1//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target independent instruction opcodes.
10//
11//===----------------------------------------------------------------------===//
12
13// NOTE: NO INCLUDE GUARD DESIRED!
14
15/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
16///
17#ifndef HANDLE_TARGET_OPCODE
18#define HANDLE_TARGET_OPCODE(OPC, NUM)
19#endif
20
21/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
22///
23#ifndef HANDLE_TARGET_OPCODE_MARKER
24#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
25#endif
26
27/// Every instruction defined here must also appear in Target.td.
28///
29HANDLE_TARGET_OPCODE(PHI)
30HANDLE_TARGET_OPCODE(INLINEASM)
31HANDLE_TARGET_OPCODE(INLINEASM_BR)
32HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33HANDLE_TARGET_OPCODE(EH_LABEL)
34HANDLE_TARGET_OPCODE(GC_LABEL)
35HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
37/// KILL - This instruction is a noop that is used only to adjust the
38/// liveness of registers. This can be useful when dealing with
39/// sub-registers.
40HANDLE_TARGET_OPCODE(KILL)
41
42/// EXTRACT_SUBREG - This instruction takes two operands: a register
43/// that has subregisters, and a subregister index. It returns the
44/// extracted subregister value. This is commonly used to implement
45/// truncation operations on target architectures which support it.
46HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
48/// INSERT_SUBREG - This instruction takes three operands: a register that
49/// has subregisters, a register providing an insert value, and a
50/// subregister index. It returns the value of the first register with the
51/// value of the second register inserted. The first register is often
52/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53/// anyext operations on target architectures which support it.
54HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
56/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
59/// SUBREG_TO_REG - Assert the value of bits in a super register.
60/// The result of this instruction is the value of the second operand inserted
61/// into the subregister specified by the third operand. All other bits are
62/// assumed to be equal to the bits in the immediate integer constant in the
63/// first operand. This instruction just communicates information; No code
64/// should be generated.
65/// This is typically used after an instruction where the write to a subregister
66/// implicitly cleared the bits in the super registers.
67HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
69/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70/// register-to-register copy into a specific register class. This is only
71/// used between instruction selection and MachineInstr creation, before
72/// virtual registers have been created for all the instructions, and it's
73/// only needed in cases where the register classes implied by the
74/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75  HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
77/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78HANDLE_TARGET_OPCODE(DBG_VALUE)
79
80/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic with a variadic
81/// list of locations
82HANDLE_TARGET_OPCODE(DBG_VALUE_LIST)
83
84/// DBG_INSTR_REF - A mapping of llvm.dbg.value referring to the instruction
85/// that defines the value, rather than a virtual register.
86HANDLE_TARGET_OPCODE(DBG_INSTR_REF)
87
88/// DBG_PHI - remainder of a PHI, identifies a program point where values
89/// merge under control flow.
90HANDLE_TARGET_OPCODE(DBG_PHI)
91
92/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
93HANDLE_TARGET_OPCODE(DBG_LABEL)
94
95/// REG_SEQUENCE - This variadic instruction is used to form a register that
96/// represents a consecutive sequence of sub-registers. It's used as a
97/// register coalescing / allocation aid and must be eliminated before code
98/// emission.
99// In SDNode form, the first operand encodes the register class created by
100// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
101// pair.  Once it has been lowered to a MachineInstr, the regclass operand
102// is no longer present.
103/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
104/// After register coalescing references of v1024 should be replace with
105/// v1027:3, v1025 with v1027:4, etc.
106  HANDLE_TARGET_OPCODE(REG_SEQUENCE)
107
108/// COPY - Target-independent register copy. This instruction can also be
109/// used to copy between subregisters of virtual registers.
110  HANDLE_TARGET_OPCODE(COPY)
111
112/// BUNDLE - This instruction represents an instruction bundle. Instructions
113/// which immediately follow a BUNDLE instruction which are marked with
114/// 'InsideBundle' flag are inside the bundle.
115HANDLE_TARGET_OPCODE(BUNDLE)
116
117/// Lifetime markers.
