value &V);
779   /// Emit an array whose elements are emitted in the provided Block.
780   void array(Block Contents) {
781     arrayBegin();
782     Contents();
783     arrayEnd();
784   }
785   /// Emit an object whose elements are emitted in the provided Block.
786   void object(Block Contents) {
787     objectBegin();
788     Contents();
789     objectEnd();
790   }
791 
792   // High level functions to output object attributes.
793   // Valid only within an object (any number of times).
794 
795   /// Emit an attribute whose value is self-contained (number, vector<int> etc).
796   void attribute(llvm::StringRef Key, const Value& Contents) {
797     attributeImpl(Key, [&] { value(Contents); });
798   }
799   /// Emit an attribute whose value is an array with elements from the Block.
800   void attributeArray(llvm::StringRef Key, Block Contents) {
801     attributeImpl(Key, [&] { array(Contents); });
802   }
803   /// Emit an attribute whose value is an object with attributes from the Block.
804   void attributeObject(llvm::StringRef Key, Block Contents) {
805     attributeImpl(Key, [&] { object(Contents); });
806   }
807 
808   // Low-level begin/end functions to output arrays, objects, and attributes.
809   // Must be correctly paired. Allowed contexts are as above.
810 
811   void arrayBegin();
812   void arrayEnd();
813   void objectBegin();
814   void objectEnd();
815   void attributeBegin(llvm::StringRef Key);
816   void attributeEnd();
817 
818  private:
819   void attributeImpl(llvm::StringRef Key, Block Contents) {
820     attributeBegin(Key);
821     Contents();
822     attributeEnd();
823   }
824 
825   void valueBegin();
826   void newline();
827 
828   enum Context {
829     Singleton, // Top level, or object attribute.
830     Array,
831     Object,
832   };
833   struct State {
834     Context Ctx = Singleton;
835     bool HasValue = false;
836   };
837   llvm::SmallVector<State, 16> Stack; // Never empty.
838   llvm::raw_ostream &OS;
839   unsigned IndentSize;
840   unsigned Indent = 0;
841 };
842 
843 /// Serializes this Value to JSON, writing it to the provided stream.
844 /// The formatting is compact (no extra whitespace) and deterministic.
845 /// For pretty-printing, use the formatv() format_provider below.
846 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Value &V) {
847   OStream(OS).value(V);
848   return OS;
849 }
850 } // namespace json
851 
852 /// Allow printing json::Value with formatv().
853 /// The default style is basic/compact formatting, like operator<<.
854 /// A format string like formatv("{0:2}", Value) pretty-prints with indent 2.
855 template <> struct format_provider<llvm::json::Value> {
856   static void format(const llvm::json::Value &, raw_ostream &, StringRef);
857 };
858 } // namespace llvm
859 
860 #endif
861