1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target-independent interfaces which should be
10// implemented by each target which is using a TableGen based code generator.
11//
12//===----------------------------------------------------------------------===//
13
14// Include all information about LLVM intrinsics.
15include "llvm/IR/Intrinsics.td"
16
17//===----------------------------------------------------------------------===//
18// Register file description - These classes are used to fill in the target
19// description classes.
20
21class HwMode<string FS> {
22  // A string representing subtarget features that turn on this HW mode.
23  // For example, "+feat1,-feat2" will indicate that the mode is active
24  // when "feat1" is enabled and "feat2" is disabled at the same time.
25  // Any other features are not checked.
26  // When multiple modes are used, they should be mutually exclusive,
27  // otherwise the results are unpredictable.
28  string Features = FS;
29}
30
31// A special mode recognized by tablegen. This mode is considered active
32// when no other mode is active. For targets that do not use specific hw
33// modes, this is the only mode.
34def DefaultMode : HwMode<"">;
35
36// A class used to associate objects with HW modes. It is only intended to
37// be used as a base class, where the derived class should contain a member
38// "Objects", which is a list of the same length as the list of modes.
39// The n-th element on the Objects list will be associated with the n-th
40// element on the Modes list.
41class HwModeSelect<list<HwMode> Ms> {
42  list<HwMode> Modes = Ms;
43}
44
45// A common class that implements a counterpart of ValueType, which is
46// dependent on a HW mode. This class inherits from ValueType itself,
47// which makes it possible to use objects of this class where ValueType
48// objects could be used. This is specifically applicable to selection
49// patterns.
50class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
51    : HwModeSelect<Ms>, ValueType<0, 0> {
52  // The length of this list must be the same as the length of Ms.
53  list<ValueType> Objects = Ts;
54}
55
56// A class representing the register size, spill size and spill alignment
57// in bits of a register.
58class RegInfo<int RS, int SS, int SA> {
59  int RegSize = RS;         // Register size in bits.
60  int SpillSize = SS;       // Spill slot size in bits.
61  int SpillAlignment = SA;  // Spill slot alignment in bits.
62}
63
64// The register size/alignment information, parameterized by a HW mode.
65class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
66    : HwModeSelect<Ms> {
67  // The length of this list must be the same as the length of Ms.
68  list<RegInfo> Objects = Ts;
69}
70
71// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
72class SubRegIndex<int size, int offset = 0> {
73  string Namespace = "";
74
75  // Size - Size (in bits) of the sub-registers represented by this index.
76  int Size = size;
77
78  // Offset - Offset of the first bit that is part of this sub-register index.
79  // Set it to -1 if the same index is used to represent sub-registers that can
80  // be at different offsets (for example when using an index to access an
81  // element in a register tuple).
82  int Offset = offset;
83
84  // ComposedOf - A list of two SubRegIndex instances, [A, B].
85  // This indicates that this SubRegIndex is the result of composing A and B.
86  // See ComposedSubRegIndex.
87  list<SubRegIndex> ComposedOf = [];
88
89  // CoveringSubRegIndices - A list of two or more sub-register indexes that
90  // cover this sub-register.
91  //
92  // This field should normally be left blank as TableGen can infer it.
93  //
94  // TableGen automatically detects sub-registers that straddle the registers
95  // in the SubRegs field of a Register definition. For example:
96  //
97  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
98  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
99  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
100  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
101  //
102  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
103  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
104  // CoveringSubRegIndices = [dsub_1, dsub_2].
105  list<SubRegIndex> CoveringSubRegIndices = [];
106}
107
108// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
109// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
110class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
111  : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
112                              !eq(B.Offset, -1): -1,
113                              true:              !add(A.Offset, B.Offset))> {
114  // See SubRegIndex.
115  let ComposedOf = [A, B];
116}
117
118// RegAltNameIndex - The alternate name set to use for register operands of
119// this register class when printing.
120class RegAltNameIndex {
121  string Namespace = "";
122
123  // A set to be used if the name for a register is not defined in this set.
124  // This allows creating name sets with only a few alternative names.
125  RegAltNameIndex FallbackRegAltNameIndex = ?;
126}
127def NoRegAltName : RegAltNameIndex;
128
129// Register - You should define one instance of this class for each register
130// in the target machine.  String n will become the "name" of the register.