118HANDLE_TARGET_OPCODE(LIFETIME_START)
119HANDLE_TARGET_OPCODE(LIFETIME_END)
120
121/// Pseudo probe
122HANDLE_TARGET_OPCODE(PSEUDO_PROBE)
123
124/// Arithmetic fence.
125HANDLE_TARGET_OPCODE(ARITH_FENCE)
126
127/// A Stackmap instruction captures the location of live variables at its
128/// position in the instruction stream. It is followed by a shadow of bytes
129/// that must lie within the function and not contain another stackmap.
130HANDLE_TARGET_OPCODE(STACKMAP)
131
132/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
133HANDLE_TARGET_OPCODE(FENTRY_CALL)
134
135/// Patchable call instruction - this instruction represents a call to a
136/// constant address, followed by a series of NOPs. It is intended to
137/// support optimizations for dynamic languages (such as javascript) that
138/// rewrite calls to runtimes with more efficient code sequences.
139/// This also implies a stack map.
140HANDLE_TARGET_OPCODE(PATCHPOINT)
141
142/// This pseudo-instruction loads the stack guard value. Targets which need
143/// to prevent the stack guard value or address from being spilled to the
144/// stack should override TargetLowering::emitLoadStackGuardNode and
145/// additionally expand this pseudo after register allocation.
146HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
147
148/// These are used to support call sites that must have the stack adjusted
149/// before the call (e.g. to initialize an argument passed by value).
150/// See llvm.call.preallocated.{setup,arg} in the LangRef for more details.
151HANDLE_TARGET_OPCODE(PREALLOCATED_SETUP)
152HANDLE_TARGET_OPCODE(PREALLOCATED_ARG)
153
154/// Call instruction with associated vm state for deoptimization and list
155/// of live pointers for relocation by the garbage collector.  It is
156/// intended to support garbage collection with fully precise relocating
157/// collectors and deoptimizations in either the callee or caller.
158HANDLE_TARGET_OPCODE(STATEPOINT)
159
160/// Instruction that records the offset of a local stack allocation passed to
161/// llvm.localescape. It has two arguments: the symbol for the label and the
162/// frame index of the local stack allocation.
163HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
164
165/// Wraps a machine instruction which can fault, bundled with associated
166/// information on how to handle such a fault.
167/// For example loading instruction that may page fault, bundled with associated
168/// information on how to handle such a page fault.  It is intended to support
169/// "zero cost" null checks in managed languages by allowing LLVM to fold
170/// comparisons into existing memory operations.
171HANDLE_TARGET_OPCODE(FAULTING_OP)
172
173/// Wraps a machine instruction to add patchability constraints.  An
174/// instruction wrapped in PATCHABLE_OP has to either have a minimum
175/// size or be preceded with a nop of that size.  The first operand is
176/// an immediate denoting the minimum size of the instruction, the
177/// second operand is an immediate denoting the opcode of the original
178/// instruction.  The rest of the operands are the operands of the
179/// original instruction.
180/// PATCHABLE_OP can be used as second operand to only insert a nop of
181/// required size.
182HANDLE_TARGET_OPCODE(PATCHABLE_OP)
183
184/// This is a marker instruction which gets translated into a nop sled, useful
185/// for inserting instrumentation instructions at runtime.
186HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
187
188/// Wraps a return instruction and its operands to enable adding nop sleds
189/// either before or after the return. The nop sleds are useful for inserting
190/// instrumentation instructions at runtime.
191/// The patch here replaces the return instruction.
192HANDLE_TARGET_OPCODE(PATCHABLE_RET)
193
194/// This is a marker instruction which gets translated into a nop sled, useful
195/// for inserting instrumentation instructions at runtime.
196/// The patch here prepends the return instruction.
197/// The same thing as in x86_64 is not possible for ARM because it has multiple
198/// return instructions. Furthermore, CPU allows parametrized and even
199/// conditional return instructions. In the current ARM implementation we are
200/// making use of the fact that currently LLVM doesn't seem to generate
201/// conditional return instructions.
