1 //===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Defines facilities for reading and writing on-disk hash tables.
11 ///
12 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_SUPPORT_ONDISKHASHTABLE_H
14 #define LLVM_SUPPORT_ONDISKHASHTABLE_H
15 
16 #include "llvm/Support/Alignment.h"
17 #include "llvm/Support/Allocator.h"
18 #include "llvm/Support/DataTypes.h"
19 #include "llvm/Support/EndianStream.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <cassert>
23 #include <cstdlib>
24 
25 namespace llvm {
26 
27 /// Generates an on disk hash table.
28 ///
29 /// This needs an \c Info that handles storing values into the hash table's
30 /// payload and computes the hash for a given key. This should provide the
31 /// following interface:
32 ///
33 /// \code
34 /// class ExampleInfo {
35 /// public:
36 ///   typedef ExampleKey key_type;   // Must be copy constructible
37 ///   typedef ExampleKey &key_type_ref;
38 ///   typedef ExampleData data_type; // Must be copy constructible
39 ///   typedef ExampleData &data_type_ref;
40 ///   typedef uint32_t hash_value_type; // The type the hash function returns.
41 ///   typedef uint32_t offset_type; // The type for offsets into the table.
42 ///
43 ///   /// Calculate the hash for Key
44 ///   static hash_value_type ComputeHash(key_type_ref Key);
45 ///   /// Return the lengths, in bytes, of the given Key/Data pair.
46 ///   static std::pair<offset_type, offset_type>
47 ///   EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data);
48 ///   /// Write Key to Out.  KeyLen is the length from EmitKeyDataLength.
49 ///   static void EmitKey(raw_ostream &Out, key_type_ref Key,
50 ///                       offset_type KeyLen);
51 ///   /// Write Data to Out.  DataLen is the length from EmitKeyDataLength.
52 ///   static void EmitData(raw_ostream &Out, key_type_ref Key,
53 ///                        data_type_ref Data, offset_type DataLen);
54 ///   /// Determine if two keys are equal. Optional, only needed by contains.
55 ///   static bool EqualKey(key_type_ref Key1, key_type_ref Key2);
56 /// };
57 /// \endcode
58 template <typename Info> class OnDiskChainedHashTableGenerator {
59   /// A single item in the hash table.
60   class Item {
61   public:
62     typename Info::key_type Key;
63     typename Info::data_type Data;
64     Item *Next;
65     const typename Info::hash_value_type Hash;
66 
67     Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data,
68          Info &InfoObj)
69         : Key(Key), Data(Data), Next(nullptr), Hash(InfoObj.ComputeHash(Key)) {}
70   };
71 
72   typedef typename Info::offset_type offset_type;
73   offset_type NumBuckets;
74   offset_type NumEntries;
75   llvm::SpecificBumpPtrAllocator<Item> BA;
76 
77   /// A linked list of values in a particular hash bucket.
78   struct Bucket {
79     offset_type Off;
80     unsigned Length;
81     Item *Head;
82   };
83 
84   Bucket *Buckets;
85 
86 private:
87   /// Insert an item into the appropriate hash bucket.
88   void insert(Bucket *Buckets, size_t Size, Item *E) {
89     Bucket &B = Buckets[E->Hash & (Size - 1)];
90     E->Next = B.Head;
91     ++B.Length;
92     B.Head = E;
93   }
94 
95   /// Resize the hash table, moving the old entries into the new buckets.
96   void resize(size_t NewSize) {
97     Bucket *NewBuckets = static_cast<Bucket *>(
98         safe_calloc(NewSize, sizeof(Bucket)));
99     // Populate NewBuckets with the old entries.
100     for (size_t I = 0; I < NumBuckets; ++I)
101       for (Item *E = Buckets[I].Head; E;) {
102         Item *N = E->Next;
103         E->Next = nullptr;
104         insert(NewBuckets, NewSize, E);
105         E = N;
106       }
107 
108     free(Buckets);
109     NumBuckets = NewSize;
110     Buckets = NewBuckets;
111   }
112 
113 public:
114   /// Insert an entry into the table.