131class Register<string n, list<string> altNames = []> {
132  string Namespace = "";
133  string AsmName = n;
134  list<string> AltNames = altNames;
135
136  // Aliases - A list of registers that this register overlaps with.  A read or
137  // modification of this register can potentially read or modify the aliased
138  // registers.
139  list<Register> Aliases = [];
140
141  // SubRegs - A list of registers that are parts of this register. Note these
142  // are "immediate" sub-registers and the registers within the list do not
143  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
144  // not [AX, AH, AL].
145  list<Register> SubRegs = [];
146
147  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
148  // to address it. Sub-sub-register indices are automatically inherited from
149  // SubRegs.
150  list<SubRegIndex> SubRegIndices = [];
151
152  // RegAltNameIndices - The alternate name indices which are valid for this
153  // register.
154  list<RegAltNameIndex> RegAltNameIndices = [];
155
156  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
157  // These values can be determined by locating the <target>.h file in the
158  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
159  // order of these names correspond to the enumeration used by gcc.  A value of
160  // -1 indicates that the gcc number is undefined and -2 that register number
161  // is invalid for this mode/flavour.
162  list<int> DwarfNumbers = [];
163
164  // CostPerUse - Additional cost of instructions using this register compared
165  // to other registers in its class. The register allocator will try to
166  // minimize the number of instructions using a register with a CostPerUse.
167  // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
168  // some registers require larger instruction encodings, by the RISC-V target,
169  // where some registers preclude using some C instructions. By making it a
170  // list, targets can have multiple cost models associated with each register
171  // and can choose one specific cost model per Machine Function by overriding
172  // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will
173  // finally have an equal number of cost values which is the max of costPerUse
174  // values specified. Any mismatch in the cost values for a register will be
175  // filled with zeros. Restricted the cost type to uint8_t in the
176  // generated table. It will considerably reduce the table size.
177  list<int> CostPerUse = [0];
178
179  // CoveredBySubRegs - When this bit is set, the value of this register is
180  // completely determined by the value of its sub-registers.  For example, the
181  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
182  // covered by its sub-register AX.
183  bit CoveredBySubRegs = false;
184
185  // HWEncoding - The target specific hardware encoding for this register.
186  bits<16> HWEncoding = 0;
187
188  bit isArtificial = false;
189}
190
191// RegisterWithSubRegs - This can be used to define instances of Register which
192// need to specify sub-registers.
193// List "subregs" specifies which registers are sub-registers to this one. This
194// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
195// This allows the code generator to be careful not to put two values with
196// overlapping live ranges into registers which alias.
197class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
198  let SubRegs = subregs;
199}
200
201// DAGOperand - An empty base class that unifies RegisterClass's and other forms
202// of Operand's that are legal as type qualifiers in DAG patterns.  This should
203// only ever be used for defining multiclasses that are polymorphic over both
204// RegisterClass's and other Operand's.
205class DAGOperand {
206  string OperandNamespace = "MCOI";
207  string DecoderMethod = "";
208}
209
210// RegisterClass - Now that all of the registers are defined, and aliases
211// between registers are defined, specify which registers belong to which
212// register classes.  This also defines the default allocation order of
213// registers by register allocators.
214//
215class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
216                    dag regList, RegAltNameIndex idx = NoRegAltName>
217  : DAGOperand {
218  string Namespace = namespace;
219
220  // The register size/alignment information, parameterized by a HW mode.
221  RegInfoByHwMode RegInfos;
222
223  // RegType - Specify the list ValueType of the registers in this register
224  // class.  Note that all registers in a register class must have the same
225  // ValueTypes.  This is a list because some targets permit storing different
226  // types in same register, for example vector values with 128-bit total size,
227  // but different count/size of items, like SSE on x86.
228  //
229  list<ValueType> RegTypes = regTypes;
230
231  // Size - Specify the spill size in bits of the registers.  A default value of
232  // zero lets tablegen pick an appropriate size.
233  int Size = 0;
234
235  // Alignment - Specify the alignment required of the registers when they are
236  // stored or loaded to memory.
237  //
238  int Alignment = alignment;
239
240  // CopyCost - This value is used to specify the cost of copying a value
241  // between two registers in this register class. The default value is one
242  // meaning it takes a single instruction to perform the copying. A negative
243  // value means copying is extremely expensive or impossible.
244  int CopyCost = 1;
245
246  // MemberList - Specify which registers are in this class.  If the
247  // allocation_order_* method are not specified, this also defines the order of
248  // allocation used by the register allocator.