202/// On ARM, the same instruction can be used for popping multiple registers
203/// from the stack and returning (it just pops pc register too), and LLVM
204/// generates it sometimes. So we can't insert the sled between this stack
205/// adjustment and the return without splitting the original instruction into 2
206/// instructions. So on ARM, rather than jumping into the exit trampoline, we
207/// call it, it does the tracing, preserves the stack and returns.
208HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
209
210/// Wraps a tail call instruction and its operands to enable adding nop sleds
211/// either before or after the tail exit. We use this as a disambiguation from
212/// PATCHABLE_RET which specifically only works for return instructions.
213HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
214
215/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
216/// be patched to insert instrumentation instructions.
217HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
218
219/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
220/// can be patched to insert instrumentation instructions.
221HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
222
223HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
224
225// This is a fence with the singlethread scope. It represents a compiler memory
226// barrier, but does not correspond to any generated instruction.
227HANDLE_TARGET_OPCODE(MEMBARRIER)
228
229/// The following generic opcodes are not supposed to appear after ISel.
230/// This is something we might want to relax, but for now, this is convenient
231/// to produce diagnostics.
232
233/// Instructions which should not exist past instruction selection, but do not
234/// generate code. These instructions only act as optimization hints.
235HANDLE_TARGET_OPCODE(G_ASSERT_SEXT)
236HANDLE_TARGET_OPCODE(G_ASSERT_ZEXT)
237HANDLE_TARGET_OPCODE(G_ASSERT_ALIGN)
238HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_START,
239                            G_ASSERT_SEXT)
240HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_END,
241                            G_ASSERT_ALIGN)
242
243/// Generic ADD instruction. This is an integer add.
244HANDLE_TARGET_OPCODE(G_ADD)
245HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
246
247/// Generic SUB instruction. This is an integer sub.
248HANDLE_TARGET_OPCODE(G_SUB)
249
250// Generic multiply instruction.
251HANDLE_TARGET_OPCODE(G_MUL)
252
253// Generic signed division instruction.
254HANDLE_TARGET_OPCODE(G_SDIV)
255
256// Generic unsigned division instruction.
257HANDLE_TARGET_OPCODE(G_UDIV)
258
259// Generic signed remainder instruction.
260HANDLE_TARGET_OPCODE(G_SREM)
261
262// Generic unsigned remainder instruction.
263HANDLE_TARGET_OPCODE(G_UREM)
264
265// Generic signed divrem instruction.
266HANDLE_TARGET_OPCODE(G_SDIVREM)
267
268// Generic unsigned divrem instruction.
269HANDLE_TARGET_OPCODE(G_UDIVREM)
270
271/// Generic bitwise and instruction.
272HANDLE_TARGET_OPCODE(G_AND)
273
274/// Generic bitwise or instruction.
275HANDLE_TARGET_OPCODE(G_OR)
276
277/// Generic bitwise exclusive-or instruction.
278HANDLE_TARGET_OPCODE(G_XOR)
279
280
281HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
282
283/// Generic PHI instruction with types.
284HANDLE_TARGET_OPCODE(G_PHI)
285
286/// Generic instruction to materialize the address of an alloca or other
287/// stack-based object.
288HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
289
290/// Generic reference to global value.
291HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
292
293/// Generic instruction to materialize the address of an object in the constant
294/// pool.
295HANDLE_TARGET_OPCODE(G_CONSTANT_POOL)
296
297/// Generic instruction to extract blocks of bits from the register given
298/// (typically a sub-register COPY after instruction selection).
299HANDLE_TARGET_OPCODE(G_EXTRACT)
300
301HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
302
303/// Generic instruction to insert blocks of bits from the registers given into
304/// the source.
305HANDLE_TARGET_OPCODE(G_INSERT)
306
307/// Generic instruction to paste a variable number of components together into a
308/// larger register.
309HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
310
311/// Generic instruction to create a vector value from a number of scalar
312/// components.
313HANDLE_TARGET_OPCODE(G_BUILD_VECTOR)
314
315/// Generic instruction to create a vector value from a number of scalar
316/// components, which have types larger than the result vector elt type.
317HANDLE_TARGET_OPCODE(G_BUILD_VECTOR_TRUNC)
318
319/// Generic instruction to create a vector by concatenating multiple vectors.