115   void insert(typename Info::key_type_ref Key,
116               typename Info::data_type_ref Data) {
117     Info InfoObj;
118     insert(Key, Data, InfoObj);
119   }
120 
121   /// Insert an entry into the table.
122   ///
123   /// Uses the provided Info instead of a stack allocated one.
124   void insert(typename Info::key_type_ref Key,
125               typename Info::data_type_ref Data, Info &InfoObj) {
126     ++NumEntries;
127     if (4 * NumEntries >= 3 * NumBuckets)
128       resize(NumBuckets * 2);
129     insert(Buckets, NumBuckets, new (BA.Allocate()) Item(Key, Data, InfoObj));
130   }
131 
132   /// Determine whether an entry has been inserted.
133   bool contains(typename Info::key_type_ref Key, Info &InfoObj) {
134     unsigned Hash = InfoObj.ComputeHash(Key);
135     for (Item *I = Buckets[Hash & (NumBuckets - 1)].Head; I; I = I->Next)
136       if (I->Hash == Hash && InfoObj.EqualKey(I->Key, Key))
137         return true;
138     return false;
139   }
140 
141   /// Emit the table to Out, which must not be at offset 0.
142   offset_type Emit(raw_ostream &Out) {
143     Info InfoObj;
144     return Emit(Out, InfoObj);
145   }
146 
147   /// Emit the table to Out, which must not be at offset 0.
148   ///
149   /// Uses the provided Info instead of a stack allocated one.
150   offset_type Emit(raw_ostream &Out, Info &InfoObj) {
151     using namespace llvm::support;
152     endian::Writer LE(Out, little);
153 
154     // Now we're done adding entries, resize the bucket list if it's
155     // significantly too large. (This only happens if the number of
156     // entries is small and we're within our initial allocation of
157     // 64 buckets.) We aim for an occupancy ratio in [3/8, 3/4).
158     //
159     // As a special case, if there are two or fewer entries, just
160     // form a single bucket. A linear scan is fine in that case, and
161     // this is very common in C++ class lookup tables. This also
162     // guarantees we produce at least one bucket for an empty table.
163     //
164     // FIXME: Try computing a perfect hash function at this point.
165     unsigned TargetNumBuckets =
166         NumEntries <= 2 ? 1 : NextPowerOf2(NumEntries * 4 / 3);
167     if (TargetNumBuckets != NumBuckets)
168       resize(TargetNumBuckets);
169 
170     // Emit the payload of the table.
171     for (offset_type I = 0; I < NumBuckets; ++I) {
172       Bucket &B = Buckets[I];
173       if (!B.Head)
174         continue;
175 
176       // Store the offset for the data of this bucket.
177       B.Off = Out.tell();
178       assert(B.Off && "Cannot write a bucket at offset 0. Please add padding.");
179 
180       // Write out the number of items in the bucket.
181       LE.write<uint16_t>(B.Length);
182       assert(B.Length != 0 && "Bucket has a head but zero length?");
183 
184       // Write out the entries in the bucket.
185       for (Item *I = B.Head; I; I = I->Next) {
186         LE.write<typename Info::hash_value_type>(I->Hash);
187         const std::pair<offset_type, offset_type> &Len =
188             InfoObj.EmitKeyDataLength(Out, I->Key, I->Data);
189 #ifdef NDEBUG
190         InfoObj.EmitKey(Out, I->Key, Len.first);
191         InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
192 #else
193         // In asserts mode, check that the users length matches the data they
194         // wrote.
195         uint64_t KeyStart = Out.tell();
196         InfoObj.EmitKey(Out, I->Key, Len.first);
197         uint64_t DataStart = Out.tell();
198         InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
199         uint64_t End = Out.tell();
200         assert(offset_type(DataStart - KeyStart) == Len.first &&
201                "key length does not match bytes written");
202         assert(offset_type(End - DataStart) == Len.second &&
203                "data length does not match bytes written");
204 #endif
205       }
206     }
207 
208     // Pad with zeros so that we can start the hashtable at an aligned address.
