1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target-independent interfaces which should be
10// implemented by each target which is using a TableGen based code generator.
11//
12//===----------------------------------------------------------------------===//
13
14// Include all information about LLVM intrinsics.
15include "llvm/IR/Intrinsics.td"
16
17//===----------------------------------------------------------------------===//
18// Register file description - These classes are used to fill in the target
19// description classes.
20
21class HwMode<string FS> {
22  // A string representing subtarget features that turn on this HW mode.
23  // For example, "+feat1,-feat2" will indicate that the mode is active
24  // when "feat1" is enabled and "feat2" is disabled at the same time.
25  // Any other features are not checked.
26  // When multiple modes are used, they should be mutually exclusive,
27  // otherwise the results are unpredictable.
28  string Features = FS;
29}
30
31// A special mode recognized by tablegen. This mode is considered active
32// when no other mode is active. For targets that do not use specific hw
33// modes, this is the only mode.
34def DefaultMode : HwMode<"">;
35
36// A class used to associate objects with HW modes. It is only intended to
37// be used as a base class, where the derived class should contain a member
38// "Objects", which is a list of the same length as the list of modes.
39// The n-th element on the Objects list will be associated with the n-th
40// element on the Modes list.
41class HwModeSelect<list<HwMode> Ms> {
42  list<HwMode> Modes = Ms;
43}
44
45// A common class that implements a counterpart of ValueType, which is
46// dependent on a HW mode. This class inherits from ValueType itself,
47// which makes it possible to use objects of this class where ValueType
48// objects could be used. This is specifically applicable to selection
49// patterns.
50class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
51    : HwModeSelect<Ms>, ValueType<0, 0> {
52  // The length of this list must be the same as the length of Ms.
53  list<ValueType> Objects = Ts;
54}
55
56// A class representing the register size, spill size and spill alignment
57// in bits of a register.
58class RegInfo<int RS, int SS, int SA> {
59  int RegSize = RS;         // Register size in bits.
60  int SpillSize = SS;       // Spill slot size in bits.
61  int SpillAlignment = SA;  // Spill slot alignment in bits.
62}
63
64// The register size/alignment information, parameterized by a HW mode.
65class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
66    : HwModeSelect<Ms> {
67  // The length of this list must be the same as the length of Ms.
68  list<RegInfo> Objects = Ts;
69}
70
71// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
72class SubRegIndex<int size, int offset = 0> {
73  string Namespace = "";
74
75  // Size - Size (in bits) of the sub-registers represented by this index.
76  int Size = size;
77
78  // Offset - Offset of the first bit that is part of this sub-register index.
79  // Set it to -1 if the same index is used to represent sub-registers that can
80  // be at different offsets (for example when using an index to access an
81  // element in a register tuple).
82  int Offset = offset;
83
84  // ComposedOf - A list of two SubRegIndex instances, [A, B].
85  // This indicates that this SubRegIndex is the result of composing A and B.
86  // See ComposedSubRegIndex.
87  list<SubRegIndex> ComposedOf = [];
88
89  // CoveringSubRegIndices - A list of two or more sub-register indexes that
90  // cover this sub-register.
91  //
92  // This field should normally be left blank as TableGen can infer it.
93  //
94  // TableGen automatically detects sub-registers that straddle the registers
95  // in the SubRegs field of a Register definition. For example:
96  //
97  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
98  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
99  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
100  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
101  //
102  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
103  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
104  // CoveringSubRegIndices = [dsub_1, dsub_2].
105  list<SubRegIndex> CoveringSubRegIndices = [];
106}
107
108// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
109// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
110class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
111  : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
112                              !eq(B.Offset, -1): -1,
113                              true:              !add(A.Offset, B.Offset))> {
114  // See SubRegIndex.
115  let ComposedOf = [A, B];
116}
117
118// RegAltNameIndex - The alternate name set to use for register operands of
119// this register class when printing.
120class RegAltNameIndex {
121  string Namespace = "";
122
123  // A set to be used if the name for a register is not defined in this set.
124  // This allows creating name sets with only a few alternative names.
125  RegAltNameIndex FallbackRegAltNameIndex = ?;
126}
127def NoRegAltName : RegAltNameIndex;
128
129// Register - You should define one instance of this class for each register
130// in the target machine.  String n will become the "name" of the register.
131class Register<string n, list<string> altNames = []> {
132  string Namespace = "";
133  string AsmName = n;
134  list<string> AltNames = altNames;
135
136  // Aliases - A list of registers that this register overlaps with.  A read or
137  // modification of this register can potentially read or modify the aliased
138  // registers.
139  list<Register> Aliases = [];
140
141  // SubRegs - A list of registers that are parts of this register. Note these
142  // are "immediate" sub-registers and the registers within the list do not
143  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
144  // not [AX, AH, AL].
145  list<Register> SubRegs = [];
146
147  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
148  // to address it. Sub-sub-register indices are automatically inherited from
149  // SubRegs.
150  list<SubRegIndex> SubRegIndices = [];
151
152  // RegAltNameIndices - The alternate name indices which are valid for this
153  // register.
154  list<RegAltNameIndex> RegAltNameIndices = [];
155
156  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
157  // These values can be determined by locating the <target>.h file in the
158  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
159  // order of these names correspond to the enumeration used by gcc.  A value of
160  // -1 indicates that the gcc number is undefined and -2 that register number
161  // is invalid for this mode/flavour.
162  list<int> DwarfNumbers = [];
163
164  // CostPerUse - Additional cost of instructions using this register compared
165  // to other registers in its class. The register allocator will try to
166  // minimize the number of instructions using a register with a CostPerUse.
167  // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
168  // some registers require larger instruction encodings, by the RISC-V target,
169  // where some registers preclude using some C instructions. By making it a
170  // list, targets can have multiple cost models associated with each register
171  // and can choose one specific cost model per Machine Function by overriding
172  // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will
173  // finally have an equal number of cost values which is the max of costPerUse
174  // values specified. Any mismatch in the cost values for a register will be
175  // filled with zeros. Restricted the cost type to uint8_t in the
176  // generated table. It will considerably reduce the table size.
177  list<int> CostPerUse = [0];
178
179  // CoveredBySubRegs - When this bit is set, the value of this register is
180  // completely determined by the value of its sub-registers.  For example, the
181  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
182  // covered by its sub-register AX.
183  bit CoveredBySubRegs = false;
184
185  // HWEncoding - The target specific hardware encoding for this register.
186  bits<16> HWEncoding = 0;
187
188  bit isArtificial = false;
189
190  // isConstant - This register always holds a constant value (e.g. the zero
191  // register in architectures such as MIPS)
192  bit isConstant = false;
193}
194
195// RegisterWithSubRegs - This can be used to define instances of Register which
196// need to specify sub-registers.
197// List "subregs" specifies which registers are sub-registers to this one. This
198// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
199// This allows the code generator to be careful not to put two values with
200// overlapping live ranges into registers which alias.
201class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
202  let SubRegs = subregs;
203}
204
205// DAGOperand - An empty base class that unifies RegisterClass's and other forms
206// of Operand's that are legal as type qualifiers in DAG patterns.  This should
207// only ever be used for defining multiclasses that are polymorphic over both
208// RegisterClass's and other Operand's.
209class DAGOperand {
210  string OperandNamespace = "MCOI";
211  string DecoderMethod = "";
212}
213
214// RegisterClass - Now that all of the registers are defined, and aliases
215// between registers are defined, specify which registers belong to which
216// register classes.  This also defines the default allocation order of
217// registers by register allocators.
218//
219class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
220                    dag regList, RegAltNameIndex idx = NoRegAltName>
221  : DAGOperand {
222  string Namespace = namespace;
223
224  // The register size/alignment information, parameterized by a HW mode.
225  RegInfoByHwMode RegInfos;
226
227  // RegType - Specify the list ValueType of the registers in this register
228  // class.  Note that all registers in a register class must have the same
229  // ValueTypes.  This is a list because some targets permit storing different
230  // types in same register, for example vector values with 128-bit total size,
231  // but different count/size of items, like SSE on x86.
232  //
233  list<ValueType> RegTypes = regTypes;
234
235  // Size - Specify the spill size in bits of the registers.  A default value of
236  // zero lets tablegen pick an appropriate size.
237  int Size = 0;
238
239  // Alignment - Specify the alignment required of the registers when they are
240  // stored or loaded to memory.
241  //
242  int Alignment = alignment;
243
244  // CopyCost - This value is used to specify the cost of copying a value
245  // between two registers in this register class. The default value is one
246  // meaning it takes a single instruction to perform the copying. A negative
247  // value means copying is extremely expensive or impossible.
248  int CopyCost = 1;
249
250  // MemberList - Specify which registers are in this class.  If the
251  // allocation_order_* method are not specified, this also defines the order of
252  // allocation used by the register allocator.