320HANDLE_TARGET_OPCODE(G_CONCAT_VECTORS)
321
322/// Generic pointer to int conversion.
323HANDLE_TARGET_OPCODE(G_PTRTOINT)
324
325/// Generic int to pointer conversion.
326HANDLE_TARGET_OPCODE(G_INTTOPTR)
327
328/// Generic bitcast. The source and destination types must be different, or a
329/// COPY is the relevant instruction.
330HANDLE_TARGET_OPCODE(G_BITCAST)
331
332/// Generic freeze.
333HANDLE_TARGET_OPCODE(G_FREEZE)
334
335/// Constant folding barrier.
336HANDLE_TARGET_OPCODE(G_CONSTANT_FOLD_BARRIER)
337
338// INTRINSIC fptrunc_round intrinsic.
339HANDLE_TARGET_OPCODE(G_INTRINSIC_FPTRUNC_ROUND)
340
341/// INTRINSIC trunc intrinsic.
342HANDLE_TARGET_OPCODE(G_INTRINSIC_TRUNC)
343
344/// INTRINSIC round intrinsic.
345HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUND)
346
347/// INTRINSIC round to integer intrinsic.
348HANDLE_TARGET_OPCODE(G_INTRINSIC_LRINT)
349
350/// INTRINSIC roundeven intrinsic.
351HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUNDEVEN)
352
353/// INTRINSIC readcyclecounter
354HANDLE_TARGET_OPCODE(G_READCYCLECOUNTER)
355
356/// Generic load (including anyext load)
357HANDLE_TARGET_OPCODE(G_LOAD)
358
359/// Generic signext load
360HANDLE_TARGET_OPCODE(G_SEXTLOAD)
361
362/// Generic zeroext load
363HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
364
365/// Generic indexed load (including anyext load)
366HANDLE_TARGET_OPCODE(G_INDEXED_LOAD)
367
368/// Generic indexed signext load
369HANDLE_TARGET_OPCODE(G_INDEXED_SEXTLOAD)
370
371/// Generic indexed zeroext load
372HANDLE_TARGET_OPCODE(G_INDEXED_ZEXTLOAD)
373
374/// Generic store.
375HANDLE_TARGET_OPCODE(G_STORE)
376
377/// Generic indexed store.
378HANDLE_TARGET_OPCODE(G_INDEXED_STORE)
379
380/// Generic atomic cmpxchg with internal success check.
381HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
382
383/// Generic atomic cmpxchg.
384HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
385
386/// Generic atomicrmw.
387HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
388HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
389HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
390HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
391HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
392HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
393HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
394HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
395HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
396HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
397HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
398HANDLE_TARGET_OPCODE(G_ATOMICRMW_FADD)
399HANDLE_TARGET_OPCODE(G_ATOMICRMW_FSUB)
400HANDLE_TARGET_OPCODE(G_ATOMICRMW_FMAX)
401HANDLE_TARGET_OPCODE(G_ATOMICRMW_FMIN)
402HANDLE_TARGET_OPCODE(G_ATOMICRMW_UINC_WRAP)
403HANDLE_TARGET_OPCODE(G_ATOMICRMW_UDEC_WRAP)
404
405// Marker for start of Generic AtomicRMW opcodes
406HANDLE_TARGET_OPCODE_MARKER(GENERIC_ATOMICRMW_OP_START, G_ATOMICRMW_XCHG)
407
408// Marker for end of Generic AtomicRMW opcodes
409HANDLE_TARGET_OPCODE_MARKER(GENERIC_ATOMICRMW_OP_END, G_ATOMICRMW_UDEC_WRAP)
410
411// Generic atomic fence
412HANDLE_TARGET_OPCODE(G_FENCE)
413
414/// Generic conditional branch instruction.
415HANDLE_TARGET_OPCODE(G_BRCOND)
416
417/// Generic indirect branch instruction.
418HANDLE_TARGET_OPCODE(G_BRINDIRECT)
419
420/// Begin an invoke region marker.