209     offset_type TableOff = Out.tell();
210     uint64_t N = offsetToAlignment(TableOff, Align(alignof(offset_type)));
211     TableOff += N;
212     while (N--)
213       LE.write<uint8_t>(0);
214 
215     // Emit the hashtable itself.
216     LE.write<offset_type>(NumBuckets);
217     LE.write<offset_type>(NumEntries);
218     for (offset_type I = 0; I < NumBuckets; ++I)
219       LE.write<offset_type>(Buckets[I].Off);
220 
221     return TableOff;
222   }
223 
224   OnDiskChainedHashTableGenerator() {
225     NumEntries = 0;
226     NumBuckets = 64;
227     // Note that we do not need to run the constructors of the individual
228     // Bucket objects since 'calloc' returns bytes that are all 0.
229     Buckets = static_cast<Bucket *>(safe_calloc(NumBuckets, sizeof(Bucket)));
230   }
231 
232   ~OnDiskChainedHashTableGenerator() { std::free(Buckets); }
233 };
234 
235 /// Provides lookup on an on disk hash table.
236 ///
237 /// This needs an \c Info that handles reading values from the hash table's
238 /// payload and computes the hash for a given key. This should provide the
239 /// following interface:
240 ///
241 /// \code
242 /// class ExampleLookupInfo {
243 /// public:
244 ///   typedef ExampleData data_type;
245 ///   typedef ExampleInternalKey internal_key_type; // The stored key type.
246 ///   typedef ExampleKey external_key_type; // The type to pass to find().
247 ///   typedef uint32_t hash_value_type; // The type the hash function returns.
248 ///   typedef uint32_t offset_type; // The type for offsets into the table.
249 ///
250 ///   /// Compare two keys for equality.
251 ///   static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2);
252 ///   /// Calculate the hash for the given key.
253 ///   static hash_value_type ComputeHash(internal_key_type &IKey);
254 ///   /// Translate from the semantic type of a key in the hash table to the
255 ///   /// type that is actually stored and used for hashing and comparisons.
256 ///   /// The internal and external types are often the same, in which case this
257 ///   /// can simply return the passed in value.
258 ///   static const internal_key_type &GetInternalKey(external_key_type &EKey);
259 ///   /// Read the key and data length from Buffer, leaving it pointing at the
260 ///   /// following byte.
261 ///   static std::pair<offset_type, offset_type>
262 ///   ReadKeyDataLength(const unsigned char *&Buffer);
263 ///   /// Read the key from Buffer, given the KeyLen as reported from
264 ///   /// ReadKeyDataLength.
265 ///   const internal_key_type &ReadKey(const unsigned char *Buffer,
266 ///                                    offset_type KeyLen);
267 ///   /// Read the data for Key from Buffer, given the DataLen as reported from
268 ///   /// ReadKeyDataLength.
269 ///   data_type ReadData(StringRef Key, const unsigned char *Buffer,
270 ///                      offset_type DataLen);
271 /// };
272 /// \endcode
273 template <typename Info> class OnDiskChainedHashTable {
274   const typename Info::offset_type NumBuckets;
275   const typename Info::offset_type NumEntries;
276   const unsigned char *const Buckets;
277   const unsigned char *const Base;
278   Info InfoObj;
279 
280 public:
281   typedef Info InfoType;
282   typedef typename Info::internal_key_type internal_key_type;
283   typedef typename Info::external_key_type external_key_type;
284   typedef typename Info::data_type data_type;
285   typedef typename Info::hash_value_type hash_value_type;
286   typedef typename Info::offset_type offset_type;
287 
288   OnDiskChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
289                          const unsigned char *Buckets,
290                          const unsigned char *Base,
291                          const Info &InfoObj = Info())
292       : NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets),
293         Base(Base), InfoObj(InfoObj) {
294     assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
295            "'buckets' must have a 4-byte alignment");
296   }
297 
298   /// Read the number of buckets and the number of entries from a hash table
299   /// produced by OnDiskHashTableGenerator::Emit, and advance the Buckets
300   /// pointer past them.