253  //
254  dag MemberList = regList;
255
256  // AltNameIndex - The alternate register name to use when printing operands
257  // of this register class. Every register in the register class must have
258  // a valid alternate name for the given index.
259  RegAltNameIndex altNameIndex = idx;
260
261  // isAllocatable - Specify that the register class can be used for virtual
262  // registers and register allocation.  Some register classes are only used to
263  // model instruction operand constraints, and should have isAllocatable = 0.
264  bit isAllocatable = true;
265
266  // AltOrders - List of alternative allocation orders. The default order is
267  // MemberList itself, and that is good enough for most targets since the
268  // register allocators automatically remove reserved registers and move
269  // callee-saved registers to the end.
270  list<dag> AltOrders = [];
271
272  // AltOrderSelect - The body of a function that selects the allocation order
273  // to use in a given machine function. The code will be inserted in a
274  // function like this:
275  //
276  //   static inline unsigned f(const MachineFunction &MF) { ... }
277  //
278  // The function should return 0 to select the default order defined by
279  // MemberList, 1 to select the first AltOrders entry and so on.
280  code AltOrderSelect = [{}];
281
282  // Specify allocation priority for register allocators using a greedy
283  // heuristic. Classes with higher priority values are assigned first. This is
284  // useful as it is sometimes beneficial to assign registers to highly
285  // constrained classes first. The value has to be in the range [0,31].
286  int AllocationPriority = 0;
287
288  // Force register class to use greedy's global heuristic for all
289  // registers in this class. This should more aggressively try to
290  // avoid spilling in pathological cases.
291  bit GlobalPriority = false;
292
293  // Generate register pressure set for this register class and any class
294  // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
295  bit GeneratePressureSet = true;
296
297  // Weight override for register pressure calculation. This is the value
298  // TargetRegisterClass::getRegClassWeight() will return. The weight is in
299  // units of pressure for this register class. If unset tablegen will
300  // calculate a weight based on a number of register units in this register
301  // class registers. The weight is per register.
302  int Weight = ?;
303
304  // The diagnostic type to present when referencing this operand in a match
305  // failure error message. If this is empty, the default Match_InvalidOperand
306  // diagnostic type will be used. If this is "<name>", a Match_<name> enum
307  // value will be generated and used for this operand type. The target
308  // assembly parser is responsible for converting this into a user-facing
309  // diagnostic message.
310  string DiagnosticType = "";
311
312  // A diagnostic message to emit when an invalid value is provided for this
313  // register class when it is being used an an assembly operand. If this is
314  // non-empty, an anonymous diagnostic type enum value will be generated, and
315  // the assembly matcher will provide a function to map from diagnostic types
316  // to message strings.
317  string DiagnosticString = "";
318
319  // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass.
320  bits<8> TSFlags = 0;
321
322  // If set then consider this register class to be the base class for registers in
323  // its MemberList.  The base class for registers present in multiple base register
324  // classes will be resolved in the order defined by this value, with lower values
325  // taking precedence over higher ones.  Ties are resolved by enumeration order.
326  int BaseClassOrder = ?;
327}
328
329// The memberList in a RegisterClass is a dag of set operations. TableGen
330// evaluates these set operations and expand them into register lists. These
331// are the most common operation, see test/TableGen/SetTheory.td for more
332// examples of what is possible:
333//
334// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
335// register class, or a sub-expression. This is also the way to simply list
336// registers.
337//
338// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
339//
340// (and GPR, CSR) - Set intersection. All registers from the first set that are
341// also in the second set.
342//
343// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
344// numbered registers.  Takes an optional 4th operand which is a stride to use
345// when generating the sequence.
346//
347// (shl GPR, 4) - Remove the first N elements.
348//
349// (trunc GPR, 4) - Truncate after the first N elements.
350//
351// (rotl GPR, 1) - Rotate N places to the left.
352//
353// (rotr GPR, 1) - Rotate N places to the right.
354//
355// (decimate GPR, 2) - Pick every N'th element, starting with the first.
356//
357// (interleave A, B, ...) - Interleave the elements from each argument list.
358//
359// All of these operators work on ordered sets, not lists. That means
360// duplicates are removed from sub-expressions.
361
362// Set operators. The rest is defined in TargetSelectionDAG.td.
363def sequence;
364def decimate;
365def interleave;
366
367// RegisterTuples - Automatically generate super-registers by forming tuples of
368// sub-registers. This is useful for modeling register sequence constraints
369// with pseudo-registers that are larger than the architectural registers.
370//
371// The sub-register lists are zipped together:
372//
373//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
374//
375// Generates the same registers as:
376//
377//   let SubRegIndices = [sube, subo] in {
378//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
379//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
380//   }
381//
382// The generated pseudo-registers inherit super-classes and fields from their
383// first sub-register. Most fields from the Register class are inferred, and
384// the AsmName and Dwarf numbers are cleared.
385//
386// RegisterTuples instances can be used in other set operations to form
387// register classes and so on. This is the only way of using the generated
388// registers.
389//
390// RegNames may be specified to supply asm names for the generated tuples.
391// If used must have the same size as the list of produced registers.
392class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
393                     list<string> RegNames = []> {
394  // SubRegs - N lists of registers to be zipped up. Super-registers are
395  // synthesized from the first element of each SubRegs list, the second
396  // element and so on.
397  list<dag> SubRegs = Regs;
398
399  // SubRegIndices - N SubRegIndex instances. This provides the names of the
400  // sub-registers in the synthesized super-registers.
401  list<SubRegIndex> SubRegIndices = Indices;
402
403  // List of asm names for the generated tuple registers.
404  list<string> RegAsmNames = RegNames;
405}
406
407// RegisterCategory - This class is a list of RegisterClasses that belong to a
408// general cateogry --- e.g. "general purpose" or "fixed" registers. This is
409// useful for identifying registers in a generic way instead of having
410// information about a specific target's registers.
411class RegisterCategory<list<RegisterClass> classes> {
412  // Classes - A list of register classes that fall within the category.
413  list<RegisterClass> Classes = classes;
414}
415
416//===----------------------------------------------------------------------===//
417// DwarfRegNum - This class provides a mapping of the llvm register enumeration
418// to the register numbering used by gcc and gdb.  These values are used by a
419// debug information writer to describe where values may be located during
420// execution.
421class DwarfRegNum<list<int> Numbers> {
422  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
423  // These values can be determined by locating the <target>.h file in the
424  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
425  // order of these names correspond to the enumeration used by gcc.  A value of
426  // -1 indicates that the gcc number is undefined and -2 that register number
427  // is invalid for this mode/flavour.
428  list<int> DwarfNumbers = Numbers;
429}
430
431// DwarfRegAlias - This class declares that a given register uses the same dwarf
432// numbers as another one. This is useful for making it clear that the two
433// registers do have the same number. It also lets us build a mapping
434// from dwarf register number to llvm register.
435class DwarfRegAlias<Register reg> {
436      Register DwarfAlias = reg;
437}
438
439//===----------------------------------------------------------------------===//
440// Pull in the common support for MCPredicate (portable scheduling predicates).
441//
442include "llvm/Target/TargetInstrPredicate.td"
443
444//===----------------------------------------------------------------------===//
445// Pull in the common support for scheduling
446//
447include "llvm/Target/TargetSchedule.td"
448
449class Predicate; // Forward def
450
451class InstructionEncoding {
452  // Size of encoded instruction.
453  int Size;
454
455  // The "namespace" in which this instruction exists, on targets like ARM
456  // which multiple ISA namespaces exist.
457  string DecoderNamespace = "";
458
459  // List of predicates which will be turned into isel matching code.
460  list<Predicate> Predicates = [];
461
462  string DecoderMethod = "";
463
464  // Is the instruction decoder method able to completely determine if the
465  // given instruction is valid or not. If the TableGen definition of the
466  // instruction specifies bitpattern A??B where A and B are static bits, the
467  // hasCompleteDecoder flag says whether the decoder method fully handles the
468  // ?? space, i.e. if it is a final arbiter for the instruction validity.
469  // If not then the decoder attempts to continue decoding when the decoder
470  // method fails.
471  //
472  // This allows to handle situations where the encoding is not fully
473  // orthogonal. Example:
474  // * InstA with bitpattern 0b0000????,
475  // * InstB with bitpattern 0b000000?? but the associated decoder method
476  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
477  //
478  // The decoder tries to decode a bitpattern that matches both InstA and
479  // InstB bitpatterns first as InstB (because it is the most specific
480  // encoding). In the default case (hasCompleteDecoder = 1), when
481  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
482  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
483  // DecodeInstB() is not able to determine if all possible values of ?? are
484  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
485  // decode the bitpattern as InstA too.
486  bit hasCompleteDecoder = true;
487}
488
489// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
490// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
491// to encode and decode based on HwMode.