249  //
250  dag MemberList = regList;
251
252  // AltNameIndex - The alternate register name to use when printing operands
253  // of this register class. Every register in the register class must have
254  // a valid alternate name for the given index.
255  RegAltNameIndex altNameIndex = idx;
256
257  // isAllocatable - Specify that the register class can be used for virtual
258  // registers and register allocation.  Some register classes are only used to
259  // model instruction operand constraints, and should have isAllocatable = 0.
260  bit isAllocatable = true;
261
262  // AltOrders - List of alternative allocation orders. The default order is
263  // MemberList itself, and that is good enough for most targets since the
264  // register allocators automatically remove reserved registers and move
265  // callee-saved registers to the end.
266  list<dag> AltOrders = [];
267
268  // AltOrderSelect - The body of a function that selects the allocation order
269  // to use in a given machine function. The code will be inserted in a
270  // function like this:
271  //
272  //   static inline unsigned f(const MachineFunction &MF) { ... }
273  //
274  // The function should return 0 to select the default order defined by
275  // MemberList, 1 to select the first AltOrders entry and so on.
276  code AltOrderSelect = [{}];
277
278  // Specify allocation priority for register allocators using a greedy
279  // heuristic. Classes with higher priority values are assigned first. This is
280  // useful as it is sometimes beneficial to assign registers to highly
281  // constrained classes first. The value has to be in the range [0,63].
282  int AllocationPriority = 0;
283
284  // Generate register pressure set for this register class and any class
285  // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
286  bit GeneratePressureSet = true;
287
288  // Weight override for register pressure calculation. This is the value
289  // TargetRegisterClass::getRegClassWeight() will return. The weight is in
290  // units of pressure for this register class. If unset tablegen will
291  // calculate a weight based on a number of register units in this register
292  // class registers. The weight is per register.
293  int Weight = ?;
294
295  // The diagnostic type to present when referencing this operand in a match
296  // failure error message. If this is empty, the default Match_InvalidOperand
297  // diagnostic type will be used. If this is "<name>", a Match_<name> enum
298  // value will be generated and used for this operand type. The target
299  // assembly parser is responsible for converting this into a user-facing
300  // diagnostic message.
301  string DiagnosticType = "";
302
303  // A diagnostic message to emit when an invalid value is provided for this
304  // register class when it is being used an an assembly operand. If this is
305  // non-empty, an anonymous diagnostic type enum value will be generated, and
306  // the assembly matcher will provide a function to map from diagnostic types
307  // to message strings.
308  string DiagnosticString = "";
309}
310
311// The memberList in a RegisterClass is a dag of set operations. TableGen
312// evaluates these set operations and expand them into register lists. These
313// are the most common operation, see test/TableGen/SetTheory.td for more
314// examples of what is possible:
315//
316// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
317// register class, or a sub-expression. This is also the way to simply list
318// registers.
319//
320// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
321//
322// (and GPR, CSR) - Set intersection. All registers from the first set that are
323// also in the second set.
324//
325// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
326// numbered registers.  Takes an optional 4th operand which is a stride to use
327// when generating the sequence.
328//
329// (shl GPR, 4) - Remove the first N elements.
330//
331// (trunc GPR, 4) - Truncate after the first N elements.
332//
333// (rotl GPR, 1) - Rotate N places to the left.
334//
335// (rotr GPR, 1) - Rotate N places to the right.
336//
337// (decimate GPR, 2) - Pick every N'th element, starting with the first.
338//
339// (interleave A, B, ...) - Interleave the elements from each argument list.
340//
341// All of these operators work on ordered sets, not lists. That means
342// duplicates are removed from sub-expressions.
343
344// Set operators. The rest is defined in TargetSelectionDAG.td.
345def sequence;
346def decimate;
347def interleave;
348
349// RegisterTuples - Automatically generate super-registers by forming tuples of
350// sub-registers. This is useful for modeling register sequence constraints
351// with pseudo-registers that are larger than the architectural registers.
352//
353// The sub-register lists are zipped together:
354//
355//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
356//
357// Generates the same registers as:
358//
359//   let SubRegIndices = [sube, subo] in {
360//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
361//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
362//   }
363//
364// The generated pseudo-registers inherit super-classes and fields from their
365// first sub-register. Most fields from the Register class are inferred, and
366// the AsmName and Dwarf numbers are cleared.
