1 //===-- llvm/Support/Threading.h - Control multithreading mode --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares helper functions for running LLVM in a multi-threaded
10 // environment.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_THREADING_H
15 #define LLVM_SUPPORT_THREADING_H
16 
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Config/llvm-config.h" // for LLVM_ON_UNIX
20 #include "llvm/Support/Compiler.h"
21 #include <ciso646> // So we can check the C++ standard lib macros.
22 #include <optional>
23 
24 #if defined(_MSC_VER)
25 // MSVC's call_once implementation worked since VS 2015, which is the minimum
26 // supported version as of this writing.
27 #define LLVM_THREADING_USE_STD_CALL_ONCE 1
28 #elif defined(LLVM_ON_UNIX) &&                                                 \
29     (defined(_LIBCPP_VERSION) ||                                               \
30      !(defined(__NetBSD__) || defined(__OpenBSD__) || defined(__powerpc__)))
31 // std::call_once from libc++ is used on all Unix platforms. Other
32 // implementations like libstdc++ are known to have problems on NetBSD,
33 // OpenBSD and PowerPC.
34 #define LLVM_THREADING_USE_STD_CALL_ONCE 1
35 #elif defined(LLVM_ON_UNIX) &&                                                 \
36     (defined(__powerpc__) && defined(__LITTLE_ENDIAN__))
37 #define LLVM_THREADING_USE_STD_CALL_ONCE 1
38 #else
39 #define LLVM_THREADING_USE_STD_CALL_ONCE 0
40 #endif
41 
42 #if LLVM_THREADING_USE_STD_CALL_ONCE
43 #include <mutex>
44 #else
45 #include "llvm/Support/Atomic.h"
46 #endif
47 
48 namespace llvm {
49 class Twine;
50 
51 /// Returns true if LLVM is compiled with support for multi-threading, and
52 /// false otherwise.
llvm_is_multithreaded()53 constexpr bool llvm_is_multithreaded() { return LLVM_ENABLE_THREADS; }
54 
55 #if LLVM_THREADING_USE_STD_CALL_ONCE
56 
57   typedef std::once_flag once_flag;
58 
59 #else
60 
61   enum InitStatus { Uninitialized = 0, Wait = 1, Done = 2 };
62 
63   /// The llvm::once_flag structure
64   ///
65   /// This type is modeled after std::once_flag to use with llvm::call_once.
66   /// This structure must be used as an opaque object. It is a struct to force
67   /// autoinitialization and behave like std::once_flag.
68   struct once_flag {
69     volatile sys::cas_flag status = Uninitialized;
70   };
71 
72 #endif
73 
74   /// Execute the function specified as a parameter once.
75   ///
76   /// Typical usage:
77   /// \code
78   ///   void foo() {...};
79   ///   ...
80   ///   static once_flag flag;
81   ///   call_once(flag, foo);
82   /// \endcode
83   ///
84   /// \param flag Flag used for tracking whether or not this has run.
85   /// \param F Function to call once.
86   template <typename Function, typename... Args>
call_once(once_flag & flag,Function && F,Args &&...ArgList)87   void call_once(once_flag &flag, Function &&F, Args &&... ArgList) {
88 #if LLVM_THREADING_USE_STD_CALL_ONCE
89     std::call_once(flag, std::forward<Function>(F),
90                    std::forward<Args>(ArgList)...);
91 #else
92     // For other platforms we use a generic (if brittle) version based on our
93     // atomics.
94     sys::cas_flag old_val = sys::CompareAndSwap(&flag.status, Wait, Uninitialized);
95     if (old_val == Uninitialized) {
96       std::forward<Function>(F)(std::forward<Args>(ArgList)...);
97       sys::MemoryFence();
98       TsanIgnoreWritesBegin();
99       TsanHappensBefore(&flag.status);
100       flag.status = Done;
101       TsanIgnoreWritesEnd();
102     } else {
103       // Wait until any thread doing the call has finished.
104       sys::cas_flag tmp = flag.status;
105       sys::MemoryFence();
106       while (tmp != Done) {
107         tmp = flag.status;
108         sys::MemoryFence();
109       }
110     }
111     TsanHappensAfter(&flag.status);
112 #endif
113   }
114 
115   /// This tells how a thread pool will be used
116   class ThreadPoolStrategy {
117   public:
118     // The default value (0) means all available threads should be used,
119     // taking the affinity mask into account. If set, this value only represents
120     // a suggested high bound, the runtime might choose a lower value (not
121     // higher).
122     unsigned ThreadsRequested = 0;
123 
124     // If SMT is active, use hyper threads. If false, there will be only one
125     // std::thread per core.
126     bool UseHyperThreads = true;
127 
128     // If set, will constrain 'ThreadsRequested' to the number of hardware
129     // threads, or hardware cores.
130     bool Limit = false;
131 
132     /// Retrieves the max available threads for the current strategy. This
133     /// accounts for affinity masks and takes advantage of all CPU sockets.
134     unsigned compute_thread_count() const;
135 
136     /// Assign the current thread to an ideal hardware CPU or NUMA node. In a
137     /// multi-socket system, this ensures threads are assigned to all CPU
138     /// sockets. \p ThreadPoolNum represents a number bounded by [0,
139     /// compute_thread_count()).
140     void apply_thread_strategy(unsigned ThreadPoolNum) const;
141 
142     /// Finds the CPU socket where a thread should go. Returns 'std::nullopt' if
143     /// the thread shall remain on the actual CPU socket.