492class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
493    : HwModeSelect<Ms> {
494  // The length of this list must be the same as the length of Ms.
495  list<InstructionEncoding> Objects = Ts;
496}
497
498//===----------------------------------------------------------------------===//
499// Instruction set description - These classes correspond to the C++ classes in
500// the Target/TargetInstrInfo.h file.
501//
502class Instruction : InstructionEncoding {
503  string Namespace = "";
504
505  dag OutOperandList;       // An dag containing the MI def operand list.
506  dag InOperandList;        // An dag containing the MI use operand list.
507  string AsmString = "";    // The .s format to print the instruction with.
508
509  // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
510  // the Inst member of this Instruction is ignored.
511  EncodingByHwMode EncodingInfos;
512
513  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
514  // otherwise, uninitialized.
515  list<dag> Pattern;
516
517  // The follow state will eventually be inferred automatically from the
518  // instruction pattern.
519
520  list<Register> Uses = []; // Default to using no non-operand registers
521  list<Register> Defs = []; // Default to modifying no non-operand registers
522
523  // Predicates - List of predicates which will be turned into isel matching
524  // code.
525  list<Predicate> Predicates = [];
526
527  // Size - Size of encoded instruction, or zero if the size cannot be determined
528  // from the opcode.
529  int Size = 0;
530
531  // Code size, for instruction selection.
532  // FIXME: What does this actually mean?
533  int CodeSize = 0;
534
535  // Added complexity passed onto matching pattern.
536  int AddedComplexity  = 0;
537
538  // Indicates if this is a pre-isel opcode that should be
539  // legalized/regbankselected/selected.
540  bit isPreISelOpcode = false;
541
542  // These bits capture information about the high-level semantics of the
543  // instruction.
544  bit isReturn     = false;     // Is this instruction a return instruction?
545  bit isBranch     = false;     // Is this instruction a branch instruction?
546  bit isEHScopeReturn = false;  // Does this instruction end an EH scope?
547  bit isIndirectBranch = false; // Is this instruction an indirect branch?
548  bit isCompare    = false;     // Is this instruction a comparison instruction?
549  bit isMoveImm    = false;     // Is this instruction a move immediate instruction?
550  bit isMoveReg    = false;     // Is this instruction a move register instruction?
551  bit isBitcast    = false;     // Is this instruction a bitcast instruction?
552  bit isSelect     = false;     // Is this instruction a select instruction?
553  bit isBarrier    = false;     // Can control flow fall through this instruction?
554  bit isCall       = false;     // Is this instruction a call instruction?
555  bit isAdd        = false;     // Is this instruction an add instruction?
556  bit isTrap       = false;     // Is this instruction a trap instruction?
557  bit canFoldAsLoad = false;    // Can this be folded as a simple memory operand?
558  bit mayLoad      = ?;         // Is it possible for this inst to read memory?
559  bit mayStore     = ?;         // Is it possible for this inst to write memory?
560  bit mayRaiseFPException = false; // Can this raise a floating-point exception?
561  bit isConvertibleToThreeAddress = false;  // Can this 2-addr instruction promote?
562  bit isCommutable = false;     // Is this 3 operand instruction commutable?
563  bit isTerminator = false;     // Is this part of the terminator for a basic block?
564  bit isReMaterializable = false; // Is this instruction re-materializable?
565  bit isPredicable = false;     // 1 means this instruction is predicable
566                                // even if it does not have any operand
567                                // tablegen can identify as a predicate
568  bit isUnpredicable = false;   // 1 means this instruction is not predicable
569                                // even if it _does_ have a predicate operand
570  bit hasDelaySlot = false;     // Does this instruction have an delay slot?
571  bit usesCustomInserter = false; // Pseudo instr needing special help.
572  bit hasPostISelHook = false;  // To be *adjusted* after isel by target hook.
573  bit hasCtrlDep   = false;     // Does this instruction r/w ctrl-flow chains?
574  bit isNotDuplicable = false;  // Is it unsafe to duplicate this instruction?
575  bit isConvergent = false;     // Is this instruction convergent?
576  bit isAuthenticated = false;  // Does this instruction authenticate a pointer?
577  bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
578  bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
579  bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
580  bit isRegSequence = false;    // Is this instruction a kind of reg sequence?
581                                // If so, make sure to override
582                                // TargetInstrInfo::getRegSequenceLikeInputs.
583  bit isPseudo     = false;     // Is this instruction a pseudo-instruction?
584                                // If so, won't have encoding information for
585                                // the [MC]CodeEmitter stuff.
586  bit isMeta = false;           // Is this instruction a meta-instruction?
587                                // If so, won't produce any output in the form of
588                                // executable instructions
589  bit isExtractSubreg = false;  // Is this instruction a kind of extract subreg?
590                                // If so, make sure to override
591                                // TargetInstrInfo::getExtractSubregLikeInputs.
592  bit isInsertSubreg = false;   // Is this instruction a kind of insert subreg?
593                                // If so, make sure to override
594                                // TargetInstrInfo::getInsertSubregLikeInputs.
595  bit variadicOpsAreDefs = false; // Are variadic operands definitions?
596
597  // Does the instruction have side effects that are not captured by any
598  // operands of the instruction or other flags?
599  bit hasSideEffects = ?;
600
601  // Is this instruction a "real" instruction (with a distinct machine
602  // encoding), or is it a pseudo instruction used for codegen modeling
603  // purposes.
604  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
605  // instructions can (and often do) still have encoding information
606  // associated with them. Once we've migrated all of them over to true
607  // pseudo-instructions that are lowered to real instructions prior to
608  // the printer/emitter, we can remove this attribute and just use isPseudo.
609  //
610  // The intended use is:
611  // isPseudo: Does not have encoding information and should be expanded,
612  //   at the latest, during lowering to MCInst.
613  //
614  // isCodeGenOnly: Does have encoding information and can go through to the
615  //   CodeEmitter unchanged, but duplicates a canonical instruction
616  //   definition's encoding and should be ignored when constructing the
617  //   assembler match tables.
618  bit isCodeGenOnly = false;
619
620  // Is this instruction a pseudo instruction for use by the assembler parser.
621  bit isAsmParserOnly = false;
622
623  // This instruction is not expected to be queried for scheduling latencies
624  // and therefore needs no scheduling information even for a complete
625  // scheduling model.
626  bit hasNoSchedulingInfo = false;
627
628  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
629
630  // Scheduling information from TargetSchedule.td.
631  list<SchedReadWrite> SchedRW;
632
633  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
634
635  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
636  /// be encoded into the output machineinstr.
637  string DisableEncoding = "";
638
639  string PostEncoderMethod = "";
640
641  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
642  bits<64> TSFlags = 0;
643
644  ///@name Assembler Parser Support
645  ///@{
646
647  string AsmMatchConverter = "";
648
649  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
650  /// two-operand matcher inst-alias for a three operand instruction.
651  /// For example, the arm instruction "add r3, r3, r5" can be written
652  /// as "add r3, r5". The constraint is of the same form as a tied-operand
653  /// constraint. For example, "$Rn = $Rd".
654  string TwoOperandAliasConstraint = "";
655
656  /// Assembler variant name to use for this instruction. If specified then
657  /// instruction will be presented only in MatchTable for this variant. If
658  /// not specified then assembler variants will be determined based on
659  /// AsmString
660  string AsmVariantName = "";
661
662  ///@}
663
664  /// UseNamedOperandTable - If set, the operand indices of this instruction
665  /// can be queried via the getNamedOperandIdx() function which is generated
666  /// by TableGen.
667  bit UseNamedOperandTable = false;
668
669  /// Should generate helper functions that help you to map a logical operand's
670  /// index to the underlying MIOperand's index.
671  /// In most architectures logical operand indicies are equal to
672  /// MIOperand indicies, but for some CISC architectures, a logical operand
673  /// might be consist of multiple MIOperand (e.g. a logical operand that
674  /// uses complex address mode).
675  bit UseLogicalOperandMappings = false;
676
677  /// Should FastISel ignore this instruction. For certain ISAs, they have
678  /// instructions which map to the same ISD Opcode, value type operands and
679  /// instruction selection predicates. FastISel cannot handle such cases, but
680  /// SelectionDAG can.
681  bit FastISelShouldIgnore = false;
682
683  /// HasPositionOrder: Indicate tablegen to sort the instructions by record
684  /// ID, so that instruction that is defined earlier can be sorted earlier
685  /// in the assembly matching table.
686  bit HasPositionOrder = false;
687}
688
689/// Defines a Pat match between compressed and uncompressed instruction.
690/// The relationship and helper function generation are handled by
691/// CompressInstEmitter backend.
692class CompressPat<dag input, dag output, list<Predicate> predicates = []> {
693  /// Uncompressed instruction description.
694  dag Input = input;
695  /// Compressed instruction description.
