1//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target independent instruction opcodes.
10//
11//===----------------------------------------------------------------------===//
12
13// NOTE: NO INCLUDE GUARD DESIRED!
14
15/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
16///
17#ifndef HANDLE_TARGET_OPCODE
18#define HANDLE_TARGET_OPCODE(OPC, NUM)
19#endif
20
21/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
22///
23#ifndef HANDLE_TARGET_OPCODE_MARKER
24#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
25#endif
26
27/// Every instruction defined here must also appear in Target.td.
28///
29HANDLE_TARGET_OPCODE(PHI)
30HANDLE_TARGET_OPCODE(INLINEASM)
31HANDLE_TARGET_OPCODE(INLINEASM_BR)
32HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33HANDLE_TARGET_OPCODE(EH_LABEL)
34HANDLE_TARGET_OPCODE(GC_LABEL)
35HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
37/// KILL - This instruction is a noop that is used only to adjust the
38/// liveness of registers. This can be useful when dealing with
39/// sub-registers.
40HANDLE_TARGET_OPCODE(KILL)
41
42/// EXTRACT_SUBREG - This instruction takes two operands: a register
43/// that has subregisters, and a subregister index. It returns the
44/// extracted subregister value. This is commonly used to implement
45/// truncation operations on target architectures which support it.
46HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
48/// INSERT_SUBREG - This instruction takes three operands: a register that
49/// has subregisters, a register providing an insert value, and a
50/// subregister index. It returns the value of the first register with the
51/// value of the second register inserted. The first register is often
52/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53/// anyext operations on target architectures which support it.
54HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
56/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
59/// SUBREG_TO_REG - Assert the value of bits in a super register.
60/// The result of this instruction is the value of the second operand inserted
61/// into the subregister specified by the third operand. All other bits are
62/// assumed to be equal to the bits in the immediate integer constant in the
63/// first operand. This instruction just communicates information; No code
64/// should be generated.
65/// This is typically used after an instruction where the write to a subregister
66/// implicitly cleared the bits in the super registers.
67HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
69/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70/// register-to-register copy into a specific register class. This is only
71/// used between instruction selection and MachineInstr creation, before
72/// virtual registers have been created for all the instructions, and it's
73/// only needed in cases where the register classes implied by the
74/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75  HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
77/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78HANDLE_TARGET_OPCODE(DBG_VALUE)
79
80/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic with a variadic
81/// list of locations
82HANDLE_TARGET_OPCODE(DBG_VALUE_LIST)
83
84/// DBG_INSTR_REF - A mapping of llvm.dbg.value referring to the instruction
85/// that defines the value, rather than a virtual register.
86HANDLE_TARGET_OPCODE(DBG_INSTR_REF)
87
88/// DBG_PHI - remainder of a PHI, identifies a program point where values
89/// merge under control flow.
90HANDLE_TARGET_OPCODE(DBG_PHI)
91
92/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
93HANDLE_TARGET_OPCODE(DBG_LABEL)
94
95/// REG_SEQUENCE - This variadic instruction is used to form a register that
96/// represents a consecutive sequence of sub-registers. It's used as a
97/// register coalescing / allocation aid and must be eliminated before code
98/// emission.
99// In SDNode form, the first operand encodes the register class created by
100// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
101// pair.  Once it has been lowered to a MachineInstr, the regclass operand
102// is no longer present.
103/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
104/// After register coalescing references of v1024 should be replace with
105/// v1027:3, v1025 with v1027:4, etc.
106  HANDLE_TARGET_OPCODE(REG_SEQUENCE)
107
108/// COPY - Target-independent register copy. This instruction can also be
109/// used to copy between subregisters of virtual registers.
110  HANDLE_TARGET_OPCODE(COPY)
111
112/// BUNDLE - This instruction represents an instruction bundle. Instructions
113/// which immediately follow a BUNDLE instruction which are marked with
114/// 'InsideBundle' flag are inside the bundle.
115HANDLE_TARGET_OPCODE(BUNDLE)
116
117/// Lifetime markers.
118HANDLE_TARGET_OPCODE(LIFETIME_START)
119HANDLE_TARGET_OPCODE(LIFETIME_END)
120
121/// Pseudo probe
122HANDLE_TARGET_OPCODE(PSEUDO_PROBE)
123
124/// Arithmetic fence.
