1//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target independent instruction opcodes.
10//
11//===----------------------------------------------------------------------===//
12
13// NOTE: NO INCLUDE GUARD DESIRED!
14
15/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
16///
17#ifndef HANDLE_TARGET_OPCODE
18#define HANDLE_TARGET_OPCODE(OPC, NUM)
19#endif
20
21/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
22///
23#ifndef HANDLE_TARGET_OPCODE_MARKER
24#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
25#endif
26
27/// Every instruction defined here must also appear in Target.td.
28///
29HANDLE_TARGET_OPCODE(PHI)
30HANDLE_TARGET_OPCODE(INLINEASM)
31HANDLE_TARGET_OPCODE(INLINEASM_BR)
32HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33HANDLE_TARGET_OPCODE(EH_LABEL)
34HANDLE_TARGET_OPCODE(GC_LABEL)
35HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
37/// KILL - This instruction is a noop that is used only to adjust the
38/// liveness of registers. This can be useful when dealing with
39/// sub-registers.
40HANDLE_TARGET_OPCODE(KILL)
41
42/// EXTRACT_SUBREG - This instruction takes two operands: a register
43/// that has subregisters, and a subregister index. It returns the
44/// extracted subregister value. This is commonly used to implement
45/// truncation operations on target architectures which support it.
46HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
48/// INSERT_SUBREG - This instruction takes three operands: a register that
49/// has subregisters, a register providing an insert value, and a
50/// subregister index. It returns the value of the first register with the
51/// value of the second register inserted. The first register is often
52/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53/// anyext operations on target architectures which support it.
54HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
56/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
59/// SUBREG_TO_REG - Assert the value of bits in a super register.
60/// The result of this instruction is the value of the second operand inserted
61/// into the subregister specified by the third operand. All other bits are
62/// assumed to be equal to the bits in the immediate integer constant in the
63/// first operand. This instruction just communicates information; No code
64/// should be generated.
65/// This is typically used after an instruction where the write to a subregister
66/// implicitly cleared the bits in the super registers.
67HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
69/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70/// register-to-register copy into a specific register class. This is only
71/// used between instruction selection and MachineInstr creation, before
72/// virtual registers have been created for all the instructions, and it's
73/// only needed in cases where the register classes implied by the
74/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75  HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
77/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78HANDLE_TARGET_OPCODE(DBG_VALUE)
79
80/// DBG_INSTR_REF - A mapping of llvm.dbg.value referring to the instruction
81/// that defines the value, rather than a virtual register.
82HANDLE_TARGET_OPCODE(DBG_INSTR_REF)
83
84/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
85HANDLE_TARGET_OPCODE(DBG_LABEL)
86
87/// REG_SEQUENCE - This variadic instruction is used to form a register that
88/// represents a consecutive sequence of sub-registers. It's used as a
89/// register coalescing / allocation aid and must be eliminated before code
90/// emission.
91// In SDNode form, the first operand encodes the register class created by
92// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
93// pair.  Once it has been lowered to a MachineInstr, the regclass operand
94// is no longer present.
95/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
96/// After register coalescing references of v1024 should be replace with
97/// v1027:3, v1025 with v1027:4, etc.
98  HANDLE_TARGET_OPCODE(REG_SEQUENCE)
99
100/// COPY - Target-independent register copy. This instruction can also be
101/// used to copy between subregisters of virtual registers.
102  HANDLE_TARGET_OPCODE(COPY)
103
104/// BUNDLE - This instruction represents an instruction bundle. Instructions
105/// which immediately follow a BUNDLE instruction which are marked with
106/// 'InsideBundle' flag are inside the bundle.
107HANDLE_TARGET_OPCODE(BUNDLE)
108
109/// Lifetime markers.
110HANDLE_TARGET_OPCODE(LIFETIME_START)
111HANDLE_TARGET_OPCODE(LIFETIME_END)
112
113/// Pseudo probe
114HANDLE_TARGET_OPCODE(PSEUDO_PROBE)
115
116/// A Stackmap instruction captures the location of live variables at its
117/// position in the instruction stream. It is followed by a shadow of bytes
118/// that must lie within the function and not contain another stackmap.