367//
368// RegisterTuples instances can be used in other set operations to form
369// register classes and so on. This is the only way of using the generated
370// registers.
371//
372// RegNames may be specified to supply asm names for the generated tuples.
373// If used must have the same size as the list of produced registers.
374class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
375                     list<string> RegNames = []> {
376  // SubRegs - N lists of registers to be zipped up. Super-registers are
377  // synthesized from the first element of each SubRegs list, the second
378  // element and so on.
379  list<dag> SubRegs = Regs;
380
381  // SubRegIndices - N SubRegIndex instances. This provides the names of the
382  // sub-registers in the synthesized super-registers.
383  list<SubRegIndex> SubRegIndices = Indices;
384
385  // List of asm names for the generated tuple registers.
386  list<string> RegAsmNames = RegNames;
387}
388
389
390//===----------------------------------------------------------------------===//
391// DwarfRegNum - This class provides a mapping of the llvm register enumeration
392// to the register numbering used by gcc and gdb.  These values are used by a
393// debug information writer to describe where values may be located during
394// execution.
395class DwarfRegNum<list<int> Numbers> {
396  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
397  // These values can be determined by locating the <target>.h file in the
398  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
399  // order of these names correspond to the enumeration used by gcc.  A value of
400  // -1 indicates that the gcc number is undefined and -2 that register number
401  // is invalid for this mode/flavour.
402  list<int> DwarfNumbers = Numbers;
403}
404
405// DwarfRegAlias - This class declares that a given register uses the same dwarf
406// numbers as another one. This is useful for making it clear that the two
407// registers do have the same number. It also lets us build a mapping
408// from dwarf register number to llvm register.
409class DwarfRegAlias<Register reg> {
410      Register DwarfAlias = reg;
411}
412
413//===----------------------------------------------------------------------===//
414// Pull in the common support for MCPredicate (portable scheduling predicates).
415//
416include "llvm/Target/TargetInstrPredicate.td"
417
418//===----------------------------------------------------------------------===//
419// Pull in the common support for scheduling
420//
421include "llvm/Target/TargetSchedule.td"
422
423class Predicate; // Forward def
424
425class InstructionEncoding {
426  // Size of encoded instruction.
427  int Size;
428
429  // The "namespace" in which this instruction exists, on targets like ARM
430  // which multiple ISA namespaces exist.
431  string DecoderNamespace = "";
432
433  // List of predicates which will be turned into isel matching code.
434  list<Predicate> Predicates = [];
435
436  string DecoderMethod = "";
437
438  // Is the instruction decoder method able to completely determine if the
439  // given instruction is valid or not. If the TableGen definition of the
440  // instruction specifies bitpattern A??B where A and B are static bits, the
441  // hasCompleteDecoder flag says whether the decoder method fully handles the
442  // ?? space, i.e. if it is a final arbiter for the instruction validity.
443  // If not then the decoder attempts to continue decoding when the decoder
444  // method fails.
445  //
446  // This allows to handle situations where the encoding is not fully
447  // orthogonal. Example:
448  // * InstA with bitpattern 0b0000????,
449  // * InstB with bitpattern 0b000000?? but the associated decoder method
450  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
451  //
452  // The decoder tries to decode a bitpattern that matches both InstA and
453  // InstB bitpatterns first as InstB (because it is the most specific
454  // encoding). In the default case (hasCompleteDecoder = 1), when
455  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
456  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
457  // DecodeInstB() is not able to determine if all possible values of ?? are
458  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
459  // decode the bitpattern as InstA too.
460  bit hasCompleteDecoder = true;
461}
462
463// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
464// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
465// to encode and decode based on HwMode.
466class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
467    : HwModeSelect<Ms> {
468  // The length of this list must be the same as the length of Ms.
469  list<InstructionEncoding> Objects = Ts;
470}
471
472//===----------------------------------------------------------------------===//
473// Instruction set description - These classes correspond to the C++ classes in
474// the Target/TargetInstrInfo.h file.
475//
476class Instruction : InstructionEncoding {
477  string Namespace = "";
478
479  dag OutOperandList;       // An dag containing the MI def operand list.
480  dag InOperandList;        // An dag containing the MI use operand list.
481  string AsmString = "";    // The .s format to print the instruction with.