421HANDLE_TARGET_OPCODE(G_INVOKE_REGION_START)
422
423/// Generic intrinsic use (without side effects).
424HANDLE_TARGET_OPCODE(G_INTRINSIC)
425
426/// Generic intrinsic use (with side effects).
427HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
428
429/// Generic extension allowing rubbish in high bits.
430HANDLE_TARGET_OPCODE(G_ANYEXT)
431
432/// Generic instruction to discard the high bits of a register. This differs
433/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
434/// each element individually, G_EXTRACT will typically discard the high
435/// elements of the vector.
436HANDLE_TARGET_OPCODE(G_TRUNC)
437
438/// Generic integer constant.
439HANDLE_TARGET_OPCODE(G_CONSTANT)
440
441/// Generic floating constant.
442HANDLE_TARGET_OPCODE(G_FCONSTANT)
443
444/// Generic va_start instruction. Stores to its one pointer operand.
445HANDLE_TARGET_OPCODE(G_VASTART)
446
447/// Generic va_start instruction. Stores to its one pointer operand.
448HANDLE_TARGET_OPCODE(G_VAARG)
449
450// Generic sign extend
451HANDLE_TARGET_OPCODE(G_SEXT)
452HANDLE_TARGET_OPCODE(G_SEXT_INREG)
453
454// Generic zero extend
455HANDLE_TARGET_OPCODE(G_ZEXT)
456
457// Generic left-shift
458HANDLE_TARGET_OPCODE(G_SHL)
459
460// Generic logical right-shift
461HANDLE_TARGET_OPCODE(G_LSHR)
462
463// Generic arithmetic right-shift
464HANDLE_TARGET_OPCODE(G_ASHR)
465
466// Generic funnel left shift
467HANDLE_TARGET_OPCODE(G_FSHL)
468
469// Generic funnel right shift
470HANDLE_TARGET_OPCODE(G_FSHR)
471
472// Generic right rotate
473HANDLE_TARGET_OPCODE(G_ROTR)
474
475// Generic left rotate
476HANDLE_TARGET_OPCODE(G_ROTL)
477
478/// Generic integer-base comparison, also applicable to vectors of integers.
479HANDLE_TARGET_OPCODE(G_ICMP)
480
481/// Generic floating-point comparison, also applicable to vectors.
482HANDLE_TARGET_OPCODE(G_FCMP)
483
484/// Generic select.
485HANDLE_TARGET_OPCODE(G_SELECT)
486
487/// Generic unsigned add instruction, consuming the normal operands and
488/// producing the result and a carry flag.
489HANDLE_TARGET_OPCODE(G_UADDO)
490
491/// Generic unsigned add instruction, consuming the normal operands plus a carry
492/// flag, and similarly producing the result and a carry flag.
493HANDLE_TARGET_OPCODE(G_UADDE)
494
495/// Generic unsigned sub instruction, consuming the normal operands and
496/// producing the result and a carry flag.
497HANDLE_TARGET_OPCODE(G_USUBO)
498
499/// Generic unsigned subtract instruction, consuming the normal operands plus a
500/// carry flag, and similarly producing the result and a carry flag.
501HANDLE_TARGET_OPCODE(G_USUBE)
502
503/// Generic signed add instruction, producing the result and a signed overflow
504/// flag.
505HANDLE_TARGET_OPCODE(G_SADDO)
506
507/// Generic signed add instruction, consuming the normal operands plus a carry
508/// flag, and similarly producing the result and a carry flag.
509HANDLE_TARGET_OPCODE(G_SADDE)
510
511/// Generic signed subtract instruction, producing the result and a signed
512/// overflow flag.
513HANDLE_TARGET_OPCODE(G_SSUBO)
514
515/// Generic signed sub instruction, consuming the normal operands plus a carry
516/// flag, and similarly producing the result and a carry flag.
517HANDLE_TARGET_OPCODE(G_SSUBE)
518
519/// Generic unsigned multiply instruction, producing the result and a signed
520/// overflow flag.
521HANDLE_TARGET_OPCODE(G_UMULO)
522
523/// Generic signed multiply instruction, producing the result and a signed
524/// overflow flag.