119HANDLE_TARGET_OPCODE(STACKMAP)
120
121/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
122HANDLE_TARGET_OPCODE(FENTRY_CALL)
123
124/// Patchable call instruction - this instruction represents a call to a
125/// constant address, followed by a series of NOPs. It is intended to
126/// support optimizations for dynamic languages (such as javascript) that
127/// rewrite calls to runtimes with more efficient code sequences.
128/// This also implies a stack map.
129HANDLE_TARGET_OPCODE(PATCHPOINT)
130
131/// This pseudo-instruction loads the stack guard value. Targets which need
132/// to prevent the stack guard value or address from being spilled to the
133/// stack should override TargetLowering::emitLoadStackGuardNode and
134/// additionally expand this pseudo after register allocation.
135HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
136
137/// These are used to support call sites that must have the stack adjusted
138/// before the call (e.g. to initialize an argument passed by value).
139/// See llvm.call.preallocated.{setup,arg} in the LangRef for more details.
140HANDLE_TARGET_OPCODE(PREALLOCATED_SETUP)
141HANDLE_TARGET_OPCODE(PREALLOCATED_ARG)
142
143/// Call instruction with associated vm state for deoptimization and list
144/// of live pointers for relocation by the garbage collector.  It is
145/// intended to support garbage collection with fully precise relocating
146/// collectors and deoptimizations in either the callee or caller.
147HANDLE_TARGET_OPCODE(STATEPOINT)
148
149/// Instruction that records the offset of a local stack allocation passed to
150/// llvm.localescape. It has two arguments: the symbol for the label and the
151/// frame index of the local stack allocation.
152HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
153
154/// Wraps a machine instruction which can fault, bundled with associated
155/// information on how to handle such a fault.
156/// For example loading instruction that may page fault, bundled with associated
157/// information on how to handle such a page fault.  It is intended to support
158/// "zero cost" null checks in managed languages by allowing LLVM to fold
159/// comparisons into existing memory operations.
160HANDLE_TARGET_OPCODE(FAULTING_OP)
161
162/// Wraps a machine instruction to add patchability constraints.  An
163/// instruction wrapped in PATCHABLE_OP has to either have a minimum
164/// size or be preceded with a nop of that size.  The first operand is
165/// an immediate denoting the minimum size of the instruction, the
166/// second operand is an immediate denoting the opcode of the original
167/// instruction.  The rest of the operands are the operands of the
168/// original instruction.
169HANDLE_TARGET_OPCODE(PATCHABLE_OP)
170
171/// This is a marker instruction which gets translated into a nop sled, useful
172/// for inserting instrumentation instructions at runtime.
173HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
174
175/// Wraps a return instruction and its operands to enable adding nop sleds
176/// either before or after the return. The nop sleds are useful for inserting
177/// instrumentation instructions at runtime.
178/// The patch here replaces the return instruction.
179HANDLE_TARGET_OPCODE(PATCHABLE_RET)
180
181/// This is a marker instruction which gets translated into a nop sled, useful
182/// for inserting instrumentation instructions at runtime.
183/// The patch here prepends the return instruction.
184/// The same thing as in x86_64 is not possible for ARM because it has multiple
185/// return instructions. Furthermore, CPU allows parametrized and even
186/// conditional return instructions. In the current ARM implementation we are
187/// making use of the fact that currently LLVM doesn't seem to generate
188/// conditional return instructions.
189/// On ARM, the same instruction can be used for popping multiple registers
190/// from the stack and returning (it just pops pc register too), and LLVM
191/// generates it sometimes. So we can't insert the sled between this stack
192/// adjustment and the return without splitting the original instruction into 2
193/// instructions. So on ARM, rather than jumping into the exit trampoline, we
194/// call it, it does the tracing, preserves the stack and returns.
195HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
196
197/// Wraps a tail call instruction and its operands to enable adding nop sleds
198/// either before or after the tail exit. We use this as a disambiguation from
199/// PATCHABLE_RET which specifically only works for return instructions.
200HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
201
202/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
203/// be patched to insert instrumentation instructions.
204HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
205
206/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
207/// can be patched to insert instrumentation instructions.
208HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
209
210HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
211
212/// The following generic opcodes are not supposed to appear after ISel.
213/// This is something we might want to relax, but for now, this is convenient
214/// to produce diagnostics.
215
216/// Generic ADD instruction. This is an integer add.
217HANDLE_TARGET_OPCODE(G_ADD)
218HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
219
220/// Generic SUB instruction. This is an integer sub.
221HANDLE_TARGET_OPCODE(G_SUB)
222
223// Generic multiply instruction.
224HANDLE_TARGET_OPCODE(G_MUL)
225
226// Generic signed division instruction.
227HANDLE_TARGET_OPCODE(G_SDIV)
228
229// Generic unsigned division instruction.
230HANDLE_TARGET_OPCODE(G_UDIV)
231
232// Generic signed remainder instruction.
233HANDLE_TARGET_OPCODE(G_SREM)
234
235// Generic unsigned remainder instruction.
236HANDLE_TARGET_OPCODE(G_UREM)
237
238/// Generic bitwise and instruction.
239HANDLE_TARGET_OPCODE(G_AND)
240
241/// Generic bitwise or instruction.
242HANDLE_TARGET_OPCODE(G_OR)
243
244/// Generic bitwise exclusive-or instruction.
245HANDLE_TARGET_OPCODE(G_XOR)
246
247
248HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
249
250/// Generic PHI instruction with types.
251HANDLE_TARGET_OPCODE(G_PHI)
252
253/// Generic instruction to materialize the address of an alloca or other
254/// stack-based object.
255HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
256
257/// Generic reference to global value.
258HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
259
260/// Generic instruction to extract blocks of bits from the register given
261/// (typically a sub-register COPY after instruction selection).
262HANDLE_TARGET_OPCODE(G_EXTRACT)
263
264HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
265
266/// Generic instruction to insert blocks of bits from the registers given into
267/// the source.
268HANDLE_TARGET_OPCODE(G_INSERT)
269
270/// Generic instruction to paste a variable number of components together into a
271/// larger register.
272HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
273
274/// Generic instruction to create a vector value from a number of scalar
275/// components.
276HANDLE_TARGET_OPCODE(G_BUILD_VECTOR)
277
278/// Generic instruction to create a vector value from a number of scalar
279/// components, which have types larger than the result vector elt type.
280HANDLE_TARGET_OPCODE(G_BUILD_VECTOR_TRUNC)
281
282/// Generic instruction to create a vector by concatenating multiple vectors.
283HANDLE_TARGET_OPCODE(G_CONCAT_VECTORS)
284
285/// Generic pointer to int conversion.
286HANDLE_TARGET_OPCODE(G_PTRTOINT)
287
288/// Generic int to pointer conversion.
289HANDLE_TARGET_OPCODE(G_INTTOPTR)
290
291/// Generic bitcast. The source and destination types must be different, or a
292/// COPY is the relevant instruction.
293HANDLE_TARGET_OPCODE(G_BITCAST)
294
295/// Generic freeze.
296HANDLE_TARGET_OPCODE(G_FREEZE)
297
298/// INTRINSIC trunc intrinsic.
299HANDLE_TARGET_OPCODE(G_INTRINSIC_TRUNC)
300
301/// INTRINSIC round intrinsic.
302HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUND)
303
304/// INTRINSIC round to integer intrinsic.
305HANDLE_TARGET_OPCODE(G_INTRINSIC_LRINT)
306
307/// INTRINSIC roundeven intrinsic.
308HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUNDEVEN)
309
310/// INTRINSIC readcyclecounter
311HANDLE_TARGET_OPCODE(G_READCYCLECOUNTER)
312
313/// Generic load (including anyext load)
314HANDLE_TARGET_OPCODE(G_LOAD)
315
316/// Generic signext load
317HANDLE_TARGET_OPCODE(G_SEXTLOAD)
318
319/// Generic zeroext load
320HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
321
322/// Generic indexed load (including anyext load)
323HANDLE_TARGET_OPCODE(G_INDEXED_LOAD)
324
325/// Generic indexed signext load
326HANDLE_TARGET_OPCODE(G_INDEXED_SEXTLOAD)
327
328/// Generic indexed zeroext load
329HANDLE_TARGET_OPCODE(G_INDEXED_ZEXTLOAD)
330
331/// Generic store.