301   static std::pair<offset_type, offset_type>
302   readNumBucketsAndEntries(const unsigned char *&Buckets) {
303     assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
304            "buckets should be 4-byte aligned.");
305     using namespace llvm::support;
306     offset_type NumBuckets =
307         endian::readNext<offset_type, little, aligned>(Buckets);
308     offset_type NumEntries =
309         endian::readNext<offset_type, little, aligned>(Buckets);
310     return std::make_pair(NumBuckets, NumEntries);
311   }
312 
313   offset_type getNumBuckets() const { return NumBuckets; }
314   offset_type getNumEntries() const { return NumEntries; }
315   const unsigned char *getBase() const { return Base; }
316   const unsigned char *getBuckets() const { return Buckets; }
317 
318   bool isEmpty() const { return NumEntries == 0; }
319 
320   class iterator {
321     internal_key_type Key;
322     const unsigned char *const Data;
323     const offset_type Len;
324     Info *InfoObj;
325 
326   public:
327     iterator() : Key(), Data(nullptr), Len(0), InfoObj(nullptr) {}
328     iterator(const internal_key_type K, const unsigned char *D, offset_type L,
329              Info *InfoObj)
330         : Key(K), Data(D), Len(L), InfoObj(InfoObj) {}
331 
332     data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); }
333 
334     const unsigned char *getDataPtr() const { return Data; }
335     offset_type getDataLen() const { return Len; }
336 
337     bool operator==(const iterator &X) const { return X.Data == Data; }
338     bool operator!=(const iterator &X) const { return X.Data != Data; }
339   };
340 
341   /// Look up the stored data for a particular key.
342   iterator find(const external_key_type &EKey, Info *InfoPtr = nullptr) {
343     const internal_key_type &IKey = InfoObj.GetInternalKey(EKey);
344     hash_value_type KeyHash = InfoObj.ComputeHash(IKey);
345     return find_hashed(IKey, KeyHash, InfoPtr);
346   }
347 
348   /// Look up the stored data for a particular key with a known hash.
349   iterator find_hashed(const internal_key_type &IKey, hash_value_type KeyHash,
350                        Info *InfoPtr = nullptr) {
351     using namespace llvm::support;
352 
353     if (!InfoPtr)
354       InfoPtr = &InfoObj;
355 
356     // Each bucket is just an offset into the hash table file.
357     offset_type Idx = KeyHash & (NumBuckets - 1);
358     const unsigned char *Bucket = Buckets + sizeof(offset_type) * Idx;
359 
360     offset_type Offset = endian::readNext<offset_type, little, aligned>(Bucket);
361     if (Offset == 0)
362       return iterator(); // Empty bucket.
363     const unsigned char *Items = Base + Offset;
364 
365     // 'Items' starts with a 16-bit unsigned integer representing the
366     // number of items in this bucket.
367     unsigned Len = endian::readNext<uint16_t, little, unaligned>(Items);
368 
369     for (unsigned i = 0; i < Len; ++i) {
370       // Read the hash.
371       hash_value_type ItemHash =
372           endian::readNext<hash_value_type, little, unaligned>(Items);
373 
374       // Determine the length of the key and the data.
375       const std::pair<offset_type, offset_type> &L =
376           Info::ReadKeyDataLength(Items);
377       offset_type ItemLen = L.first + L.second;
378 
379       // Compare the hashes.  If they are not the same, skip the entry entirely.
380       if (ItemHash != KeyHash) {
381         Items += ItemLen;
382         continue;
383       }
384 
385       // Read the key.
386       const internal_key_type &X =
387           InfoPtr->ReadKey((const unsigned char *const)Items, L.first);
388 
389       // If the key doesn't match just skip reading the value.