525HANDLE_TARGET_OPCODE(G_SMULO)
526
527// Multiply two numbers at twice the incoming bit width (unsigned) and return
528// the high half of the result.
529HANDLE_TARGET_OPCODE(G_UMULH)
530
531// Multiply two numbers at twice the incoming bit width (signed) and return
532// the high half of the result.
533HANDLE_TARGET_OPCODE(G_SMULH)
534
535/// Generic saturating unsigned addition.
536HANDLE_TARGET_OPCODE(G_UADDSAT)
537
538/// Generic saturating signed addition.
539HANDLE_TARGET_OPCODE(G_SADDSAT)
540
541/// Generic saturating unsigned subtraction.
542HANDLE_TARGET_OPCODE(G_USUBSAT)
543
544/// Generic saturating signed subtraction.
545HANDLE_TARGET_OPCODE(G_SSUBSAT)
546
547/// Generic saturating unsigned left shift.
548HANDLE_TARGET_OPCODE(G_USHLSAT)
549
550/// Generic saturating signed left shift.
551HANDLE_TARGET_OPCODE(G_SSHLSAT)
552
553// Perform signed fixed point multiplication
554HANDLE_TARGET_OPCODE(G_SMULFIX)
555
556// Perform unsigned fixed point multiplication
557HANDLE_TARGET_OPCODE(G_UMULFIX)
558
559// Perform signed, saturating fixed point multiplication
560HANDLE_TARGET_OPCODE(G_SMULFIXSAT)
561
562// Perform unsigned, saturating fixed point multiplication
563HANDLE_TARGET_OPCODE(G_UMULFIXSAT)
564
565// Perform signed fixed point division
566HANDLE_TARGET_OPCODE(G_SDIVFIX)
567
568// Perform unsigned fixed point division
569HANDLE_TARGET_OPCODE(G_UDIVFIX)
570
571// Perform signed, saturating fixed point division
572HANDLE_TARGET_OPCODE(G_SDIVFIXSAT)
573
574// Perform unsigned, saturating fixed point division
575HANDLE_TARGET_OPCODE(G_UDIVFIXSAT)
576
577/// Generic FP addition.
578HANDLE_TARGET_OPCODE(G_FADD)
579
580/// Generic FP subtraction.
581HANDLE_TARGET_OPCODE(G_FSUB)
582
583/// Generic FP multiplication.
584HANDLE_TARGET_OPCODE(G_FMUL)
585
586/// Generic FMA multiplication. Behaves like llvm fma intrinsic
587HANDLE_TARGET_OPCODE(G_FMA)
588
589/// Generic FP multiply and add. Behaves as separate fmul and fadd.
590HANDLE_TARGET_OPCODE(G_FMAD)
591
592/// Generic FP division.
593HANDLE_TARGET_OPCODE(G_FDIV)
594
595/// Generic FP remainder.
596HANDLE_TARGET_OPCODE(G_FREM)
597
598/// Generic FP exponentiation.
599HANDLE_TARGET_OPCODE(G_FPOW)
600
601/// Generic FP exponentiation, with an integer exponent.
602HANDLE_TARGET_OPCODE(G_FPOWI)
603
604/// Generic base-e exponential of a value.
605HANDLE_TARGET_OPCODE(G_FEXP)
606
607/// Generic base-2 exponential of a value.
608HANDLE_TARGET_OPCODE(G_FEXP2)
609
610/// Floating point base-e logarithm of a value.
611HANDLE_TARGET_OPCODE(G_FLOG)
612
613/// Floating point base-2 logarithm of a value.
614HANDLE_TARGET_OPCODE(G_FLOG2)
615
616/// Floating point base-10 logarithm of a value.
617HANDLE_TARGET_OPCODE(G_FLOG10)
618
619/// Floating point x * 2^n
620HANDLE_TARGET_OPCODE(G_FLDEXP)
621
622/// Floating point extract fraction and exponent.
623HANDLE_TARGET_OPCODE(G_FFREXP)
624
625/// Generic FP negation.
626HANDLE_TARGET_OPCODE(G_FNEG)
627
628/// Generic FP extension.