125HANDLE_TARGET_OPCODE(ARITH_FENCE)
126
127/// A Stackmap instruction captures the location of live variables at its
128/// position in the instruction stream. It is followed by a shadow of bytes
129/// that must lie within the function and not contain another stackmap.
130HANDLE_TARGET_OPCODE(STACKMAP)
131
132/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
133HANDLE_TARGET_OPCODE(FENTRY_CALL)
134
135/// Patchable call instruction - this instruction represents a call to a
136/// constant address, followed by a series of NOPs. It is intended to
137/// support optimizations for dynamic languages (such as javascript) that
138/// rewrite calls to runtimes with more efficient code sequences.
139/// This also implies a stack map.
140HANDLE_TARGET_OPCODE(PATCHPOINT)
141
142/// This pseudo-instruction loads the stack guard value. Targets which need
143/// to prevent the stack guard value or address from being spilled to the
144/// stack should override TargetLowering::emitLoadStackGuardNode and
145/// additionally expand this pseudo after register allocation.
146HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
147
148/// These are used to support call sites that must have the stack adjusted
149/// before the call (e.g. to initialize an argument passed by value).
150/// See llvm.call.preallocated.{setup,arg} in the LangRef for more details.
151HANDLE_TARGET_OPCODE(PREALLOCATED_SETUP)
152HANDLE_TARGET_OPCODE(PREALLOCATED_ARG)
153
154/// Call instruction with associated vm state for deoptimization and list
155/// of live pointers for relocation by the garbage collector.  It is
156/// intended to support garbage collection with fully precise relocating
157/// collectors and deoptimizations in either the callee or caller.
158HANDLE_TARGET_OPCODE(STATEPOINT)
159
160/// Instruction that records the offset of a local stack allocation passed to
161/// llvm.localescape. It has two arguments: the symbol for the label and the
162/// frame index of the local stack allocation.
163HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
164
165/// Wraps a machine instruction which can fault, bundled with associated
166/// information on how to handle such a fault.
167/// For example loading instruction that may page fault, bundled with associated
168/// information on how to handle such a page fault.  It is intended to support
169/// "zero cost" null checks in managed languages by allowing LLVM to fold
170/// comparisons into existing memory operations.
171HANDLE_TARGET_OPCODE(FAULTING_OP)
172
173/// Wraps a machine instruction to add patchability constraints.  An
174/// instruction wrapped in PATCHABLE_OP has to either have a minimum
175/// size or be preceded with a nop of that size.  The first operand is
176/// an immediate denoting the minimum size of the instruction, the
177/// second operand is an immediate denoting the opcode of the original
178/// instruction.  The rest of the operands are the operands of the
179/// original instruction.
180HANDLE_TARGET_OPCODE(PATCHABLE_OP)
181
182/// This is a marker instruction which gets translated into a nop sled, useful
183/// for inserting instrumentation instructions at runtime.
184HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
185
186/// Wraps a return instruction and its operands to enable adding nop sleds
187/// either before or after the return. The nop sleds are useful for inserting
188/// instrumentation instructions at runtime.
189/// The patch here replaces the return instruction.
190HANDLE_TARGET_OPCODE(PATCHABLE_RET)
191
192/// This is a marker instruction which gets translated into a nop sled, useful
193/// for inserting instrumentation instructions at runtime.
194/// The patch here prepends the return instruction.
195/// The same thing as in x86_64 is not possible for ARM because it has multiple
196/// return instructions. Furthermore, CPU allows parametrized and even
197/// conditional return instructions. In the current ARM implementation we are
198/// making use of the fact that currently LLVM doesn't seem to generate
199/// conditional return instructions.
200/// On ARM, the same instruction can be used for popping multiple registers
201/// from the stack and returning (it just pops pc register too), and LLVM
202/// generates it sometimes. So we can't insert the sled between this stack
203/// adjustment and the return without splitting the original instruction into 2
204/// instructions. So on ARM, rather than jumping into the exit trampoline, we
205/// call it, it does the tracing, preserves the stack and returns.
206HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
207
208/// Wraps a tail call instruction and its operands to enable adding nop sleds
209/// either before or after the tail exit. We use this as a disambiguation from
210/// PATCHABLE_RET which specifically only works for return instructions.
211HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
212
213/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
214/// be patched to insert instrumentation instructions.
215HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
216
217/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
218/// can be patched to insert instrumentation instructions.
219HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
220
221HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
222
223/// The following generic opcodes are not supposed to appear after ISel.
224/// This is something we might want to relax, but for now, this is convenient
225/// to produce diagnostics.
226
227/// Instructions which should not exist past instruction selection, but do not
228/// generate code. These instructions only act as optimization hints.
229HANDLE_TARGET_OPCODE(G_ASSERT_SEXT)
230HANDLE_TARGET_OPCODE(G_ASSERT_ZEXT)
231HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_START,
232                            G_ASSERT_SEXT)
233HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_END,
234                            G_ASSERT_ZEXT)
235
236/// Generic ADD instruction. This is an integer add.
237HANDLE_TARGET_OPCODE(G_ADD)
238HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
239
240/// Generic SUB instruction. This is an integer sub.
241HANDLE_TARGET_OPCODE(G_SUB)
242
243// Generic multiply instruction.
244HANDLE_TARGET_OPCODE(G_MUL)
245
246// Generic signed division instruction.
247HANDLE_TARGET_OPCODE(G_SDIV)
248
249// Generic unsigned division instruction.
250HANDLE_TARGET_OPCODE(G_UDIV)
251
252// Generic signed remainder instruction.
253HANDLE_TARGET_OPCODE(G_SREM)
254
255// Generic unsigned remainder instruction.
256HANDLE_TARGET_OPCODE(G_UREM)
257
258// Generic signed divrem instruction.
259HANDLE_TARGET_OPCODE(G_SDIVREM)
260
261// Generic unsigned divrem instruction.
262HANDLE_TARGET_OPCODE(G_UDIVREM)
263
264/// Generic bitwise and instruction.
265HANDLE_TARGET_OPCODE(G_AND)
266
267/// Generic bitwise or instruction.
268HANDLE_TARGET_OPCODE(G_OR)
269
270/// Generic bitwise exclusive-or instruction.
271HANDLE_TARGET_OPCODE(G_XOR)
272
273
274HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
275
276/// Generic PHI instruction with types.
277HANDLE_TARGET_OPCODE(G_PHI)
278
279/// Generic instruction to materialize the address of an alloca or other
280/// stack-based object.
281HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
282
283/// Generic reference to global value.
284HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
285
286/// Generic instruction to extract blocks of bits from the register given
287/// (typically a sub-register COPY after instruction selection).
288HANDLE_TARGET_OPCODE(G_EXTRACT)
289
290HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
291
292/// Generic instruction to insert blocks of bits from the registers given into
293/// the source.
294HANDLE_TARGET_OPCODE(G_INSERT)
295
296/// Generic instruction to paste a variable number of components together into a
297/// larger register.
298HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
299
300/// Generic instruction to create a vector value from a number of scalar
301/// components.
302HANDLE_TARGET_OPCODE(G_BUILD_VECTOR)
303
304/// Generic instruction to create a vector value from a number of scalar
305/// components, which have types larger than the result vector elt type.
306HANDLE_TARGET_OPCODE(G_BUILD_VECTOR_TRUNC)
307
308/// Generic instruction to create a vector by concatenating multiple vectors.
309HANDLE_TARGET_OPCODE(G_CONCAT_VECTORS)
310
311/// Generic pointer to int conversion.
312HANDLE_TARGET_OPCODE(G_PTRTOINT)
313
314/// Generic int to pointer conversion.
315HANDLE_TARGET_OPCODE(G_INTTOPTR)
316
317/// Generic bitcast. The source and destination types must be different, or a
318/// COPY is the relevant instruction.
319HANDLE_TARGET_OPCODE(G_BITCAST)
320
321/// Generic freeze.
322HANDLE_TARGET_OPCODE(G_FREEZE)
323
324/// INTRINSIC trunc intrinsic.
325HANDLE_TARGET_OPCODE(G_INTRINSIC_TRUNC)
326
327/// INTRINSIC round intrinsic.
328HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUND)
329
330/// INTRINSIC round to integer intrinsic.
331HANDLE_TARGET_OPCODE(G_INTRINSIC_LRINT)
332
333/// INTRINSIC roundeven intrinsic.
334HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUNDEVEN)
335
336/// INTRINSIC readcyclecounter
337HANDLE_TARGET_OPCODE(G_READCYCLECOUNTER)
338
339/// Generic load (including anyext load)
340HANDLE_TARGET_OPCODE(G_LOAD)
341
342/// Generic signext load
343HANDLE_TARGET_OPCODE(G_SEXTLOAD)
344
345/// Generic zeroext load
346HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
347
348/// Generic indexed load (including anyext load)
349HANDLE_TARGET_OPCODE(G_INDEXED_LOAD)
350
351/// Generic indexed signext load
352HANDLE_TARGET_OPCODE(G_INDEXED_SEXTLOAD)
353
354/// Generic indexed zeroext load
355HANDLE_TARGET_OPCODE(G_INDEXED_ZEXTLOAD)
356
357/// Generic store.
358HANDLE_TARGET_OPCODE(G_STORE)
359
360/// Generic indexed store.
361HANDLE_TARGET_OPCODE(G_INDEXED_STORE)
362
363/// Generic atomic cmpxchg with internal success check.
364HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
365
366/// Generic atomic cmpxchg.
367HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
368
369/// Generic atomicrmw.
370HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
371HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
372HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
373HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
374HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
375HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
376HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
377HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
378HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
379HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
380HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
381HANDLE_TARGET_OPCODE(G_ATOMICRMW_FADD)
382HANDLE_TARGET_OPCODE(G_ATOMICRMW_FSUB)
383
384// Generic atomic fence
385HANDLE_TARGET_OPCODE(G_FENCE)
386
387/// Generic conditional branch instruction.
388HANDLE_TARGET_OPCODE(G_BRCOND)
389
390/// Generic indirect branch instruction.
391HANDLE_TARGET_OPCODE(G_BRINDIRECT)
392
393/// Generic intrinsic use (without side effects).
394HANDLE_TARGET_OPCODE(G_INTRINSIC)
395
396/// Generic intrinsic use (with side effects).
397HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
398
399/// Generic extension allowing rubbish in high bits.
400HANDLE_TARGET_OPCODE(G_ANYEXT)
401
402/// Generic instruction to discard the high bits of a register. This differs
403/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
404/// each element individually, G_EXTRACT will typically discard the high
405/// elements of the vector.
406HANDLE_TARGET_OPCODE(G_TRUNC)
407
408/// Generic integer constant.
409HANDLE_TARGET_OPCODE(G_CONSTANT)
410
411/// Generic floating constant.
412HANDLE_TARGET_OPCODE(G_FCONSTANT)
413
414/// Generic va_start instruction. Stores to its one pointer operand.
415HANDLE_TARGET_OPCODE(G_VASTART)
416
417/// Generic va_start instruction. Stores to its one pointer operand.
418HANDLE_TARGET_OPCODE(G_VAARG)
419
420// Generic sign extend
421HANDLE_TARGET_OPCODE(G_SEXT)
422HANDLE_TARGET_OPCODE(G_SEXT_INREG)
423
424// Generic zero extend
425HANDLE_TARGET_OPCODE(G_ZEXT)
426
427// Generic left-shift
428HANDLE_TARGET_OPCODE(G_SHL)
429
430// Generic logical right-shift
431HANDLE_TARGET_OPCODE(G_LSHR)
432
433// Generic arithmetic right-shift
434HANDLE_TARGET_OPCODE(G_ASHR)
435
436// Generic funnel left shift
437HANDLE_TARGET_OPCODE(G_FSHL)
438
439// Generic funnel right shift
440HANDLE_TARGET_OPCODE(G_FSHR)
441
442// Generic right rotate
443HANDLE_TARGET_OPCODE(G_ROTR)
444
445// Generic left rotate
446HANDLE_TARGET_OPCODE(G_ROTL)
447
448/// Generic integer-base comparison, also applicable to vectors of integers.
449HANDLE_TARGET_OPCODE(G_ICMP)
450
451/// Generic floating-point comparison, also applicable to vectors.
452HANDLE_TARGET_OPCODE(G_FCMP)
453
454/// Generic select.
455HANDLE_TARGET_OPCODE(G_SELECT)
456
457/// Generic unsigned add instruction, consuming the normal operands and
458/// producing the result and a carry flag.
459HANDLE_TARGET_OPCODE(G_UADDO)
460
461/// Generic unsigned add instruction, consuming the normal operands plus a carry
462/// flag, and similarly producing the result and a carry flag.
463HANDLE_TARGET_OPCODE(G_UADDE)
464
465/// Generic unsigned sub instruction, consuming the normal operands and
466/// producing the result and a carry flag.