696  dag Output = output;
697  /// Predicates that must be true for this to match.
698  list<Predicate> Predicates = predicates;
699  /// Duplicate match when tied operand is just different.
700  bit isCompressOnly = false;
701}
702
703/// Defines an additional encoding that disassembles to the given instruction
704/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
705// to specify their size.
706class AdditionalEncoding<Instruction I> : InstructionEncoding {
707  Instruction AliasOf = I;
708}
709
710/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
711/// Which instruction it expands to and how the operands map from the
712/// pseudo.
713class PseudoInstExpansion<dag Result> {
714  dag ResultInst = Result;     // The instruction to generate.
715  bit isPseudo = true;
716}
717
718/// Predicates - These are extra conditionals which are turned into instruction
719/// selector matching code. Currently each predicate is just a string.
720class Predicate<string cond> {
721  string CondString = cond;
722
723  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
724  /// matcher, this is true.  Targets should set this by inheriting their
725  /// feature from the AssemblerPredicate class in addition to Predicate.
726  bit AssemblerMatcherPredicate = false;
727
728  /// AssemblerCondDag - Set of subtarget features being tested used
729  /// as alternative condition string used for assembler matcher. Must be used
730  /// with (all_of) to indicate that all features must be present, or (any_of)
731  /// to indicate that at least one must be. The required lack of presence of
732  /// a feature can be tested using a (not) node including the feature.
733  /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
734  ///      "(all_of (not ModeThumb))" is translated to
735  ///      "(Bits & ModeThumb) == 0".
736  ///      "(all_of ModeThumb, FeatureThumb2)" is translated to
737  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
738  ///      "(any_of ModeTumb, FeatureThumb2)" is translated to
739  ///      "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
740  /// all_of and any_of cannot be combined in a single dag, instead multiple
741  /// predicates can be placed onto Instruction definitions.
742  dag AssemblerCondDag;
743
744  /// PredicateName - User-level name to use for the predicate. Mainly for use
745  /// in diagnostics such as missing feature errors in the asm matcher.
746  string PredicateName = "";
747
748  /// Setting this to '1' indicates that the predicate must be recomputed on
749  /// every function change. Most predicates can leave this at '0'.
750  ///
751  /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
752  bit RecomputePerFunction = false;
753}
754
755/// NoHonorSignDependentRounding - This predicate is true if support for
756/// sign-dependent-rounding is not enabled.
757def NoHonorSignDependentRounding
758 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
759
760class Requires<list<Predicate> preds> {
761  list<Predicate> Predicates = preds;
762}
763
764/// ops definition - This is just a simple marker used to identify the operand
765/// list for an instruction. outs and ins are identical both syntactically and
766/// semantically; they are used to define def operands and use operands to
767/// improve readability. This should be used like this:
768///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
769def ops;
770def outs;
771def ins;
772
773/// variable_ops definition - Mark this instruction as taking a variable number
774/// of operands.
775def variable_ops;
776
777/// variable-length instruction encoding utilities.
778/// The `ascend` operator should be used like this:
779///     (ascend 0b0010, 0b1101)
780/// Which represent a seqence of encoding fragments placing from LSB to MSB.
781/// Thus, in this case the final encoding will be 0b1101_0010.
782/// The arguments for `ascend` can either be `bits` or another DAG.
783def ascend;
784/// In addition, we can use `descend` to describe an encoding that places
785/// its arguments (i.e. encoding fragments) from MSB to LSB. For instance:
786///     (descend 0b0010, 0b1101)
787/// This results in an encoding of 0b0010_1101.
788def descend;
789/// The `operand` operator should be used like this:
790///     (operand "$src", 4)
791/// Which represents a 4-bit encoding for an instruction operand named `$src`.
792def operand;
793/// Similar to `operand`, we can reference only part of the operand's encoding:
794///     (slice "$src", 6, 8)
795///     (slice "$src", 8, 6)
796/// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand
797/// `$src`.
798def slice;
799/// You can use `encoder` or `decoder` to specify a custom encoder or decoder
800/// function for a specific `operand` or `slice` directive. For example:
801///     (operand "$src", 4, (encoder "encodeMyImm"))
802///     (slice "$src", 8, 6, (encoder "encodeMyReg"))
803///     (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm"))
804/// The ordering of `encoder` and `decoder` in the same `operand` or `slice`
805/// doesn't matter.
806/// Note that currently we cannot assign different decoders in the same
807/// (instruction) operand.
808def encoder;
809def decoder;
810
811/// PointerLikeRegClass - Values that are designed to have pointer width are
812/// derived from this.  TableGen treats the register class as having a symbolic
813/// type that it doesn't know, and resolves the actual regclass to use by using
814/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
815class PointerLikeRegClass<int Kind> {
816  int RegClassKind = Kind;
817}
818
819
820/// ptr_rc definition - Mark this operand as being a pointer value whose
821/// register class is resolved dynamically via a callback to TargetInstrInfo.
822/// FIXME: We should probably change this to a class which contain a list of
823/// flags. But currently we have but one flag.
824def ptr_rc : PointerLikeRegClass<0>;
825
826/// unknown definition - Mark this operand as being of unknown type, causing
827/// it to be resolved by inference in the context it is used.
828class unknown_class;
829def unknown : unknown_class;
830
831/// AsmOperandClass - Representation for the kinds of operands which the target
832/// specific parser can create and the assembly matcher may need to distinguish.
833///
834/// Operand classes are used to define the order in which instructions are
835/// matched, to ensure that the instruction which gets matched for any
836/// particular list of operands is deterministic.
837///
838/// The target specific parser must be able to classify a parsed operand into a
839/// unique class which does not partially overlap with any other classes. It can
840/// match a subset of some other class, in which case the super class field
841/// should be defined.
842class AsmOperandClass {
843  /// The name to use for this class, which should be usable as an enum value.
844  string Name = ?;
845
846  /// The super classes of this operand.
847  list<AsmOperandClass> SuperClasses = [];
848
849  /// The name of the method on the target specific operand to call to test
850  /// whether the operand is an instance of this class. If not set, this will
851  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
852  /// signature should be:
853  ///   bool isFoo() const;
854  string PredicateMethod = ?;
855
856  /// The name of the method on the target specific operand to call to add the
857  /// target specific operand to an MCInst. If not set, this will default to
858  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
859  /// signature should be:
860  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
861  string RenderMethod = ?;
862
863  /// The name of the method on the target specific operand to call to custom
864  /// handle the operand parsing. This is useful when the operands do not relate
865  /// to immediates or registers and are very instruction specific (as flags to
866  /// set in a processor register, coprocessor number, ...).
867  string ParserMethod = ?;
868
869  // The diagnostic type to present when referencing this operand in a
870  // match failure error message. By default, use a generic "invalid operand"
871  // diagnostic. The target AsmParser maps these codes to text.
872  string DiagnosticType = "";
873
874  /// A diagnostic message to emit when an invalid value is provided for this
875  /// operand.
876  string DiagnosticString = "";
877
878  /// Set to 1 if this operand is optional and not always required. Typically,
879  /// the AsmParser will emit an error when it finishes parsing an
880  /// instruction if it hasn't matched all the operands yet.  However, this
881  /// error will be suppressed if all of the remaining unmatched operands are
882  /// marked as IsOptional.
883  ///
884  /// Optional arguments must be at the end of the operand list.
885  bit IsOptional = false;
886
887  /// The name of the method on the target specific asm parser that returns the
888  /// default operand for this optional operand. This method is only used if
889  /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
890  /// where Foo is the AsmOperandClass name. The method signature should be:
891  ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
892  string DefaultMethod = ?;
893}
894
895def ImmAsmOperand : AsmOperandClass {
896  let Name = "Imm";
897}
898
899/// Operand Types - These provide the built-in operand types that may be used
900/// by a target.  Targets can optionally provide their own operand types as
901/// needed, though this should not be needed for RISC targets.
902class Operand<ValueType ty> : DAGOperand {
903  ValueType Type = ty;
904  string PrintMethod = "printOperand";
905  string EncoderMethod = "";
906  bit hasCompleteDecoder = true;
907  string OperandType = "OPERAND_UNKNOWN";
908  dag MIOperandInfo = (ops);
909
910  // MCOperandPredicate - Optionally, a code fragment operating on
911  // const MCOperand &MCOp, and returning a bool, to indicate if
912  // the value of MCOp is valid for the specific subclass of Operand
913  code MCOperandPredicate;
914
915  // ParserMatchClass - The "match class" that operands of this type fit
916  // in. Match classes are used to define the order in which instructions are
917  // match, to ensure that which instructions gets matched is deterministic.
918  //
919  // The target specific parser must be able to classify an parsed operand into
920  // a unique class, which does not partially overlap with any other classes. It
921  // can match a subset of some other class, in which case the AsmOperandClass
922  // should declare the other operand as one of its super classes.