482
483  // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
484  // the Inst member of this Instruction is ignored.
485  EncodingByHwMode EncodingInfos;
486
487  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
488  // otherwise, uninitialized.
489  list<dag> Pattern;
490
491  // The follow state will eventually be inferred automatically from the
492  // instruction pattern.
493
494  list<Register> Uses = []; // Default to using no non-operand registers
495  list<Register> Defs = []; // Default to modifying no non-operand registers
496
497  // Predicates - List of predicates which will be turned into isel matching
498  // code.
499  list<Predicate> Predicates = [];
500
501  // Size - Size of encoded instruction, or zero if the size cannot be determined
502  // from the opcode.
503  int Size = 0;
504
505  // Code size, for instruction selection.
506  // FIXME: What does this actually mean?
507  int CodeSize = 0;
508
509  // Added complexity passed onto matching pattern.
510  int AddedComplexity  = 0;
511
512  // Indicates if this is a pre-isel opcode that should be
513  // legalized/regbankselected/selected.
514  bit isPreISelOpcode = false;
515
516  // These bits capture information about the high-level semantics of the
517  // instruction.
518  bit isReturn     = false;     // Is this instruction a return instruction?
519  bit isBranch     = false;     // Is this instruction a branch instruction?
520  bit isEHScopeReturn = false;  // Does this instruction end an EH scope?
521  bit isIndirectBranch = false; // Is this instruction an indirect branch?
522  bit isCompare    = false;     // Is this instruction a comparison instruction?
523  bit isMoveImm    = false;     // Is this instruction a move immediate instruction?
524  bit isMoveReg    = false;     // Is this instruction a move register instruction?
525  bit isBitcast    = false;     // Is this instruction a bitcast instruction?
526  bit isSelect     = false;     // Is this instruction a select instruction?
527  bit isBarrier    = false;     // Can control flow fall through this instruction?
528  bit isCall       = false;     // Is this instruction a call instruction?
529  bit isAdd        = false;     // Is this instruction an add instruction?
530  bit isTrap       = false;     // Is this instruction a trap instruction?
531  bit canFoldAsLoad = false;    // Can this be folded as a simple memory operand?
532  bit mayLoad      = ?;         // Is it possible for this inst to read memory?
533  bit mayStore     = ?;         // Is it possible for this inst to write memory?
534  bit mayRaiseFPException = false; // Can this raise a floating-point exception?
535  bit isConvertibleToThreeAddress = false;  // Can this 2-addr instruction promote?
536  bit isCommutable = false;     // Is this 3 operand instruction commutable?
537  bit isTerminator = false;     // Is this part of the terminator for a basic block?
538  bit isReMaterializable = false; // Is this instruction re-materializable?
539  bit isPredicable = false;     // 1 means this instruction is predicable
540                                // even if it does not have any operand
541                                // tablegen can identify as a predicate
542  bit isUnpredicable = false;   // 1 means this instruction is not predicable
543                                // even if it _does_ have a predicate operand
544  bit hasDelaySlot = false;     // Does this instruction have an delay slot?
545  bit usesCustomInserter = false; // Pseudo instr needing special help.
546  bit hasPostISelHook = false;  // To be *adjusted* after isel by target hook.
547  bit hasCtrlDep   = false;     // Does this instruction r/w ctrl-flow chains?
548  bit isNotDuplicable = false;  // Is it unsafe to duplicate this instruction?
549  bit isConvergent = false;     // Is this instruction convergent?
550  bit isAuthenticated = false;  // Does this instruction authenticate a pointer?
551  bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
552  bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
553  bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
554  bit isRegSequence = false;    // Is this instruction a kind of reg sequence?
555                                // If so, make sure to override
556                                // TargetInstrInfo::getRegSequenceLikeInputs.
557  bit isPseudo     = false;     // Is this instruction a pseudo-instruction?
558                                // If so, won't have encoding information for
559                                // the [MC]CodeEmitter stuff.
560  bit isExtractSubreg = false;  // Is this instruction a kind of extract subreg?
561                                // If so, make sure to override
562                                // TargetInstrInfo::getExtractSubregLikeInputs.
563  bit isInsertSubreg = false;   // Is this instruction a kind of insert subreg?
564                                // If so, make sure to override
565                                // TargetInstrInfo::getInsertSubregLikeInputs.
566  bit variadicOpsAreDefs = false; // Are variadic operands definitions?
