1 //===- llvm/ADT/SuffixTree.h - Tree for substrings --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the Suffix Tree class and Suffix Tree Node struct.
10 //
11 //===----------------------------------------------------------------------===//
12 #ifndef LLVM_SUPPORT_SUFFIXTREE_H
13 #define LLVM_SUPPORT_SUFFIXTREE_H
14 
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/Support/Allocator.h"
18 #include <vector>
19 
20 namespace llvm {
21 
22 /// Represents an undefined index in the suffix tree.
23 const unsigned EmptyIdx = -1;
24 
25 /// A node in a suffix tree which represents a substring or suffix.
26 ///
27 /// Each node has either no children or at least two children, with the root
28 /// being a exception in the empty tree.
29 ///
30 /// Children are represented as a map between unsigned integers and nodes. If
31 /// a node N has a child M on unsigned integer k, then the mapping represented
32 /// by N is a proper prefix of the mapping represented by M. Note that this,
33 /// although similar to a trie is somewhat different: each node stores a full
34 /// substring of the full mapping rather than a single character state.
35 ///
36 /// Each internal node contains a pointer to the internal node representing
37 /// the same string, but with the first character chopped off. This is stored
38 /// in \p Link. Each leaf node stores the start index of its respective
39 /// suffix in \p SuffixIdx.
40 struct SuffixTreeNode {
41 
42   /// The children of this node.
43   ///
44   /// A child existing on an unsigned integer implies that from the mapping
45   /// represented by the current node, there is a way to reach another
46   /// mapping by tacking that character on the end of the current string.
47   llvm::DenseMap<unsigned, SuffixTreeNode *> Children;
48 
49   /// The start index of this node's substring in the main string.
50   unsigned StartIdx = EmptyIdx;
51 
52   /// The end index of this node's substring in the main string.
53   ///
54   /// Every leaf node must have its \p EndIdx incremented at the end of every
55   /// step in the construction algorithm. To avoid having to update O(N)
56   /// nodes individually at the end of every step, the end index is stored
57   /// as a pointer.
58   unsigned *EndIdx = nullptr;
59 
60   /// For leaves, the start index of the suffix represented by this node.
61   ///
62   /// For all other nodes, this is ignored.
63   unsigned SuffixIdx = EmptyIdx;
64 
65   /// For internal nodes, a pointer to the internal node representing
66   /// the same sequence with the first character chopped off.
67   ///
68   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
69   /// Ukkonen's algorithm does to achieve linear-time construction is
70   /// keep track of which node the next insert should be at. This makes each
71   /// insert O(1), and there are a total of O(N) inserts. The suffix link
72   /// helps with inserting children of internal nodes.
73   ///
74   /// Say we add a child to an internal node with associated mapping S. The
75   /// next insertion must be at the node representing S - its first character.
76   /// This is given by the way that we iteratively build the tree in Ukkonen's
77   /// algorithm. The main idea is to look at the suffixes of each prefix in the
78   /// string, starting with the longest suffix of the prefix, and ending with
79   /// the shortest. Therefore, if we keep pointers between such nodes, we can
80   /// move to the next insertion point in O(1) time. If we don't, then we'd
81   /// have to query from the root, which takes O(N) time. This would make the
82   /// construction algorithm O(N^2) rather than O(N).
83   SuffixTreeNode *Link = nullptr;
84 
85   /// The length of the string formed by concatenating the edge labels from the
86   /// root to this node.
87   unsigned ConcatLen = 0;
88 
89   /// Returns true if this node is a leaf.
90   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
91 
92   /// Returns true if this node is the root of its owning \p SuffixTree.
93   bool isRoot() const { return StartIdx == EmptyIdx; }
94 
95   /// Return the number of elements in the substring associated with this node.
96   size_t size() const {
97 
98     // Is it the root? If so, it's the empty string so return 0.
99     if (isRoot())
100       return 0;
101 
102     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
103 
104     // Size = the number of elements in the string.
105     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
106     return *EndIdx - StartIdx + 1;
107   }
108 
109   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
110       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
111 
112   SuffixTreeNode() = default;
113 };
114 
115 /// A data structure for fast substring queries.