390       if (!InfoPtr->EqualKey(X, IKey)) {
391         Items += ItemLen;
392         continue;
393       }
394 
395       // The key matches!
396       return iterator(X, Items + L.first, L.second, InfoPtr);
397     }
398 
399     return iterator();
400   }
401 
402   iterator end() const { return iterator(); }
403 
404   Info &getInfoObj() { return InfoObj; }
405 
406   /// Create the hash table.
407   ///
408   /// \param Buckets is the beginning of the hash table itself, which follows
409   /// the payload of entire structure. This is the value returned by
410   /// OnDiskHashTableGenerator::Emit.
411   ///
412   /// \param Base is the point from which all offsets into the structure are
413   /// based. This is offset 0 in the stream that was used when Emitting the
414   /// table.
415   static OnDiskChainedHashTable *Create(const unsigned char *Buckets,
416                                         const unsigned char *const Base,
417                                         const Info &InfoObj = Info()) {
418     assert(Buckets > Base);
419     auto NumBucketsAndEntries = readNumBucketsAndEntries(Buckets);
420     return new OnDiskChainedHashTable<Info>(NumBucketsAndEntries.first,
421                                             NumBucketsAndEntries.second,
422                                             Buckets, Base, InfoObj);
423   }
424 };
425 
426 /// Provides lookup and iteration over an on disk hash table.
427 ///
428 /// \copydetails llvm::OnDiskChainedHashTable
429 template <typename Info>
430 class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> {
431   const unsigned char *Payload;
432 
433 public:
434   typedef OnDiskChainedHashTable<Info>          base_type;
435   typedef typename base_type::internal_key_type internal_key_type;
436   typedef typename base_type::external_key_type external_key_type;
437   typedef typename base_type::data_type         data_type;
438   typedef typename base_type::hash_value_type   hash_value_type;
439   typedef typename base_type::offset_type       offset_type;
440 
441 private:
442   /// Iterates over all of the keys in the table.
443   class iterator_base {
444     const unsigned char *Ptr;
445     offset_type NumItemsInBucketLeft;
446     offset_type NumEntriesLeft;
447 
448   public:
449     typedef external_key_type value_type;
450 
451     iterator_base(const unsigned char *const Ptr, offset_type NumEntries)
452         : Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries) {}
453     iterator_base()
454         : Ptr(nullptr), NumItemsInBucketLeft(0), NumEntriesLeft(0) {}
455 
456     friend bool operator==(const iterator_base &X, const iterator_base &Y) {
457       return X.NumEntriesLeft == Y.NumEntriesLeft;
458     }
459     friend bool operator!=(const iterator_base &X, const iterator_base &Y) {
460       return X.NumEntriesLeft != Y.NumEntriesLeft;
461     }
462 
463     /// Move to the next item.
464     void advance() {
465       using namespace llvm::support;
466       if (!NumItemsInBucketLeft) {
467         // 'Items' starts with a 16-bit unsigned integer representing the
468         // number of items in this bucket.
469         NumItemsInBucketLeft =
470             endian::readNext<uint16_t, little, unaligned>(Ptr);
471       }
472       Ptr += sizeof(hash_value_type); // Skip the hash.
473       // Determine the length of the key and the data.
474       const std::pair<offset_type, offset_type> &L =
475           Info::ReadKeyDataLength(Ptr);
476       Ptr += L.first + L.second;
477       assert(NumItemsInBucketLeft);
478       --NumItemsInBucketLeft;
479       assert(NumEntriesLeft);
480       --NumEntriesLeft;
481     }
482 
483     /// Get the start of the item as written by the trait (after the hash and
484     /// immediately before the key and value length).