467HANDLE_TARGET_OPCODE(G_USUBO)
468
469/// Generic unsigned subtract instruction, consuming the normal operands plus a
470/// carry flag, and similarly producing the result and a carry flag.
471HANDLE_TARGET_OPCODE(G_USUBE)
472
473/// Generic signed add instruction, producing the result and a signed overflow
474/// flag.
475HANDLE_TARGET_OPCODE(G_SADDO)
476
477/// Generic signed add instruction, consuming the normal operands plus a carry
478/// flag, and similarly producing the result and a carry flag.
479HANDLE_TARGET_OPCODE(G_SADDE)
480
481/// Generic signed subtract instruction, producing the result and a signed
482/// overflow flag.
483HANDLE_TARGET_OPCODE(G_SSUBO)
484
485/// Generic signed sub instruction, consuming the normal operands plus a carry
486/// flag, and similarly producing the result and a carry flag.
487HANDLE_TARGET_OPCODE(G_SSUBE)
488
489/// Generic unsigned multiply instruction, producing the result and a signed
490/// overflow flag.
491HANDLE_TARGET_OPCODE(G_UMULO)
492
493/// Generic signed multiply instruction, producing the result and a signed
494/// overflow flag.
495HANDLE_TARGET_OPCODE(G_SMULO)
496
497// Multiply two numbers at twice the incoming bit width (unsigned) and return
498// the high half of the result.
499HANDLE_TARGET_OPCODE(G_UMULH)
500
501// Multiply two numbers at twice the incoming bit width (signed) and return
502// the high half of the result.
503HANDLE_TARGET_OPCODE(G_SMULH)
504
505/// Generic saturating unsigned addition.
506HANDLE_TARGET_OPCODE(G_UADDSAT)
507
508/// Generic saturating signed addition.
509HANDLE_TARGET_OPCODE(G_SADDSAT)
510
511/// Generic saturating unsigned subtraction.
512HANDLE_TARGET_OPCODE(G_USUBSAT)
513
514/// Generic saturating signed subtraction.
515HANDLE_TARGET_OPCODE(G_SSUBSAT)
516
517/// Generic saturating unsigned left shift.
518HANDLE_TARGET_OPCODE(G_USHLSAT)
519
520/// Generic saturating signed left shift.
521HANDLE_TARGET_OPCODE(G_SSHLSAT)
522
523// Perform signed fixed point multiplication
524HANDLE_TARGET_OPCODE(G_SMULFIX)
525
526// Perform unsigned fixed point multiplication
527HANDLE_TARGET_OPCODE(G_UMULFIX)
528
529// Perform signed, saturating fixed point multiplication
530HANDLE_TARGET_OPCODE(G_SMULFIXSAT)
531
532// Perform unsigned, saturating fixed point multiplication
533HANDLE_TARGET_OPCODE(G_UMULFIXSAT)
534
535// Perform signed fixed point division
536HANDLE_TARGET_OPCODE(G_SDIVFIX)
537
538// Perform unsigned fixed point division
539HANDLE_TARGET_OPCODE(G_UDIVFIX)
540
541// Perform signed, saturating fixed point division
542HANDLE_TARGET_OPCODE(G_SDIVFIXSAT)
543
544// Perform unsigned, saturating fixed point division
545HANDLE_TARGET_OPCODE(G_UDIVFIXSAT)
546
547/// Generic FP addition.
548HANDLE_TARGET_OPCODE(G_FADD)
549
550/// Generic FP subtraction.
551HANDLE_TARGET_OPCODE(G_FSUB)
552
553/// Generic FP multiplication.
554HANDLE_TARGET_OPCODE(G_FMUL)
555
556/// Generic FMA multiplication. Behaves like llvm fma intrinsic
557HANDLE_TARGET_OPCODE(G_FMA)
558
559/// Generic FP multiply and add. Behaves as separate fmul and fadd.
560HANDLE_TARGET_OPCODE(G_FMAD)
561
562/// Generic FP division.
563HANDLE_TARGET_OPCODE(G_FDIV)
564
565/// Generic FP remainder.
566HANDLE_TARGET_OPCODE(G_FREM)
567
568/// Generic FP exponentiation.
569HANDLE_TARGET_OPCODE(G_FPOW)
570
571/// Generic FP exponentiation, with an integer exponent.