332HANDLE_TARGET_OPCODE(G_STORE)
333
334/// Generic indexed store.
335HANDLE_TARGET_OPCODE(G_INDEXED_STORE)
336
337/// Generic atomic cmpxchg with internal success check.
338HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
339
340/// Generic atomic cmpxchg.
341HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
342
343/// Generic atomicrmw.
344HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
345HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
346HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
347HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
348HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
349HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
350HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
351HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
352HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
353HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
354HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
355HANDLE_TARGET_OPCODE(G_ATOMICRMW_FADD)
356HANDLE_TARGET_OPCODE(G_ATOMICRMW_FSUB)
357
358// Generic atomic fence
359HANDLE_TARGET_OPCODE(G_FENCE)
360
361/// Generic conditional branch instruction.
362HANDLE_TARGET_OPCODE(G_BRCOND)
363
364/// Generic indirect branch instruction.
365HANDLE_TARGET_OPCODE(G_BRINDIRECT)
366
367/// Generic intrinsic use (without side effects).
368HANDLE_TARGET_OPCODE(G_INTRINSIC)
369
370/// Generic intrinsic use (with side effects).
371HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
372
373/// Generic extension allowing rubbish in high bits.
374HANDLE_TARGET_OPCODE(G_ANYEXT)
375
376/// Generic instruction to discard the high bits of a register. This differs
377/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
378/// each element individually, G_EXTRACT will typically discard the high
379/// elements of the vector.
380HANDLE_TARGET_OPCODE(G_TRUNC)
381
382/// Generic integer constant.
383HANDLE_TARGET_OPCODE(G_CONSTANT)
384
385/// Generic floating constant.
386HANDLE_TARGET_OPCODE(G_FCONSTANT)
387
388/// Generic va_start instruction. Stores to its one pointer operand.
389HANDLE_TARGET_OPCODE(G_VASTART)
390
391/// Generic va_start instruction. Stores to its one pointer operand.
392HANDLE_TARGET_OPCODE(G_VAARG)
393
394// Generic sign extend
395HANDLE_TARGET_OPCODE(G_SEXT)
396HANDLE_TARGET_OPCODE(G_SEXT_INREG)
397
398// Generic zero extend
399HANDLE_TARGET_OPCODE(G_ZEXT)
400
401// Generic left-shift
402HANDLE_TARGET_OPCODE(G_SHL)
403
404// Generic logical right-shift
405HANDLE_TARGET_OPCODE(G_LSHR)
406
407// Generic arithmetic right-shift
408HANDLE_TARGET_OPCODE(G_ASHR)
409
410// Generic funnel left shift
411HANDLE_TARGET_OPCODE(G_FSHL)
412
413// Generic funnel right shift
414HANDLE_TARGET_OPCODE(G_FSHR)
415
416/// Generic integer-base comparison, also applicable to vectors of integers.
417HANDLE_TARGET_OPCODE(G_ICMP)
418
419/// Generic floating-point comparison, also applicable to vectors.
420HANDLE_TARGET_OPCODE(G_FCMP)
421
422/// Generic select.
423HANDLE_TARGET_OPCODE(G_SELECT)
424
425/// Generic unsigned add instruction, consuming the normal operands and
426/// producing the result and a carry flag.
427HANDLE_TARGET_OPCODE(G_UADDO)
428
429/// Generic unsigned add instruction, consuming the normal operands plus a carry
430/// flag, and similarly producing the result and a carry flag.
431HANDLE_TARGET_OPCODE(G_UADDE)
432
433/// Generic unsigned sub instruction, consuming the normal operands and
434/// producing the result and a carry flag.
435HANDLE_TARGET_OPCODE(G_USUBO)
436
437/// Generic unsigned subtract instruction, consuming the normal operands plus a
438/// carry flag, and similarly producing the result and a carry flag.