923  AsmOperandClass ParserMatchClass = ImmAsmOperand;
924}
925
926class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
927  : DAGOperand {
928  // RegClass - The register class of the operand.
929  RegisterClass RegClass = regclass;
930  // PrintMethod - The target method to call to print register operands of
931  // this type. The method normally will just use an alt-name index to look
932  // up the name to print. Default to the generic printOperand().
933  string PrintMethod = pm;
934
935  // EncoderMethod - The target method name to call to encode this register
936  // operand.
937  string EncoderMethod = "";
938
939  // ParserMatchClass - The "match class" that operands of this type fit
940  // in. Match classes are used to define the order in which instructions are
941  // match, to ensure that which instructions gets matched is deterministic.
942  //
943  // The target specific parser must be able to classify an parsed operand into
944  // a unique class, which does not partially overlap with any other classes. It
945  // can match a subset of some other class, in which case the AsmOperandClass
946  // should declare the other operand as one of its super classes.
947  AsmOperandClass ParserMatchClass;
948
949  string OperandType = "OPERAND_REGISTER";
950
951  // When referenced in the result of a CodeGen pattern, GlobalISel will
952  // normally copy the matched operand to the result. When this is set, it will
953  // emit a special copy that will replace zero-immediates with the specified
954  // zero-register.
955  Register GIZeroRegister = ?;
956}
957
958let OperandType = "OPERAND_IMMEDIATE" in {
959def i1imm  : Operand<i1>;
960def i8imm  : Operand<i8>;
961def i16imm : Operand<i16>;
962def i32imm : Operand<i32>;
963def i64imm : Operand<i64>;
964
965def f32imm : Operand<f32>;
966def f64imm : Operand<f64>;
967}
968
969// Register operands for generic instructions don't have an MVT, but do have
970// constraints linking the operands (e.g. all operands of a G_ADD must
971// have the same LLT).
972class TypedOperand<string Ty> : Operand<untyped> {
973  let OperandType = Ty;
974  bit IsPointer = false;
975  bit IsImmediate = false;
976}
977
978def type0 : TypedOperand<"OPERAND_GENERIC_0">;
979def type1 : TypedOperand<"OPERAND_GENERIC_1">;
980def type2 : TypedOperand<"OPERAND_GENERIC_2">;
981def type3 : TypedOperand<"OPERAND_GENERIC_3">;
982def type4 : TypedOperand<"OPERAND_GENERIC_4">;
983def type5 : TypedOperand<"OPERAND_GENERIC_5">;
984
985let IsPointer = true in {
986  def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
987  def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
988  def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
989  def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
990  def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
991  def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
992}
993
994// untyped_imm is for operands where isImm() will be true. It currently has no
995// special behaviour and is only used for clarity.
996def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
997  let IsImmediate = true;
998}
999
1000/// zero_reg definition - Special node to stand for the zero register.
1001///
1002def zero_reg;
1003
1004/// undef_tied_input - Special node to indicate an input register tied
1005/// to an output which defaults to IMPLICIT_DEF.
1006def undef_tied_input;
1007
1008/// All operands which the MC layer classifies as predicates should inherit from
1009/// this class in some manner. This is already handled for the most commonly
1010/// used PredicateOperand, but may be useful in other circumstances.
1011class PredicateOp;
1012
1013/// OperandWithDefaultOps - This Operand class can be used as the parent class
1014/// for an Operand that needs to be initialized with a default value if
1015/// no value is supplied in a pattern.  This class can be used to simplify the
1016/// pattern definitions for instructions that have target specific flags
1017/// encoded as immediate operands.
1018class OperandWithDefaultOps<ValueType ty, dag defaultops>
1019  : Operand<ty> {
1020  dag DefaultOps = defaultops;
1021}
1022
1023/// PredicateOperand - This can be used to define a predicate operand for an
1024/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
1025/// AlwaysVal specifies the value of this predicate when set to "always
1026/// execute".
1027class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
1028  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
1029  let MIOperandInfo = OpTypes;
1030}
1031
1032/// OptionalDefOperand - This is used to define a optional definition operand
1033/// for an instruction. DefaultOps is the register the operand represents if
1034/// none is supplied, e.g. zero_reg.
1035class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
1036  : OperandWithDefaultOps<ty, defaultops> {
1037  let MIOperandInfo = OpTypes;
1038}
1039
1040
1041// InstrInfo - This class should only be instantiated once to provide parameters
1042// which are global to the target machine.
1043//
1044class InstrInfo {
1045  // Target can specify its instructions in either big or little-endian formats.
1046  // For instance, while both Sparc and PowerPC are big-endian platforms, the
1047  // Sparc manual specifies its instructions in the format [31..0] (big), while
1048  // PowerPC specifies them using the format [0..31] (little).
1049  bit isLittleEndianEncoding = false;
1050
1051  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
1052  // by default, and TableGen will infer their value from the instruction
1053  // pattern when possible.
1054  //
1055  // Normally, TableGen will issue an error if it can't infer the value of a
1056  // property that hasn't been set explicitly. When guessInstructionProperties
1057  // is set, it will guess a safe value instead.
1058  //
1059  // This option is a temporary migration help. It will go away.
1060  bit guessInstructionProperties = true;
1061
1062  // TableGen's instruction encoder generator has support for matching operands
1063  // to bit-field variables both by name and by position. Support for matching
1064  // by position is DEPRECATED, and WILL BE REMOVED. Positional matching is
1065  // confusing to use, and makes it very easy to accidentally write buggy
1066  // instruction definitions.
1067  //
1068  // In previous versions of LLVM, the ability to match operands by position was
1069  // enabled unconditionally. It is now controllable by this option -- and
1070  // disabled by default. The previous behavior can be restored by setting this
1071  // option to true.
1072  //
1073  // This option is temporary, and will go away once all in-tree targets have
1074  // migrated.
1075  //
1076  // TODO: clean up and remove these options.
1077  bit useDeprecatedPositionallyEncodedOperands = false;
1078
1079  // If positional encoding rules are used for the encoder generator, they may
1080  // also need to be used by the decoder generator -- if so, enable this
1081  // variable.
1082  //
1083  // This option is a no-op unless useDeprecatedPositionallyEncodedOperands is
1084  // true.
1085  //
1086  // This option is temporary, and will go away once all in-tree targets have
1087  // migrated.
1088  bit decodePositionallyEncodedOperands = false;
1089
1090  // When set, this indicates that there will be no overlap between those
1091  // operands that are matched by ordering (positional operands) and those
1092  // matched by name.
1093  //
1094  // This is a no-op unless useDeprecatedPositionallyEncodedOperands is true
1095  // (though it does modify the "would've used positional operand XXX" error.)
1096  //
1097  // This option is temporary, and will go away once all in-tree targets have
1098  // migrated.
1099  bit noNamedPositionallyEncodedOperands = false;
1100}
1101
1102// Standard Pseudo Instructions.
1103// This list must match TargetOpcodes.def.
1104// Only these instructions are allowed in the TargetOpcode namespace.
1105// Ensure mayLoad and mayStore have a default value, so as not to break
1106// targets that set guessInstructionProperties=0. Any local definition of
1107// mayLoad/mayStore takes precedence over these default values.
1108class StandardPseudoInstruction : Instruction {
1109  let mayLoad = false;
1110  let mayStore = false;
1111  let isCodeGenOnly = true;
1112  let isPseudo = true;
1113  let hasNoSchedulingInfo = true;
1114  let Namespace = "TargetOpcode";
1115}
1116def PHI : StandardPseudoInstruction {
1117  let OutOperandList = (outs unknown:$dst);
1118  let InOperandList = (ins variable_ops);
1119  let AsmString = "PHINODE";
1120  let hasSideEffects = false;
1121}
1122def INLINEASM : StandardPseudoInstruction {
1123  let OutOperandList = (outs);
1124  let InOperandList = (ins variable_ops);
1125  let AsmString = "";
1126  let hasSideEffects = false;  // Note side effect is encoded in an operand.
1127}
1128def INLINEASM_BR : StandardPseudoInstruction {
1129  let OutOperandList = (outs);
1130  let InOperandList = (ins variable_ops);
1131  let AsmString = "";
1132  // Unlike INLINEASM, this is always treated as having side-effects.
1133  let hasSideEffects = true;
1134  // Despite potentially branching, this instruction is intentionally _not_
1135  // marked as a terminator or a branch.