629HANDLE_TARGET_OPCODE(G_FPEXT)
630
631/// Generic float to signed-int conversion
632HANDLE_TARGET_OPCODE(G_FPTRUNC)
633
634/// Generic float to signed-int conversion
635HANDLE_TARGET_OPCODE(G_FPTOSI)
636
637/// Generic float to unsigned-int conversion
638HANDLE_TARGET_OPCODE(G_FPTOUI)
639
640/// Generic signed-int to float conversion
641HANDLE_TARGET_OPCODE(G_SITOFP)
642
643/// Generic unsigned-int to float conversion
644HANDLE_TARGET_OPCODE(G_UITOFP)
645
646/// Generic FP absolute value.
647HANDLE_TARGET_OPCODE(G_FABS)
648
649/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This does
650/// not require that X and Y have the same type, just that they are both
651/// floating point. X and the result must have the same type.  FCOPYSIGN(f32,
652/// f64) is allowed.
653HANDLE_TARGET_OPCODE(G_FCOPYSIGN)
654
655/// Generic test for floating-point class.
656HANDLE_TARGET_OPCODE(G_IS_FPCLASS)
657
658/// Generic FP canonicalize value.
659HANDLE_TARGET_OPCODE(G_FCANONICALIZE)
660
661/// FP min/max matching libm's fmin/fmax
662HANDLE_TARGET_OPCODE(G_FMINNUM)
663HANDLE_TARGET_OPCODE(G_FMAXNUM)
664
665/// FP min/max matching IEEE-754 2008's minnum/maxnum semantics.
666HANDLE_TARGET_OPCODE(G_FMINNUM_IEEE)
667HANDLE_TARGET_OPCODE(G_FMAXNUM_IEEE)
668
669/// FP min/max matching IEEE-754 2018 draft semantics.
670HANDLE_TARGET_OPCODE(G_FMINIMUM)
671HANDLE_TARGET_OPCODE(G_FMAXIMUM)
672
673/// Generic pointer offset
674HANDLE_TARGET_OPCODE(G_PTR_ADD)
675
676/// Clear the specified bits in a pointer.
677HANDLE_TARGET_OPCODE(G_PTRMASK)
678
679/// Generic signed integer minimum.
680HANDLE_TARGET_OPCODE(G_SMIN)
681
682/// Generic signed integer maximum.
683HANDLE_TARGET_OPCODE(G_SMAX)
684
685/// Generic unsigned integer maximum.
686HANDLE_TARGET_OPCODE(G_UMIN)
687
688/// Generic unsigned integer maximum.
689HANDLE_TARGET_OPCODE(G_UMAX)
690
691/// Generic integer absolute value.
692HANDLE_TARGET_OPCODE(G_ABS)
693
694HANDLE_TARGET_OPCODE(G_LROUND)
695HANDLE_TARGET_OPCODE(G_LLROUND)
696
697/// Generic BRANCH instruction. This is an unconditional branch.
698HANDLE_TARGET_OPCODE(G_BR)
699
700/// Generic branch to jump table entry.
701HANDLE_TARGET_OPCODE(G_BRJT)
702
703/// Generic insertelement.
704HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
705
706/// Generic extractelement.
707HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
708
709/// Generic shufflevector.
710HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
711
712/// Generic count trailing zeroes.
713HANDLE_TARGET_OPCODE(G_CTTZ)
714
715/// Same as above, undefined for zero inputs.
716HANDLE_TARGET_OPCODE(G_CTTZ_ZERO_UNDEF)
717
718/// Generic count leading zeroes.
719HANDLE_TARGET_OPCODE(G_CTLZ)
720
721/// Same as above, undefined for zero inputs.
722HANDLE_TARGET_OPCODE(G_CTLZ_ZERO_UNDEF)
723
724/// Generic count bits.
725HANDLE_TARGET_OPCODE(G_CTPOP)
726
727/// Generic byte swap.
728HANDLE_TARGET_OPCODE(G_BSWAP)
729
730/// Generic bit reverse.
731HANDLE_TARGET_OPCODE(G_BITREVERSE)
732
733/// Floating point ceil.