439HANDLE_TARGET_OPCODE(G_USUBE)
440
441/// Generic signed add instruction, producing the result and a signed overflow
442/// flag.
443HANDLE_TARGET_OPCODE(G_SADDO)
444
445/// Generic signed add instruction, consuming the normal operands plus a carry
446/// flag, and similarly producing the result and a carry flag.
447HANDLE_TARGET_OPCODE(G_SADDE)
448
449/// Generic signed subtract instruction, producing the result and a signed
450/// overflow flag.
451HANDLE_TARGET_OPCODE(G_SSUBO)
452
453/// Generic signed sub instruction, consuming the normal operands plus a carry
454/// flag, and similarly producing the result and a carry flag.
455HANDLE_TARGET_OPCODE(G_SSUBE)
456
457/// Generic unsigned multiply instruction, producing the result and a signed
458/// overflow flag.
459HANDLE_TARGET_OPCODE(G_UMULO)
460
461/// Generic signed multiply instruction, producing the result and a signed
462/// overflow flag.
463HANDLE_TARGET_OPCODE(G_SMULO)
464
465// Multiply two numbers at twice the incoming bit width (unsigned) and return
466// the high half of the result.
467HANDLE_TARGET_OPCODE(G_UMULH)
468
469// Multiply two numbers at twice the incoming bit width (signed) and return
470// the high half of the result.
471HANDLE_TARGET_OPCODE(G_SMULH)
472
473/// Generic saturating unsigned addition.
474HANDLE_TARGET_OPCODE(G_UADDSAT)
475
476/// Generic saturating signed addition.
477HANDLE_TARGET_OPCODE(G_SADDSAT)
478
479/// Generic saturating unsigned subtraction.
480HANDLE_TARGET_OPCODE(G_USUBSAT)
481
482/// Generic saturating signed subtraction.
483HANDLE_TARGET_OPCODE(G_SSUBSAT)
484
485/// Generic saturating unsigned left shift.
486HANDLE_TARGET_OPCODE(G_USHLSAT)
487
488/// Generic saturating signed left shift.
489HANDLE_TARGET_OPCODE(G_SSHLSAT)
490
491// Perform signed fixed point multiplication
492HANDLE_TARGET_OPCODE(G_SMULFIX)
493
494// Perform unsigned fixed point multiplication
495HANDLE_TARGET_OPCODE(G_UMULFIX)
496
497// Perform signed, saturating fixed point multiplication
498HANDLE_TARGET_OPCODE(G_SMULFIXSAT)
499
500// Perform unsigned, saturating fixed point multiplication
501HANDLE_TARGET_OPCODE(G_UMULFIXSAT)
502
503// Perform signed fixed point division
504HANDLE_TARGET_OPCODE(G_SDIVFIX)
505
506// Perform unsigned fixed point division
507HANDLE_TARGET_OPCODE(G_UDIVFIX)
508
509// Perform signed, saturating fixed point division
510HANDLE_TARGET_OPCODE(G_SDIVFIXSAT)
511
512// Perform unsigned, saturating fixed point division
513HANDLE_TARGET_OPCODE(G_UDIVFIXSAT)
514
515/// Generic FP addition.
516HANDLE_TARGET_OPCODE(G_FADD)
517
518/// Generic FP subtraction.
519HANDLE_TARGET_OPCODE(G_FSUB)
520
521/// Generic FP multiplication.
522HANDLE_TARGET_OPCODE(G_FMUL)
523
524/// Generic FMA multiplication. Behaves like llvm fma intrinsic
525HANDLE_TARGET_OPCODE(G_FMA)
526
527/// Generic FP multiply and add. Behaves as separate fmul and fadd.
528HANDLE_TARGET_OPCODE(G_FMAD)
529
530/// Generic FP division.
531HANDLE_TARGET_OPCODE(G_FDIV)
532
533/// Generic FP remainder.
534HANDLE_TARGET_OPCODE(G_FREM)
535
536/// Generic FP exponentiation.
537HANDLE_TARGET_OPCODE(G_FPOW)
538
539/// Generic FP exponentiation, with an integer exponent.
540HANDLE_TARGET_OPCODE(G_FPOWI)
541
542/// Generic base-e exponential of a value.