1136}
1137def CFI_INSTRUCTION : StandardPseudoInstruction {
1138  let OutOperandList = (outs);
1139  let InOperandList = (ins i32imm:$id);
1140  let AsmString = "";
1141  let hasCtrlDep = true;
1142  let hasSideEffects = false;
1143  let isNotDuplicable = true;
1144  let isMeta = true;
1145}
1146def EH_LABEL : StandardPseudoInstruction {
1147  let OutOperandList = (outs);
1148  let InOperandList = (ins i32imm:$id);
1149  let AsmString = "";
1150  let hasCtrlDep = true;
1151  let hasSideEffects = false;
1152  let isNotDuplicable = true;
1153  let isMeta = true;
1154}
1155def GC_LABEL : StandardPseudoInstruction {
1156  let OutOperandList = (outs);
1157  let InOperandList = (ins i32imm:$id);
1158  let AsmString = "";
1159  let hasCtrlDep = true;
1160  let hasSideEffects = false;
1161  let isNotDuplicable = true;
1162  let isMeta = true;
1163}
1164def ANNOTATION_LABEL : StandardPseudoInstruction {
1165  let OutOperandList = (outs);
1166  let InOperandList = (ins i32imm:$id);
1167  let AsmString = "";
1168  let hasCtrlDep = true;
1169  let hasSideEffects = false;
1170  let isNotDuplicable = true;
1171}
1172def KILL : StandardPseudoInstruction {
1173  let OutOperandList = (outs);
1174  let InOperandList = (ins variable_ops);
1175  let AsmString = "";
1176  let hasSideEffects = false;
1177  let isMeta = true;
1178}
1179def EXTRACT_SUBREG : StandardPseudoInstruction {
1180  let OutOperandList = (outs unknown:$dst);
1181  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
1182  let AsmString = "";
1183  let hasSideEffects = false;
1184}
1185def INSERT_SUBREG : StandardPseudoInstruction {
1186  let OutOperandList = (outs unknown:$dst);
1187  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
1188  let AsmString = "";
1189  let hasSideEffects = false;
1190  let Constraints = "$supersrc = $dst";
1191}
1192def IMPLICIT_DEF : StandardPseudoInstruction {
1193  let OutOperandList = (outs unknown:$dst);
1194  let InOperandList = (ins);
1195  let AsmString = "";
1196  let hasSideEffects = false;
1197  let isReMaterializable = true;
1198  let isAsCheapAsAMove = true;
1199  let isMeta = true;
1200}
1201def SUBREG_TO_REG : StandardPseudoInstruction {
1202  let OutOperandList = (outs unknown:$dst);
1203  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
1204  let AsmString = "";
1205  let hasSideEffects = false;
1206}
1207def COPY_TO_REGCLASS : StandardPseudoInstruction {
1208  let OutOperandList = (outs unknown:$dst);
1209  let InOperandList = (ins unknown:$src, i32imm:$regclass);
1210  let AsmString = "";
1211  let hasSideEffects = false;
1212  let isAsCheapAsAMove = true;
1213}
1214def DBG_VALUE : StandardPseudoInstruction {
1215  let OutOperandList = (outs);
1216  let InOperandList = (ins variable_ops);
1217  let AsmString = "DBG_VALUE";
1218  let hasSideEffects = false;
1219  let isMeta = true;
1220}
1221def DBG_VALUE_LIST : StandardPseudoInstruction {
1222  let OutOperandList = (outs);
1223  let InOperandList = (ins variable_ops);
1224  let AsmString = "DBG_VALUE_LIST";
1225  let hasSideEffects = 0;
1226  let isMeta = true;
1227}
1228def DBG_INSTR_REF : StandardPseudoInstruction {
1229  let OutOperandList = (outs);
1230  let InOperandList = (ins variable_ops);
1231  let AsmString = "DBG_INSTR_REF";
1232  let hasSideEffects = false;
1233  let isMeta = true;
1234}
1235def DBG_PHI : StandardPseudoInstruction {
1236  let OutOperandList = (outs);
1237  let InOperandList = (ins variable_ops);
1238  let AsmString = "DBG_PHI";
1239  let hasSideEffects = 0;
1240  let isMeta = true;
1241}
1242def DBG_LABEL : StandardPseudoInstruction {
1243  let OutOperandList = (outs);
1244  let InOperandList = (ins unknown:$label);
1245  let AsmString = "DBG_LABEL";
1246  let hasSideEffects = false;
1247  let isMeta = true;
1248}
1249def REG_SEQUENCE : StandardPseudoInstruction {
1250  let OutOperandList = (outs unknown:$dst);
1251  let InOperandList = (ins unknown:$supersrc, variable_ops);
1252  let AsmString = "";
1253  let hasSideEffects = false;
1254  let isAsCheapAsAMove = true;
1255}
1256def COPY : StandardPseudoInstruction {
1257  let OutOperandList = (outs unknown:$dst);
1258  let InOperandList = (ins unknown:$src);
1259  let AsmString = "";
1260  let hasSideEffects = false;
1261  let isAsCheapAsAMove = true;
1262  let hasNoSchedulingInfo = false;
1263}
1264def BUNDLE : StandardPseudoInstruction {
1265  let OutOperandList = (outs);
1266  let InOperandList = (ins variable_ops);
1267  let AsmString = "BUNDLE";
1268  let hasSideEffects = false;
1269}
1270def LIFETIME_START : StandardPseudoInstruction {
1271  let OutOperandList = (outs);
1272  let InOperandList = (ins i32imm:$id);
1273  let AsmString = "LIFETIME_START";
1274  let hasSideEffects = false;
1275  let isMeta = true;
1276}
1277def LIFETIME_END : StandardPseudoInstruction {
1278  let OutOperandList = (outs);
1279  let InOperandList = (ins i32imm:$id);
1280  let AsmString = "LIFETIME_END";
1281  let hasSideEffects = false;
1282  let isMeta = true;
1283}
1284def PSEUDO_PROBE : StandardPseudoInstruction {
1285  let OutOperandList = (outs);
1286  let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
1287  let AsmString = "PSEUDO_PROBE";
1288  let hasSideEffects = 1;
1289  let isMeta = true;
1290}
1291def ARITH_FENCE : StandardPseudoInstruction {
1292  let OutOperandList = (outs unknown:$dst);
1293  let InOperandList = (ins unknown:$src);
1294  let AsmString = "";
1295  let hasSideEffects = false;
1296  let Constraints = "$src = $dst";
1297  let isMeta = true;
1298}
1299
1300def STACKMAP : StandardPseudoInstruction {
1301  let OutOperandList = (outs);
1302  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1303  let hasSideEffects = true;
1304  let isCall = true;
1305  let mayLoad = true;
1306  let usesCustomInserter = true;
1307}
1308def PATCHPOINT : StandardPseudoInstruction {
1309  let OutOperandList = (outs unknown:$dst);
1310  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1311                       i32imm:$nargs, i32imm:$cc, variable_ops);
1312  let hasSideEffects = true;
1313  let isCall = true;
1314  let mayLoad = true;
1315  let usesCustomInserter = true;
1316}
1317def STATEPOINT : StandardPseudoInstruction {
1318  let OutOperandList = (outs variable_ops);
1319  let InOperandList = (ins variable_ops);
1320  let usesCustomInserter = true;
1321  let mayLoad = true;
1322  let mayStore = true;
1323  let hasSideEffects = true;
1324  let isCall = true;
1325}
1326def LOAD_STACK_GUARD : StandardPseudoInstruction {
1327  let OutOperandList = (outs ptr_rc:$dst);
1328  let InOperandList = (ins);
1329  let mayLoad = true;
1330  bit isReMaterializable = true;
1331  let hasSideEffects = false;
1332  bit isPseudo = true;
1333}
1334def PREALLOCATED_SETUP : StandardPseudoInstruction {
1335  let OutOperandList = (outs);
1336  let InOperandList = (ins i32imm:$a);
1337  let usesCustomInserter = true;
1338  let hasSideEffects = true;
1339}
1340def PREALLOCATED_ARG : StandardPseudoInstruction {
1341  let OutOperandList = (outs ptr_rc:$loc);
1342  let InOperandList = (ins i32imm:$a, i32imm:$b);
1343  let usesCustomInserter = true;
1344  let hasSideEffects = true;
1345}
1346def LOCAL_ESCAPE : StandardPseudoInstruction {
1347  // This instruction is really just a label. It has to be part of the chain so
1348  // that it doesn't get dropped from the DAG, but it produces nothing and has
1349  // no side effects.