144     std::optional<unsigned> compute_cpu_socket(unsigned ThreadPoolNum) const;
145   };
146 
147   /// Build a strategy from a number of threads as a string provided in \p Num.
148   /// When Num is above the max number of threads specified by the \p Default
149   /// strategy, we attempt to equally allocate the threads on all CPU sockets.
150   /// "0" or an empty string will return the \p Default strategy.
151   /// "all" for using all hardware threads.
152   std::optional<ThreadPoolStrategy>
153   get_threadpool_strategy(StringRef Num, ThreadPoolStrategy Default = {});
154 
155   /// Returns a thread strategy for tasks requiring significant memory or other
156   /// resources. To be used for workloads where hardware_concurrency() proves to
157   /// be less efficient. Avoid this strategy if doing lots of I/O. Currently
158   /// based on physical cores, if available for the host system, otherwise falls
159   /// back to hardware_concurrency(). Returns 1 when LLVM is configured with
160   /// LLVM_ENABLE_THREADS = OFF.
161   inline ThreadPoolStrategy
162   heavyweight_hardware_concurrency(unsigned ThreadCount = 0) {
163     ThreadPoolStrategy S;
164     S.UseHyperThreads = false;
165     S.ThreadsRequested = ThreadCount;
166     return S;
167   }
168 
169   /// Like heavyweight_hardware_concurrency() above, but builds a strategy
170   /// based on the rules described for get_threadpool_strategy().
171   /// If \p Num is invalid, returns a default strategy where one thread per
172   /// hardware core is used.
heavyweight_hardware_concurrency(StringRef Num)173   inline ThreadPoolStrategy heavyweight_hardware_concurrency(StringRef Num) {
174     std::optional<ThreadPoolStrategy> S =
175         get_threadpool_strategy(Num, heavyweight_hardware_concurrency());
176     if (S)
177       return *S;
178     return heavyweight_hardware_concurrency();
179   }
180 
181   /// Returns a default thread strategy where all available hardware resources
182   /// are to be used, except for those initially excluded by an affinity mask.
183   /// This function takes affinity into consideration. Returns 1 when LLVM is
184   /// configured with LLVM_ENABLE_THREADS=OFF.
185   inline ThreadPoolStrategy hardware_concurrency(unsigned ThreadCount = 0) {
186     ThreadPoolStrategy S;
187     S.ThreadsRequested = ThreadCount;
188     return S;
189   }
190 
191   /// Returns an optimal thread strategy to execute specified amount of tasks.
192   /// This strategy should prevent us from creating too many threads if we
193   /// occasionaly have an unexpectedly small amount of tasks.
194   inline ThreadPoolStrategy optimal_concurrency(unsigned TaskCount = 0) {
195     ThreadPoolStrategy S;
196     S.Limit = true;
197     S.ThreadsRequested = TaskCount;
198     return S;
199   }
200 
201   /// Return the current thread id, as used in various OS system calls.
202   /// Note that not all platforms guarantee that the value returned will be
203   /// unique across the entire system, so portable code should not assume
204   /// this.
205   uint64_t get_threadid();
206 
207   /// Get the maximum length of a thread name on this platform.
208   /// A value of 0 means there is no limit.
209   uint32_t get_max_thread_name_length();
210 
211   /// Set the name of the current thread.  Setting a thread's name can
212   /// be helpful for enabling useful diagnostics under a debugger or when
213   /// logging.  The level of support for setting a thread's name varies
214   /// wildly across operating systems, and we only make a best effort to
215   /// perform the operation on supported platforms.  No indication of success
216   /// or failure is returned.
217   void set_thread_name(const Twine &Name);
218 
219   /// Get the name of the current thread.  The level of support for
220   /// getting a thread's name varies wildly across operating systems, and it
221   /// is not even guaranteed that if you can successfully set a thread's name
222   /// that you can later get it back.  This function is intended for diagnostic
223   /// purposes, and as with setting a thread's name no indication of whether
224   /// the operation succeeded or failed is returned.
225   void get_thread_name(SmallVectorImpl<char> &Name);
226 
227   /// Returns a mask that represents on which hardware thread, core, CPU, NUMA
228   /// group, the calling thread can be executed. On Windows, threads cannot
229   /// cross CPU sockets boundaries.
230   llvm::BitVector get_thread_affinity_mask();
231 
232   /// Returns how many physical CPUs or NUMA groups the system has.
233   unsigned get_cpus();
234 
235   /// Returns how many physical cores (as opposed to logical cores returned from
236   /// thread::hardware_concurrency(), which includes hyperthreads).
237   /// Returns -1 if unknown for the current host system.
238   int get_physical_cores();
239 
240   enum class ThreadPriority {
241     /// Lower the current thread's priority as much as possible. Can be used
242     /// for long-running tasks that are not time critical; more energy-
243     /// efficient than Low.
244     Background = 0,
245 
246     /// Lower the current thread's priority such that it does not affect
247     /// foreground tasks significantly. This is a good default for long-
248     /// running, latency-insensitive tasks to make sure cpu is not hogged
249     /// by this task.
250     Low = 1,
251 
252     /// Restore the current thread's priority to default scheduling priority.
253     Default = 2,
254   };
255   enum class SetThreadPriorityResult { FAILURE, SUCCESS };
256   SetThreadPriorityResult set_thread_priority(ThreadPriority Priority);
257 }
258 
259 #endif
260