572HANDLE_TARGET_OPCODE(G_FPOWI)
573
574/// Generic base-e exponential of a value.
575HANDLE_TARGET_OPCODE(G_FEXP)
576
577/// Generic base-2 exponential of a value.
578HANDLE_TARGET_OPCODE(G_FEXP2)
579
580/// Floating point base-e logarithm of a value.
581HANDLE_TARGET_OPCODE(G_FLOG)
582
583/// Floating point base-2 logarithm of a value.
584HANDLE_TARGET_OPCODE(G_FLOG2)
585
586/// Floating point base-10 logarithm of a value.
587HANDLE_TARGET_OPCODE(G_FLOG10)
588
589/// Generic FP negation.
590HANDLE_TARGET_OPCODE(G_FNEG)
591
592/// Generic FP extension.
593HANDLE_TARGET_OPCODE(G_FPEXT)
594
595/// Generic float to signed-int conversion
596HANDLE_TARGET_OPCODE(G_FPTRUNC)
597
598/// Generic float to signed-int conversion
599HANDLE_TARGET_OPCODE(G_FPTOSI)
600
601/// Generic float to unsigned-int conversion
602HANDLE_TARGET_OPCODE(G_FPTOUI)
603
604/// Generic signed-int to float conversion
605HANDLE_TARGET_OPCODE(G_SITOFP)
606
607/// Generic unsigned-int to float conversion
608HANDLE_TARGET_OPCODE(G_UITOFP)
609
610/// Generic FP absolute value.
611HANDLE_TARGET_OPCODE(G_FABS)
612
613/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This does
614/// not require that X and Y have the same type, just that they are both
615/// floating point. X and the result must have the same type.  FCOPYSIGN(f32,
616/// f64) is allowed.
617HANDLE_TARGET_OPCODE(G_FCOPYSIGN)
618
619/// Generic FP canonicalize value.
620HANDLE_TARGET_OPCODE(G_FCANONICALIZE)
621
622/// FP min/max matching libm's fmin/fmax
623HANDLE_TARGET_OPCODE(G_FMINNUM)
624HANDLE_TARGET_OPCODE(G_FMAXNUM)
625
626/// FP min/max matching IEEE-754 2008's minnum/maxnum semantics.
627HANDLE_TARGET_OPCODE(G_FMINNUM_IEEE)
628HANDLE_TARGET_OPCODE(G_FMAXNUM_IEEE)
629
630/// FP min/max matching IEEE-754 2018 draft semantics.
631HANDLE_TARGET_OPCODE(G_FMINIMUM)
632HANDLE_TARGET_OPCODE(G_FMAXIMUM)
633
634/// Generic pointer offset
635HANDLE_TARGET_OPCODE(G_PTR_ADD)
636
637/// Clear the specified bits in a pointer.
638HANDLE_TARGET_OPCODE(G_PTRMASK)
639
640/// Generic signed integer minimum.
641HANDLE_TARGET_OPCODE(G_SMIN)
642
643/// Generic signed integer maximum.
644HANDLE_TARGET_OPCODE(G_SMAX)
645
646/// Generic unsigned integer maximum.
647HANDLE_TARGET_OPCODE(G_UMIN)
648
649/// Generic unsigned integer maximum.
650HANDLE_TARGET_OPCODE(G_UMAX)
651
652/// Generic integer absolute value.
653HANDLE_TARGET_OPCODE(G_ABS)
654
655/// Generic BRANCH instruction. This is an unconditional branch.
656HANDLE_TARGET_OPCODE(G_BR)
657
658/// Generic branch to jump table entry.
659HANDLE_TARGET_OPCODE(G_BRJT)
660
661/// Generic insertelement.
662HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
663
664/// Generic extractelement.
665HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
666
667/// Generic shufflevector.
668HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
669
670/// Generic count trailing zeroes.
671HANDLE_TARGET_OPCODE(G_CTTZ)
672
673/// Same as above, undefined for zero inputs.
674HANDLE_TARGET_OPCODE(G_CTTZ_ZERO_UNDEF)
675
676/// Generic count leading zeroes.
677HANDLE_TARGET_OPCODE(G_CTLZ)
678
679/// Same as above, undefined for zero inputs.
680HANDLE_TARGET_OPCODE(G_CTLZ_ZERO_UNDEF)
681
682/// Generic count bits.