1350  let OutOperandList = (outs);
1351  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1352  let hasSideEffects = false;
1353  let hasCtrlDep = true;
1354}
1355def FAULTING_OP : StandardPseudoInstruction {
1356  let OutOperandList = (outs unknown:$dst);
1357  let InOperandList = (ins variable_ops);
1358  let usesCustomInserter = true;
1359  let hasSideEffects = true;
1360  let mayLoad = true;
1361  let mayStore = true;
1362  let isTerminator = true;
1363  let isBranch = true;
1364}
1365def PATCHABLE_OP : StandardPseudoInstruction {
1366  let OutOperandList = (outs);
1367  let InOperandList = (ins variable_ops);
1368  let usesCustomInserter = true;
1369  let mayLoad = true;
1370  let mayStore = true;
1371  let hasSideEffects = true;
1372}
1373def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1374  let OutOperandList = (outs);
1375  let InOperandList = (ins);
1376  let AsmString = "# XRay Function Enter.";
1377  let usesCustomInserter = true;
1378  let hasSideEffects = true;
1379}
1380def PATCHABLE_RET : StandardPseudoInstruction {
1381  let OutOperandList = (outs);
1382  let InOperandList = (ins variable_ops);
1383  let AsmString = "# XRay Function Patchable RET.";
1384  let usesCustomInserter = true;
1385  let hasSideEffects = true;
1386  let isTerminator = true;
1387  let isReturn = true;
1388}
1389def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1390  let OutOperandList = (outs);
1391  let InOperandList = (ins);
1392  let AsmString = "# XRay Function Exit.";
1393  let usesCustomInserter = true;
1394  let hasSideEffects = true;
1395  let isReturn = false; // Original return instruction will follow
1396}
1397def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1398  let OutOperandList = (outs);
1399  let InOperandList = (ins variable_ops);
1400  let AsmString = "# XRay Tail Call Exit.";
1401  let usesCustomInserter = true;
1402  let hasSideEffects = true;
1403  let isReturn = true;
1404}
1405def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1406  let OutOperandList = (outs);
1407  let InOperandList = (ins ptr_rc:$event, unknown:$size);
1408  let AsmString = "# XRay Custom Event Log.";
1409  let usesCustomInserter = true;
1410  let isCall = true;
1411  let mayLoad = true;
1412  let mayStore = true;
1413  let hasSideEffects = true;
1414}
1415def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1416  let OutOperandList = (outs);
1417  let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
1418  let AsmString = "# XRay Typed Event Log.";
1419  let usesCustomInserter = true;
1420  let isCall = true;
1421  let mayLoad = true;
1422  let mayStore = true;
1423  let hasSideEffects = true;
1424}
1425def FENTRY_CALL : StandardPseudoInstruction {
1426  let OutOperandList = (outs);
1427  let InOperandList = (ins);
1428  let AsmString = "# FEntry call";
1429  let usesCustomInserter = true;
1430  let isCall = true;
1431  let mayLoad = true;
1432  let mayStore = true;
1433  let hasSideEffects = true;
1434}
1435def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1436  let OutOperandList = (outs);
1437  let InOperandList = (ins variable_ops);
1438  let AsmString = "";
1439  let hasSideEffects = true;
1440}
1441def MEMBARRIER : StandardPseudoInstruction {
1442  let OutOperandList = (outs);
1443  let InOperandList = (ins);
1444  let AsmString = "";
1445  let hasSideEffects = true;
1446  let Size = 0;
1447  let isMeta = true;
1448}
1449
1450// Generic opcodes used in GlobalISel.
1451include "llvm/Target/GenericOpcodes.td"
1452
1453//===----------------------------------------------------------------------===//
1454// AsmParser - This class can be implemented by targets that wish to implement
1455// .s file parsing.
1456//
1457// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1458// syntax on X86 for example).
1459//
1460class AsmParser {
1461  // AsmParserClassName - This specifies the suffix to use for the asmparser
1462  // class.  Generated AsmParser classes are always prefixed with the target
1463  // name.
1464  string AsmParserClassName  = "AsmParser";
1465
1466  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1467  // function of the AsmParser class to call on every matched instruction.
1468  // This can be used to perform target specific instruction post-processing.
1469  string AsmParserInstCleanup  = "";
1470
1471  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1472  // written register name matcher
1473  bit ShouldEmitMatchRegisterName = true;
1474
1475  // Set to true if the target needs a generated 'alternative register name'
1476  // matcher.
1477  //
1478  // This generates a function which can be used to lookup registers from
1479  // their aliases. This function will fail when called on targets where
1480  // several registers share the same alias (i.e. not a 1:1 mapping).
1481  bit ShouldEmitMatchRegisterAltName = false;
1482
1483  // Set to true if MatchRegisterName and MatchRegisterAltName functions
1484  // should be generated even if there are duplicate register names. The
1485  // target is responsible for coercing aliased registers as necessary
1486  // (e.g. in validateTargetOperandClass), and there are no guarantees about
1487  // which numeric register identifier will be returned in the case of
1488  // multiple matches.
1489  bit AllowDuplicateRegisterNames = false;
1490
1491  // HasMnemonicFirst - Set to false if target instructions don't always
1492  // start with a mnemonic as the first token.
1493  bit HasMnemonicFirst = true;
1494
1495  // ReportMultipleNearMisses -
1496  // When 0, the assembly matcher reports an error for one encoding or operand
1497  // that did not match the parsed instruction.
1498  // When 1, the assembly matcher returns a list of encodings that were close
1499  // to matching the parsed instruction, so to allow more detailed error
1500  // messages.
1501  bit ReportMultipleNearMisses = false;
1502
1503  // OperandParserMethod - If non-empty, this is the name of a custom
1504  // member function of the AsmParser class to call for every instruction
1505  // operand to be parsed.
1506  string OperandParserMethod = "";
1507
1508  // CallCustomParserForAllOperands - Set to true if the custom parser
1509  // method shall be called for all operands as opposed to only those
1510  // that have their own specified custom parsers.
1511  bit CallCustomParserForAllOperands = false;
1512}
1513def DefaultAsmParser : AsmParser;
1514
1515//===----------------------------------------------------------------------===//
1516// AsmParserVariant - Subtargets can have multiple different assembly parsers
1517// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1518// implemented by targets to describe such variants.
1519//
1520class AsmParserVariant {
1521  // Variant - AsmParsers can be of multiple different variants.  Variants are
1522  // used to support targets that need to parse multiple formats for the
1523  // assembly language.
1524  int Variant = 0;
1525
1526  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1527  string Name = "";
1528
1529  // CommentDelimiter - If given, the delimiter string used to recognize
1530  // comments which are hard coded in the .td assembler strings for individual
1531  // instructions.
1532  string CommentDelimiter = "";
1533
1534  // RegisterPrefix - If given, the token prefix which indicates a register
1535  // token. This is used by the matcher to automatically recognize hard coded
1536  // register tokens as constrained registers, instead of tokens, for the
1537  // purposes of matching.
1538  string RegisterPrefix = "";
1539
1540  // TokenizingCharacters - Characters that are standalone tokens
1541  string TokenizingCharacters = "[]*!";
1542
1543  // SeparatorCharacters - Characters that are not tokens
1544  string SeparatorCharacters = " \t,";
1545
1546  // BreakCharacters - Characters that start new identifiers
1547  string BreakCharacters = "";
1548}
1549def DefaultAsmParserVariant : AsmParserVariant;
1550
1551// Operators for combining SubtargetFeatures in AssemblerPredicates
1552def any_of;
1553def all_of;
1554
1555/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1556/// matches instructions and aliases.
1557class AssemblerPredicate<dag cond, string name = ""> {
1558  bit AssemblerMatcherPredicate = true;
1559  dag AssemblerCondDag = cond;
1560  string PredicateName = name;
1561}
1562
1563/// TokenAlias - This class allows targets to define assembler token
1564/// operand aliases. That is, a token literal operand which is equivalent
1565/// to another, canonical, token literal. For example, ARM allows:
1566///   vmov.u32 s4, #0  -> vmov.i32, #0
1567/// 'u32' is a more specific designator for the 32-bit integer type specifier
1568/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1569///   def : TokenAlias<".u32", ".i32">;
1570///
1571/// This works by marking the match class of 'From' as a subclass of the
1572/// match class of 'To'.
1573class TokenAlias<string From, string To> {
1574  string FromToken = From;
1575  string ToToken = To;
1576}
1577
1578/// MnemonicAlias - This class allows targets to define assembler mnemonic
1579/// aliases.  This should be used when all forms of one mnemonic are accepted
1580/// with a different mnemonic.  For example, X86 allows:
1581///   sal %al, 1    -> shl %al, 1
1582///   sal %ax, %cl  -> shl %ax, %cl
1583///   sal %eax, %cl -> shl %eax, %cl
1584/// etc.  Though "sal" is accepted with many forms, all of them are directly
1585/// translated to a shl, so it can be handled with (in the case of X86, it
1586/// actually has one for each suffix as well):
1587///   def : MnemonicAlias<"sal", "shl">;
1588///
1589/// Mnemonic aliases are mapped before any other translation in the match phase,
1590/// and do allow Requires predicates, e.g.:
1591///
1592///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1593///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1594///
1595/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1596///
1597///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1598///
1599/// If no variant (e.g., "att" or "intel") is specified then the alias is
1600/// applied unconditionally.
1601class MnemonicAlias<string From, string To, string VariantName = ""> {
1602  string FromMnemonic = From;
1603  string ToMnemonic = To;
1604  string AsmVariantName = VariantName;
1605
1606  // Predicates - Predicates that must be true for this remapping to happen.