485     const unsigned char *getItem() const {
486       return Ptr + (NumItemsInBucketLeft ? 0 : 2) + sizeof(hash_value_type);
487     }
488   };
489 
490 public:
491   OnDiskIterableChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
492                                  const unsigned char *Buckets,
493                                  const unsigned char *Payload,
494                                  const unsigned char *Base,
495                                  const Info &InfoObj = Info())
496       : base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj),
497         Payload(Payload) {}
498 
499   /// Iterates over all of the keys in the table.
500   class key_iterator : public iterator_base {
501     Info *InfoObj;
502 
503   public:
504     typedef external_key_type value_type;
505 
506     key_iterator(const unsigned char *const Ptr, offset_type NumEntries,
507                  Info *InfoObj)
508         : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
509     key_iterator() : iterator_base(), InfoObj() {}
510 
511     key_iterator &operator++() {
512       this->advance();
513       return *this;
514     }
515     key_iterator operator++(int) { // Postincrement
516       key_iterator tmp = *this;
517       ++*this;
518       return tmp;
519     }
520 
521     internal_key_type getInternalKey() const {
522       auto *LocalPtr = this->getItem();
523 
524       // Determine the length of the key and the data.
525       auto L = Info::ReadKeyDataLength(LocalPtr);
526 
527       // Read the key.
528       return InfoObj->ReadKey(LocalPtr, L.first);
529     }
530 
531     value_type operator*() const {
532       return InfoObj->GetExternalKey(getInternalKey());
533     }
534   };
535 
536   key_iterator key_begin() {
537     return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
538   }
539   key_iterator key_end() { return key_iterator(); }
540 
541   iterator_range<key_iterator> keys() {
542     return make_range(key_begin(), key_end());
543   }
544 
545   /// Iterates over all the entries in the table, returning the data.
546   class data_iterator : public iterator_base {
547     Info *InfoObj;
548 
549   public:
550     typedef data_type value_type;
551 
552     data_iterator(const unsigned char *const Ptr, offset_type NumEntries,
553                   Info *InfoObj)
554         : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
555     data_iterator() : iterator_base(), InfoObj() {}
556 
557     data_iterator &operator++() { // Preincrement
558       this->advance();
559       return *this;
560     }
561     data_iterator operator++(int) { // Postincrement
562       data_iterator tmp = *this;
563       ++*this;
564       return tmp;
565     }
566 
567     value_type operator*() const {
568       auto *LocalPtr = this->getItem();
569 
570       // Determine the length of the key and the data.
571       auto L = Info::ReadKeyDataLength(LocalPtr);
572 
573       // Read the key.
574       const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first);
575       return InfoObj->ReadData(Key, LocalPtr + L.first, L.second);
576     }
577   };
578 
579   data_iterator data_begin() {
580     return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
581   }
582   data_iterator data_end() { return data_iterator(); }
583 
584   iterator_range<data_iterator> data() {
585     return make_range(data_begin(), data_end());
586   }
587 
588   /// Create the hash table.
589   ///
590   /// \param Buckets is the beginning of the hash table itself, which follows
591   /// the payload of entire structure. This is the value returned by
592   /// OnDiskHashTableGenerator::Emit.
593   ///
594   /// \param Payload is the beginning of the data contained in the table.  This
595   /// is Base plus any padding or header data that was stored, ie, the offset
596   /// that the stream was at when calling Emit.
597   ///
598   /// \param Base is the point from which all offsets into the structure are
599   /// based. This is offset 0 in the stream that was used when Emitting the
600   /// table.
601   static OnDiskIterableChainedHashTable *
602   Create(const unsigned char *Buckets, const unsigned char *const Payload,
603          const unsigned char *const Base, const Info &InfoObj = Info()) {
604     assert(Buckets > Base);
605     auto NumBucketsAndEntries =
606         OnDiskIterableChainedHashTable<Info>::readNumBucketsAndEntries(Buckets);
607     return new OnDiskIterableChainedHashTable<Info>(
608         NumBucketsAndEntries.first, NumBucketsAndEntries.second,
609         Buckets, Payload, Base, InfoObj);
610   }
611 };
612 
613 } // end namespace llvm
614 
615 #endif
616