683HANDLE_TARGET_OPCODE(G_CTPOP)
684
685/// Generic byte swap.
686HANDLE_TARGET_OPCODE(G_BSWAP)
687
688/// Generic bit reverse.
689HANDLE_TARGET_OPCODE(G_BITREVERSE)
690
691/// Floating point ceil.
692HANDLE_TARGET_OPCODE(G_FCEIL)
693
694/// Floating point cosine.
695HANDLE_TARGET_OPCODE(G_FCOS)
696
697/// Floating point sine.
698HANDLE_TARGET_OPCODE(G_FSIN)
699
700/// Floating point square root.
701HANDLE_TARGET_OPCODE(G_FSQRT)
702
703/// Floating point floor.
704HANDLE_TARGET_OPCODE(G_FFLOOR)
705
706/// Floating point round to next integer.
707HANDLE_TARGET_OPCODE(G_FRINT)
708
709/// Floating point round to nearest integer.
710HANDLE_TARGET_OPCODE(G_FNEARBYINT)
711
712/// Generic AddressSpaceCast.
713HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
714
715/// Generic block address
716HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
717
718/// Generic jump table address
719HANDLE_TARGET_OPCODE(G_JUMP_TABLE)
720
721/// Generic dynamic stack allocation.
722HANDLE_TARGET_OPCODE(G_DYN_STACKALLOC)
723
724/// Strict floating point instructions.
725HANDLE_TARGET_OPCODE(G_STRICT_FADD)
726HANDLE_TARGET_OPCODE(G_STRICT_FSUB)
727HANDLE_TARGET_OPCODE(G_STRICT_FMUL)
728HANDLE_TARGET_OPCODE(G_STRICT_FDIV)
729HANDLE_TARGET_OPCODE(G_STRICT_FREM)
730HANDLE_TARGET_OPCODE(G_STRICT_FMA)
731HANDLE_TARGET_OPCODE(G_STRICT_FSQRT)
732
733/// read_register intrinsic
734HANDLE_TARGET_OPCODE(G_READ_REGISTER)
735
736/// write_register intrinsic
737HANDLE_TARGET_OPCODE(G_WRITE_REGISTER)
738
739/// llvm.memcpy intrinsic
740HANDLE_TARGET_OPCODE(G_MEMCPY)
741
742/// llvm.memcpy.inline intrinsic
743HANDLE_TARGET_OPCODE(G_MEMCPY_INLINE)
744
745/// llvm.memmove intrinsic
746HANDLE_TARGET_OPCODE(G_MEMMOVE)
747
748/// llvm.memset intrinsic
749HANDLE_TARGET_OPCODE(G_MEMSET)
750HANDLE_TARGET_OPCODE(G_BZERO)
751
752/// Vector reductions
753HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FADD)
754HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FMUL)
755HANDLE_TARGET_OPCODE(G_VECREDUCE_FADD)
756HANDLE_TARGET_OPCODE(G_VECREDUCE_FMUL)
757HANDLE_TARGET_OPCODE(G_VECREDUCE_FMAX)
758HANDLE_TARGET_OPCODE(G_VECREDUCE_FMIN)
759HANDLE_TARGET_OPCODE(G_VECREDUCE_ADD)
760HANDLE_TARGET_OPCODE(G_VECREDUCE_MUL)
761HANDLE_TARGET_OPCODE(G_VECREDUCE_AND)
762HANDLE_TARGET_OPCODE(G_VECREDUCE_OR)
763HANDLE_TARGET_OPCODE(G_VECREDUCE_XOR)
764HANDLE_TARGET_OPCODE(G_VECREDUCE_SMAX)
765HANDLE_TARGET_OPCODE(G_VECREDUCE_SMIN)
766HANDLE_TARGET_OPCODE(G_VECREDUCE_UMAX)
767HANDLE_TARGET_OPCODE(G_VECREDUCE_UMIN)
768
769HANDLE_TARGET_OPCODE(G_SBFX)
770HANDLE_TARGET_OPCODE(G_UBFX)
771
772/// Marker for the end of the generic opcode.
773/// This is used to check if an opcode is in the range of the
774/// generic opcodes.
775HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_UBFX)
776
777/// BUILTIN_OP_END - This must be the last enum value in this list.
778/// The target-specific post-isel opcode values start here.
779HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)
780