567
568  // Does the instruction have side effects that are not captured by any
569  // operands of the instruction or other flags?
570  bit hasSideEffects = ?;
571
572  // Is this instruction a "real" instruction (with a distinct machine
573  // encoding), or is it a pseudo instruction used for codegen modeling
574  // purposes.
575  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
576  // instructions can (and often do) still have encoding information
577  // associated with them. Once we've migrated all of them over to true
578  // pseudo-instructions that are lowered to real instructions prior to
579  // the printer/emitter, we can remove this attribute and just use isPseudo.
580  //
581  // The intended use is:
582  // isPseudo: Does not have encoding information and should be expanded,
583  //   at the latest, during lowering to MCInst.
584  //
585  // isCodeGenOnly: Does have encoding information and can go through to the
586  //   CodeEmitter unchanged, but duplicates a canonical instruction
587  //   definition's encoding and should be ignored when constructing the
588  //   assembler match tables.
589  bit isCodeGenOnly = false;
590
591  // Is this instruction a pseudo instruction for use by the assembler parser.
592  bit isAsmParserOnly = false;
593
594  // This instruction is not expected to be queried for scheduling latencies
595  // and therefore needs no scheduling information even for a complete
596  // scheduling model.
597  bit hasNoSchedulingInfo = false;
598
599  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
600
601  // Scheduling information from TargetSchedule.td.
602  list<SchedReadWrite> SchedRW;
603
604  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
605
606  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
607  /// be encoded into the output machineinstr.
608  string DisableEncoding = "";
609
610  string PostEncoderMethod = "";
611
612  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
613  bits<64> TSFlags = 0;
614
615  ///@name Assembler Parser Support
616  ///@{
617
618  string AsmMatchConverter = "";
619
620  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
621  /// two-operand matcher inst-alias for a three operand instruction.
622  /// For example, the arm instruction "add r3, r3, r5" can be written
623  /// as "add r3, r5". The constraint is of the same form as a tied-operand
624  /// constraint. For example, "$Rn = $Rd".
625  string TwoOperandAliasConstraint = "";
626
627  /// Assembler variant name to use for this instruction. If specified then
628  /// instruction will be presented only in MatchTable for this variant. If
629  /// not specified then assembler variants will be determined based on
630  /// AsmString
631  string AsmVariantName = "";
632
633  ///@}
634
635  /// UseNamedOperandTable - If set, the operand indices of this instruction
636  /// can be queried via the getNamedOperandIdx() function which is generated
637  /// by TableGen.
638  bit UseNamedOperandTable = false;
639
640  /// Should generate helper functions that help you to map a logical operand's
641  /// index to the underlying MIOperand's index.
642  /// In most architectures logical operand indicies are equal to
643  /// MIOperand indicies, but for some CISC architectures, a logical operand
644  /// might be consist of multiple MIOperand (e.g. a logical operand that
645  /// uses complex address mode).
646  bit UseLogicalOperandMappings = false;
647
648  /// Should FastISel ignore this instruction. For certain ISAs, they have
649  /// instructions which map to the same ISD Opcode, value type operands and
650  /// instruction selection predicates. FastISel cannot handle such cases, but
651  /// SelectionDAG can.
652  bit FastISelShouldIgnore = false;
653}
654
655/// Defines an additional encoding that disassembles to the given instruction
656/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
657// to specify their size.
658class AdditionalEncoding<Instruction I> : InstructionEncoding {
659  Instruction AliasOf = I;
660}
661
662/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
663/// Which instruction it expands to and how the operands map from the
664/// pseudo.
665class PseudoInstExpansion<dag Result> {
666  dag ResultInst = Result;     // The instruction to generate.
667  bit isPseudo = true;
668}
669
670/// Predicates - These are extra conditionals which are turned into instruction
671/// selector matching code. Currently each predicate is just a string.
672class Predicate<string cond> {
673  string CondString = cond;
674
675  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
676  /// matcher, this is true.  Targets should set this by inheriting their
677  /// feature from the AssemblerPredicate class in addition to Predicate.
678  bit AssemblerMatcherPredicate = false;
679
680  /// AssemblerCondDag - Set of subtarget features being tested used
681  /// as alternative condition string used for assembler matcher. Must be used
682  /// with (all_of) to indicate that all features must be present, or (any_of)
683  /// to indicate that at least one must be. The required lack of presence of
684  /// a feature can be tested using a (not) node including the feature.