116 ///
117 /// Suffix trees represent the suffixes of their input strings in their leaves.
118 /// A suffix tree is a type of compressed trie structure where each node
119 /// represents an entire substring rather than a single character. Each leaf
120 /// of the tree is a suffix.
121 ///
122 /// A suffix tree can be seen as a type of state machine where each state is a
123 /// substring of the full string. The tree is structured so that, for a string
124 /// of length N, there are exactly N leaves in the tree. This structure allows
125 /// us to quickly find repeated substrings of the input string.
126 ///
127 /// In this implementation, a "string" is a vector of unsigned integers.
128 /// These integers may result from hashing some data type. A suffix tree can
129 /// contain 1 or many strings, which can then be queried as one large string.
130 ///
131 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
132 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
133 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
134 /// paper is available at
135 ///
136 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
137 class SuffixTree {
138 public:
139   /// Each element is an integer representing an instruction in the module.
140   llvm::ArrayRef<unsigned> Str;
141 
142   /// A repeated substring in the tree.
143   struct RepeatedSubstring {
144     /// The length of the string.
145     unsigned Length;
146 
147     /// The start indices of each occurrence.
148     std::vector<unsigned> StartIndices;
149   };
150 
151 private:
152   /// Maintains each node in the tree.
153   llvm::SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
154 
155   /// The root of the suffix tree.
156   ///
157   /// The root represents the empty string. It is maintained by the
158   /// \p NodeAllocator like every other node in the tree.
159   SuffixTreeNode *Root = nullptr;
160 
161   /// Maintains the end indices of the internal nodes in the tree.
162   ///
163   /// Each internal node is guaranteed to never have its end index change
164   /// during the construction algorithm; however, leaves must be updated at
165   /// every step. Therefore, we need to store leaf end indices by reference
166   /// to avoid updating O(N) leaves at every step of construction. Thus,
167   /// every internal node must be allocated its own end index.
168   llvm::BumpPtrAllocator InternalEndIdxAllocator;
169 
170   /// The end index of each leaf in the tree.
171   unsigned LeafEndIdx = -1;
172 
173   /// Helper struct which keeps track of the next insertion point in
174   /// Ukkonen's algorithm.
175   struct ActiveState {
176     /// The next node to insert at.
177     SuffixTreeNode *Node = nullptr;
178 
179     /// The index of the first character in the substring currently being added.
180     unsigned Idx = EmptyIdx;
181 
182     /// The length of the substring we have to add at the current step.
183     unsigned Len = 0;
184   };
185 
186   /// The point the next insertion will take place at in the
187   /// construction algorithm.
188   ActiveState Active;
189 
190   /// Allocate a leaf node and add it to the tree.
191   ///
192   /// \param Parent The parent of this node.
193   /// \param StartIdx The start index of this node's associated string.
194   /// \param Edge The label on the edge leaving \p Parent to this node.
195   ///
196   /// \returns A pointer to the allocated leaf node.
197   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
198                              unsigned Edge);
199 
200   /// Allocate an internal node and add it to the tree.
201   ///
202   /// \param Parent The parent of this node. Only null when allocating the root.
203   /// \param StartIdx The start index of this node's associated string.
204   /// \param EndIdx The end index of this node's associated string.
205   /// \param Edge The label on the edge leaving \p Parent to this node.
206   ///
207   /// \returns A pointer to the allocated internal node.
208   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
209                                      unsigned EndIdx, unsigned Edge);
210 
211   /// Set the suffix indices of the leaves to the start indices of their
212   /// respective suffixes.
213   void setSuffixIndices();
214 
215   /// Construct the suffix tree for the prefix of the input ending at
216   /// \p EndIdx.
217   ///
218   /// Used to construct the full suffix tree iteratively. At the end of each
219   /// step, the constructed suffix tree is either a valid suffix tree, or a
220   /// suffix tree with implicit suffixes. At the end of the final step, the
221   /// suffix tree is a valid tree.
222   ///
223   /// \param EndIdx The end index of the current prefix in the main string.
224   /// \param SuffixesToAdd The number of suffixes that must be added
225   /// to complete the suffix tree at the current phase.
226   ///
227   /// \returns The number of suffixes that have not been added at the end of
228   /// this step.