543HANDLE_TARGET_OPCODE(G_FEXP)
544
545/// Generic base-2 exponential of a value.
546HANDLE_TARGET_OPCODE(G_FEXP2)
547
548/// Floating point base-e logarithm of a value.
549HANDLE_TARGET_OPCODE(G_FLOG)
550
551/// Floating point base-2 logarithm of a value.
552HANDLE_TARGET_OPCODE(G_FLOG2)
553
554/// Floating point base-10 logarithm of a value.
555HANDLE_TARGET_OPCODE(G_FLOG10)
556
557/// Generic FP negation.
558HANDLE_TARGET_OPCODE(G_FNEG)
559
560/// Generic FP extension.
561HANDLE_TARGET_OPCODE(G_FPEXT)
562
563/// Generic float to signed-int conversion
564HANDLE_TARGET_OPCODE(G_FPTRUNC)
565
566/// Generic float to signed-int conversion
567HANDLE_TARGET_OPCODE(G_FPTOSI)
568
569/// Generic float to unsigned-int conversion
570HANDLE_TARGET_OPCODE(G_FPTOUI)
571
572/// Generic signed-int to float conversion
573HANDLE_TARGET_OPCODE(G_SITOFP)
574
575/// Generic unsigned-int to float conversion
576HANDLE_TARGET_OPCODE(G_UITOFP)
577
578/// Generic FP absolute value.
579HANDLE_TARGET_OPCODE(G_FABS)
580
581/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This does
582/// not require that X and Y have the same type, just that they are both
583/// floating point. X and the result must have the same type.  FCOPYSIGN(f32,
584/// f64) is allowed.
585HANDLE_TARGET_OPCODE(G_FCOPYSIGN)
586
587/// Generic FP canonicalize value.
588HANDLE_TARGET_OPCODE(G_FCANONICALIZE)
589
590/// FP min/max matching libm's fmin/fmax
591HANDLE_TARGET_OPCODE(G_FMINNUM)
592HANDLE_TARGET_OPCODE(G_FMAXNUM)
593
594/// FP min/max matching IEEE-754 2008's minnum/maxnum semantics.
595HANDLE_TARGET_OPCODE(G_FMINNUM_IEEE)
596HANDLE_TARGET_OPCODE(G_FMAXNUM_IEEE)
597
598/// FP min/max matching IEEE-754 2018 draft semantics.
599HANDLE_TARGET_OPCODE(G_FMINIMUM)
600HANDLE_TARGET_OPCODE(G_FMAXIMUM)
601
602/// Generic pointer offset
603HANDLE_TARGET_OPCODE(G_PTR_ADD)
604
605/// Clear the specified bits in a pointer.
606HANDLE_TARGET_OPCODE(G_PTRMASK)
607
608/// Generic signed integer minimum.
609HANDLE_TARGET_OPCODE(G_SMIN)
610
611/// Generic signed integer maximum.
612HANDLE_TARGET_OPCODE(G_SMAX)
613
614/// Generic unsigned integer maximum.
615HANDLE_TARGET_OPCODE(G_UMIN)
616
617/// Generic unsigned integer maximum.
618HANDLE_TARGET_OPCODE(G_UMAX)
619
620/// Generic integer absolute value.
621HANDLE_TARGET_OPCODE(G_ABS)
622
623/// Generic BRANCH instruction. This is an unconditional branch.
624HANDLE_TARGET_OPCODE(G_BR)
625
626/// Generic branch to jump table entry.
627HANDLE_TARGET_OPCODE(G_BRJT)
628
629/// Generic insertelement.
630HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
631
632/// Generic extractelement.
633HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
634
635/// Generic shufflevector.
636HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
637
638/// Generic count trailing zeroes.
639HANDLE_TARGET_OPCODE(G_CTTZ)
640
641/// Same as above, undefined for zero inputs.
642HANDLE_TARGET_OPCODE(G_CTTZ_ZERO_UNDEF)
643
644/// Generic count leading zeroes.
645HANDLE_TARGET_OPCODE(G_CTLZ)
646
647/// Same as above, undefined for zero inputs.