1607  list<Predicate> Predicates = [];
1608}
1609
1610/// InstAlias - This defines an alternate assembly syntax that is allowed to
1611/// match an instruction that has a different (more canonical) assembly
1612/// representation.
1613class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1614  string AsmString = Asm;      // The .s format to match the instruction with.
1615  dag ResultInst = Result;     // The MCInst to generate.
1616
1617  // This determines which order the InstPrinter detects aliases for
1618  // printing. A larger value makes the alias more likely to be
1619  // emitted. The Instruction's own definition is notionally 0.5, so 0
1620  // disables printing and 1 enables it if there are no conflicting aliases.
1621  int EmitPriority = Emit;
1622
1623  // Predicates - Predicates that must be true for this to match.
1624  list<Predicate> Predicates = [];
1625
1626  // If the instruction specified in Result has defined an AsmMatchConverter
1627  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1628  // function when converting the OperandVector into an MCInst instead of the
1629  // function that is generated by the dag Result.
1630  // Setting this to 0 will cause the alias to ignore the Result instruction's
1631  // defined AsmMatchConverter and instead use the function generated by the
1632  // dag Result.
1633  bit UseInstAsmMatchConverter = true;
1634
1635  // Assembler variant name to use for this alias. If not specified then
1636  // assembler variants will be determined based on AsmString
1637  string AsmVariantName = VariantName;
1638}
1639
1640//===----------------------------------------------------------------------===//
1641// AsmWriter - This class can be implemented by targets that need to customize
1642// the format of the .s file writer.
1643//
1644// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1645// on X86 for example).
1646//
1647class AsmWriter {
1648  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1649  // class.  Generated AsmWriter classes are always prefixed with the target
1650  // name.
1651  string AsmWriterClassName  = "InstPrinter";
1652
1653  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1654  // the various print methods.
1655  // FIXME: Remove after all ports are updated.
1656  int PassSubtarget = 0;
1657
1658  // Variant - AsmWriters can be of multiple different variants.  Variants are
1659  // used to support targets that need to emit assembly code in ways that are
1660  // mostly the same for different targets, but have minor differences in
1661  // syntax.  If the asmstring contains {|} characters in them, this integer
1662  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1663  // == 1, will expand to "y".
1664  int Variant = 0;
1665}
1666def DefaultAsmWriter : AsmWriter;
1667
1668
1669//===----------------------------------------------------------------------===//
1670// Target - This class contains the "global" target information
1671//
1672class Target {
1673  // InstructionSet - Instruction set description for this target.
1674  InstrInfo InstructionSet;
1675
1676  // AssemblyParsers - The AsmParser instances available for this target.
1677  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1678
1679  /// AssemblyParserVariants - The AsmParserVariant instances available for
1680  /// this target.
1681  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1682
1683  // AssemblyWriters - The AsmWriter instances available for this target.
1684  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1685
1686  // AllowRegisterRenaming - Controls whether this target allows
1687  // post-register-allocation renaming of registers.  This is done by
1688  // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1689  // for all opcodes if this flag is set to 0.
1690  int AllowRegisterRenaming = 0;
1691}
1692
1693//===----------------------------------------------------------------------===//
1694// SubtargetFeature - A characteristic of the chip set.
1695//
1696class SubtargetFeature<string n, string a,  string v, string d,
1697                       list<SubtargetFeature> i = []> {
1698  // Name - Feature name.  Used by command line (-mattr=) to determine the
1699  // appropriate target chip.
1700  //
1701  string Name = n;
1702
1703  // Attribute - Attribute to be set by feature.
1704  //
1705  string Attribute = a;
1706
1707  // Value - Value the attribute to be set to by feature.
1708  //
1709  string Value = v;
1710
1711  // Desc - Feature description.  Used by command line (-mattr=) to display help
1712  // information.
1713  //
1714  string Desc = d;
1715
1716  // Implies - Features that this feature implies are present. If one of those
1717  // features isn't set, then this one shouldn't be set either.
1718  //
1719  list<SubtargetFeature> Implies = i;
1720}
1721
1722/// Specifies a Subtarget feature that this instruction is deprecated on.
1723class Deprecated<SubtargetFeature dep> {
1724  SubtargetFeature DeprecatedFeatureMask = dep;
1725}
1726
1727/// A custom predicate used to determine if an instruction is
1728/// deprecated or not.
1729class ComplexDeprecationPredicate<string dep> {
1730  string ComplexDeprecationPredicate = dep;
1731}
1732
1733//===----------------------------------------------------------------------===//
1734// Processor chip sets - These values represent each of the chip sets supported
1735// by the scheduler.  Each Processor definition requires corresponding
1736// instruction itineraries.
1737//
1738class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
1739                list<SubtargetFeature> tunef = []> {
1740  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1741  // appropriate target chip.
1742  //
1743  string Name = n;
1744
1745  // SchedModel - The machine model for scheduling and instruction cost.
1746  //
1747  SchedMachineModel SchedModel = NoSchedModel;
1748
1749  // ProcItin - The scheduling information for the target processor.
1750  //
1751  ProcessorItineraries ProcItin = pi;
1752
1753  // Features - list of
1754  list<SubtargetFeature> Features = f;
1755
1756  // TuneFeatures - list of features for tuning for this CPU. If the target
1757  // supports -mtune, this should contain the list of features used to make
1758  // microarchitectural optimization decisions for a given processor.  While
1759  // Features should contain the architectural features for the processor.
1760  list<SubtargetFeature> TuneFeatures = tunef;
1761}
1762
1763// ProcessorModel allows subtargets to specify the more general
1764// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1765// gradually move to this newer form.
1766//
1767// Although this class always passes NoItineraries to the Processor
1768// class, the SchedMachineModel may still define valid Itineraries.
1769class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
1770                     list<SubtargetFeature> tunef = []>
1771  : Processor<n, NoItineraries, f, tunef> {
1772  let SchedModel = m;
1773}
1774
1775//===----------------------------------------------------------------------===//
1776// InstrMapping - This class is used to create mapping tables to relate
1777// instructions with each other based on the values specified in RowFields,
1778// ColFields, KeyCol and ValueCols.
1779//
1780class InstrMapping {
1781  // FilterClass - Used to limit search space only to the instructions that
1782  // define the relationship modeled by this InstrMapping record.
1783  string FilterClass;
1784
1785  // RowFields - List of fields/attributes that should be same for all the
1786  // instructions in a row of the relation table. Think of this as a set of
1787  // properties shared by all the instructions related by this relationship
1788  // model and is used to categorize instructions into subgroups. For instance,
1789  // if we want to define a relation that maps 'Add' instruction to its
1790  // predicated forms, we can define RowFields like this:
1791  //
1792  // let RowFields = BaseOp
1793  // All add instruction predicated/non-predicated will have to set their BaseOp
1794  // to the same value.
1795  //
1796  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1797  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1798  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1799  list<string> RowFields = [];
1800
1801  // List of fields/attributes that are same for all the instructions
1802  // in a column of the relation table.
1803  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1804  // based on the 'predSense' values. All the instruction in a specific
1805  // column have the same value and it is fixed for the column according
1806  // to the values set in 'ValueCols'.
1807  list<string> ColFields = [];
1808
1809  // Values for the fields/attributes listed in 'ColFields'.
1810  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1811  // that models this relation) should be non-predicated.
1812  // In the example above, 'Add' is the key instruction.
1813  list<string> KeyCol = [];
1814
1815  // List of values for the fields/attributes listed in 'ColFields', one for
1816  // each column in the relation table.
1817  //
1818  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1819  // table. First column requires all the instructions to have predSense
1820  // set to 'true' and second column requires it to be 'false'.
1821  list<list<string> > ValueCols = [];
1822}
1823
1824//===----------------------------------------------------------------------===//
1825// Pull in the common support for calling conventions.
1826//
1827include "llvm/Target/TargetCallingConv.td"
1828
1829//===----------------------------------------------------------------------===//
1830// Pull in the common support for DAG isel generation.
1831//
1832include "llvm/Target/TargetSelectionDAG.td"
1833
1834//===----------------------------------------------------------------------===//
1835// Pull in the common support for Global ISel register bank info generation.
1836//
1837include "llvm/Target/GlobalISel/RegisterBank.td"
1838
1839//===----------------------------------------------------------------------===//
1840// Pull in the common support for DAG isel generation.
1841//
1842include "llvm/Target/GlobalISel/Target.td"
1843
1844//===----------------------------------------------------------------------===//
1845// Pull in the common support for the Global ISel DAG-based selector generation.
1846//
1847include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1848
1849//===----------------------------------------------------------------------===//
1850// Pull in the common support for Pfm Counters generation.
1851//
1852include "llvm/Target/TargetPfmCounters.td"
1853