229   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd);
230 
231 public:
232   /// Construct a suffix tree from a sequence of unsigned integers.
233   ///
234   /// \param Str The string to construct the suffix tree for.
235   SuffixTree(const std::vector<unsigned> &Str);
236 
237   /// Iterator for finding all repeated substrings in the suffix tree.
238   struct RepeatedSubstringIterator {
239   private:
240     /// The current node we're visiting.
241     SuffixTreeNode *N = nullptr;
242 
243     /// The repeated substring associated with this node.
244     RepeatedSubstring RS;
245 
246     /// The nodes left to visit.
247     std::vector<SuffixTreeNode *> ToVisit;
248 
249     /// The minimum length of a repeated substring to find.
250     /// Since we're outlining, we want at least two instructions in the range.
251     /// FIXME: This may not be true for targets like X86 which support many
252     /// instruction lengths.
253     const unsigned MinLength = 2;
254 
255     /// Move the iterator to the next repeated substring.
256     void advance() {
257       // Clear the current state. If we're at the end of the range, then this
258       // is the state we want to be in.
259       RS = RepeatedSubstring();
260       N = nullptr;
261 
262       // Each leaf node represents a repeat of a string.
263       std::vector<SuffixTreeNode *> LeafChildren;
264 
265       // Continue visiting nodes until we find one which repeats more than once.
266       while (!ToVisit.empty()) {
267         SuffixTreeNode *Curr = ToVisit.back();
268         ToVisit.pop_back();
269         LeafChildren.clear();
270 
271         // Keep track of the length of the string associated with the node. If
272         // it's too short, we'll quit.
273         unsigned Length = Curr->ConcatLen;
274 
275         // Iterate over each child, saving internal nodes for visiting, and
276         // leaf nodes in LeafChildren. Internal nodes represent individual
277         // strings, which may repeat.
278         for (auto &ChildPair : Curr->Children) {
279           // Save all of this node's children for processing.
280           if (!ChildPair.second->isLeaf())
281             ToVisit.push_back(ChildPair.second);
282 
283           // It's not an internal node, so it must be a leaf. If we have a
284           // long enough string, then save the leaf children.
285           else if (Length >= MinLength)
286             LeafChildren.push_back(ChildPair.second);
287         }
288 
289         // The root never represents a repeated substring. If we're looking at
290         // that, then skip it.
291         if (Curr->isRoot())
292           continue;
293 
294         // Do we have any repeated substrings?
295         if (LeafChildren.size() >= 2) {
296           // Yes. Update the state to reflect this, and then bail out.
297           N = Curr;
298           RS.Length = Length;
299           for (SuffixTreeNode *Leaf : LeafChildren)
300             RS.StartIndices.push_back(Leaf->SuffixIdx);
301           break;
302         }
303       }
304 
305       // At this point, either NewRS is an empty RepeatedSubstring, or it was
306       // set in the above loop. Similarly, N is either nullptr, or the node
307       // associated with NewRS.
308     }
309 
310   public:
311     /// Return the current repeated substring.
312     RepeatedSubstring &operator*() { return RS; }
313 
314     RepeatedSubstringIterator &operator++() {
315       advance();
316       return *this;
317     }
318 
319     RepeatedSubstringIterator operator++(int I) {
320       RepeatedSubstringIterator It(*this);
321       advance();
322       return It;
323     }
324 
325     bool operator==(const RepeatedSubstringIterator &Other) const {
326       return N == Other.N;
327     }
328     bool operator!=(const RepeatedSubstringIterator &Other) const {
329       return !(*this == Other);
330     }
331 
332     RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
333       // Do we have a non-null node?
334       if (N) {
335         // Yes. At the first step, we need to visit all of N's children.
336         // Note: This means that we visit N last.
337         ToVisit.push_back(N);
338         advance();
339       }
340     }
341   };
342 
343   typedef RepeatedSubstringIterator iterator;
344   iterator begin() { return iterator(Root); }
345   iterator end() { return iterator(nullptr); }
346 };
347 
348 } // namespace llvm
349 
350 #endif // LLVM_SUPPORT_SUFFIXTREE_H
351