648HANDLE_TARGET_OPCODE(G_CTLZ_ZERO_UNDEF)
649
650/// Generic count bits.
651HANDLE_TARGET_OPCODE(G_CTPOP)
652
653/// Generic byte swap.
654HANDLE_TARGET_OPCODE(G_BSWAP)
655
656/// Generic bit reverse.
657HANDLE_TARGET_OPCODE(G_BITREVERSE)
658
659/// Floating point ceil.
660HANDLE_TARGET_OPCODE(G_FCEIL)
661
662/// Floating point cosine.
663HANDLE_TARGET_OPCODE(G_FCOS)
664
665/// Floating point sine.
666HANDLE_TARGET_OPCODE(G_FSIN)
667
668/// Floating point square root.
669HANDLE_TARGET_OPCODE(G_FSQRT)
670
671/// Floating point floor.
672HANDLE_TARGET_OPCODE(G_FFLOOR)
673
674/// Floating point round to next integer.
675HANDLE_TARGET_OPCODE(G_FRINT)
676
677/// Floating point round to nearest integer.
678HANDLE_TARGET_OPCODE(G_FNEARBYINT)
679
680/// Generic AddressSpaceCast.
681HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
682
683/// Generic block address
684HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
685
686/// Generic jump table address
687HANDLE_TARGET_OPCODE(G_JUMP_TABLE)
688
689/// Generic dynamic stack allocation.
690HANDLE_TARGET_OPCODE(G_DYN_STACKALLOC)
691
692/// Strict floating point instructions.
693HANDLE_TARGET_OPCODE(G_STRICT_FADD)
694HANDLE_TARGET_OPCODE(G_STRICT_FSUB)
695HANDLE_TARGET_OPCODE(G_STRICT_FMUL)
696HANDLE_TARGET_OPCODE(G_STRICT_FDIV)
697HANDLE_TARGET_OPCODE(G_STRICT_FREM)
698HANDLE_TARGET_OPCODE(G_STRICT_FMA)
699HANDLE_TARGET_OPCODE(G_STRICT_FSQRT)
700
701/// read_register intrinsic
702HANDLE_TARGET_OPCODE(G_READ_REGISTER)
703
704/// write_register intrinsic
705HANDLE_TARGET_OPCODE(G_WRITE_REGISTER)
706
707/// llvm.memcpy intrinsic
708HANDLE_TARGET_OPCODE(G_MEMCPY)
709
710/// llvm.memmove intrinsic
711HANDLE_TARGET_OPCODE(G_MEMMOVE)
712
713/// llvm.memset intrinsic
714HANDLE_TARGET_OPCODE(G_MEMSET)
715
716/// Vector reductions
717HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FADD)
718HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FMUL)
719HANDLE_TARGET_OPCODE(G_VECREDUCE_FADD)
720HANDLE_TARGET_OPCODE(G_VECREDUCE_FMUL)
721HANDLE_TARGET_OPCODE(G_VECREDUCE_FMAX)
722HANDLE_TARGET_OPCODE(G_VECREDUCE_FMIN)
723HANDLE_TARGET_OPCODE(G_VECREDUCE_ADD)
724HANDLE_TARGET_OPCODE(G_VECREDUCE_MUL)
725HANDLE_TARGET_OPCODE(G_VECREDUCE_AND)
726HANDLE_TARGET_OPCODE(G_VECREDUCE_OR)
727HANDLE_TARGET_OPCODE(G_VECREDUCE_XOR)
728HANDLE_TARGET_OPCODE(G_VECREDUCE_SMAX)
729HANDLE_TARGET_OPCODE(G_VECREDUCE_SMIN)
730HANDLE_TARGET_OPCODE(G_VECREDUCE_UMAX)
731HANDLE_TARGET_OPCODE(G_VECREDUCE_UMIN)
732
733/// Marker for the end of the generic opcode.
734/// This is used to check if an opcode is in the range of the
735/// generic opcodes.
736HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_VECREDUCE_UMIN)
737
738/// BUILTIN_OP_END - This must be the last enum value in this list.
739/// The target-specific post-isel opcode values start here.
740HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)
741