734HANDLE_TARGET_OPCODE(G_FCEIL)
735
736/// Floating point cosine.
737HANDLE_TARGET_OPCODE(G_FCOS)
738
739/// Floating point sine.
740HANDLE_TARGET_OPCODE(G_FSIN)
741
742/// Floating point square root.
743HANDLE_TARGET_OPCODE(G_FSQRT)
744
745/// Floating point floor.
746HANDLE_TARGET_OPCODE(G_FFLOOR)
747
748/// Floating point round to next integer.
749HANDLE_TARGET_OPCODE(G_FRINT)
750
751/// Floating point round to nearest integer.
752HANDLE_TARGET_OPCODE(G_FNEARBYINT)
753
754/// Generic AddressSpaceCast.
755HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
756
757/// Generic block address
758HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
759
760/// Generic jump table address
761HANDLE_TARGET_OPCODE(G_JUMP_TABLE)
762
763/// Generic dynamic stack allocation.
764HANDLE_TARGET_OPCODE(G_DYN_STACKALLOC)
765
766/// Strict floating point instructions.
767HANDLE_TARGET_OPCODE(G_STRICT_FADD)
768HANDLE_TARGET_OPCODE(G_STRICT_FSUB)
769HANDLE_TARGET_OPCODE(G_STRICT_FMUL)
770HANDLE_TARGET_OPCODE(G_STRICT_FDIV)
771HANDLE_TARGET_OPCODE(G_STRICT_FREM)
772HANDLE_TARGET_OPCODE(G_STRICT_FMA)
773HANDLE_TARGET_OPCODE(G_STRICT_FSQRT)
774HANDLE_TARGET_OPCODE(G_STRICT_FLDEXP)
775
776/// read_register intrinsic
777HANDLE_TARGET_OPCODE(G_READ_REGISTER)
778
779/// write_register intrinsic
780HANDLE_TARGET_OPCODE(G_WRITE_REGISTER)
781
782/// llvm.memcpy intrinsic
783HANDLE_TARGET_OPCODE(G_MEMCPY)
784
785/// llvm.memcpy.inline intrinsic
786HANDLE_TARGET_OPCODE(G_MEMCPY_INLINE)
787
788/// llvm.memmove intrinsic
789HANDLE_TARGET_OPCODE(G_MEMMOVE)
790
791/// llvm.memset intrinsic
792HANDLE_TARGET_OPCODE(G_MEMSET)
793HANDLE_TARGET_OPCODE(G_BZERO)
794
795/// Vector reductions
796HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FADD)
797HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FMUL)
798HANDLE_TARGET_OPCODE(G_VECREDUCE_FADD)
799HANDLE_TARGET_OPCODE(G_VECREDUCE_FMUL)
800HANDLE_TARGET_OPCODE(G_VECREDUCE_FMAX)
801HANDLE_TARGET_OPCODE(G_VECREDUCE_FMIN)
802HANDLE_TARGET_OPCODE(G_VECREDUCE_ADD)
803HANDLE_TARGET_OPCODE(G_VECREDUCE_MUL)
804HANDLE_TARGET_OPCODE(G_VECREDUCE_AND)
805HANDLE_TARGET_OPCODE(G_VECREDUCE_OR)
806HANDLE_TARGET_OPCODE(G_VECREDUCE_XOR)
807HANDLE_TARGET_OPCODE(G_VECREDUCE_SMAX)
808HANDLE_TARGET_OPCODE(G_VECREDUCE_SMIN)
809HANDLE_TARGET_OPCODE(G_VECREDUCE_UMAX)
810HANDLE_TARGET_OPCODE(G_VECREDUCE_UMIN)
811
812HANDLE_TARGET_OPCODE(G_SBFX)
813HANDLE_TARGET_OPCODE(G_UBFX)
814
815/// Marker for the end of the generic opcode.
816/// This is used to check if an opcode is in the range of the
817/// generic opcodes.
818HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_UBFX)
819
820/// BUILTIN_OP_END - This must be the last enum value in this list.
821/// The target-specific post-isel opcode values start here.
822HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)
823