685  /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
686  ///      "(all_of (not ModeThumb))" is translated to
687  ///      "(Bits & ModeThumb) == 0".
688  ///      "(all_of ModeThumb, FeatureThumb2)" is translated to
689  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
690  ///      "(any_of ModeTumb, FeatureThumb2)" is translated to
691  ///      "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
692  /// all_of and any_of cannot be combined in a single dag, instead multiple
693  /// predicates can be placed onto Instruction definitions.
694  dag AssemblerCondDag;
695
696  /// PredicateName - User-level name to use for the predicate. Mainly for use
697  /// in diagnostics such as missing feature errors in the asm matcher.
698  string PredicateName = "";
699
700  /// Setting this to '1' indicates that the predicate must be recomputed on
701  /// every function change. Most predicates can leave this at '0'.
702  ///
703  /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
704  bit RecomputePerFunction = false;
705}
706
707/// NoHonorSignDependentRounding - This predicate is true if support for
708/// sign-dependent-rounding is not enabled.
709def NoHonorSignDependentRounding
710 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
711
712class Requires<list<Predicate> preds> {
713  list<Predicate> Predicates = preds;
714}
715
716/// ops definition - This is just a simple marker used to identify the operand
717/// list for an instruction. outs and ins are identical both syntactically and
718/// semantically; they are used to define def operands and use operands to
719/// improve readability. This should be used like this:
720///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
721def ops;
722def outs;
723def ins;
724
725/// variable_ops definition - Mark this instruction as taking a variable number
726/// of operands.
727def variable_ops;
728
729
730/// PointerLikeRegClass - Values that are designed to have pointer width are
731/// derived from this.  TableGen treats the register class as having a symbolic
732/// type that it doesn't know, and resolves the actual regclass to use by using
733/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
734class PointerLikeRegClass<int Kind> {
735  int RegClassKind = Kind;
736}
737
738
739/// ptr_rc definition - Mark this operand as being a pointer value whose
740/// register class is resolved dynamically via a callback to TargetInstrInfo.
741/// FIXME: We should probably change this to a class which contain a list of
742/// flags. But currently we have but one flag.
743def ptr_rc : PointerLikeRegClass<0>;
744
745/// unknown definition - Mark this operand as being of unknown type, causing
746/// it to be resolved by inference in the context it is used.
747class unknown_class;
748def unknown : unknown_class;
749
750/// AsmOperandClass - Representation for the kinds of operands which the target
751/// specific parser can create and the assembly matcher may need to distinguish.
752///
753/// Operand classes are used to define the order in which instructions are
754/// matched, to ensure that the instruction which gets matched for any
755/// particular list of operands is deterministic.
756///
757/// The target specific parser must be able to classify a parsed operand into a
758/// unique class which does not partially overlap with any other classes. It can
759/// match a subset of some other class, in which case the super class field
760/// should be defined.
761class AsmOperandClass {
762  /// The name to use for this class, which should be usable as an enum value.
763  string Name = ?;
764
765  /// The super classes of this operand.
766  list<AsmOperandClass> SuperClasses = [];
767
768  /// The name of the method on the target specific operand to call to test
769  /// whether the operand is an instance of this class. If not set, this will
770  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
771  /// signature should be:
772  ///   bool isFoo() const;
773  string PredicateMethod = ?;
774
775  /// The name of the method on the target specific operand to call to add the
776  /// target specific operand to an MCInst. If not set, this will default to
777  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
778  /// signature should be:
779  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
780  string RenderMethod = ?;
781
782  /// The name of the method on the target specific operand to call to custom
783  /// handle the operand parsing. This is useful when the operands do not relate
784  /// to immediates or registers and are very instruction specific (as flags to
785  /// set in a processor register, coprocessor number, ...).
786  string ParserMethod = ?;
787
788  // The diagnostic type to present when referencing this operand in a
789  // match failure error message. By default, use a generic "invalid operand"
790  // diagnostic. The target AsmParser maps these codes to text.
791  string DiagnosticType = "";
792
793  /// A diagnostic message to emit when an invalid value is provided for this
794  /// operand.
795  string DiagnosticString = "";
796
797  /// Set to 1 if this operand is optional and not always required. Typically,
798  /// the AsmParser will emit an error when it finishes parsing an
799  /// instruction if it hasn't matched all the operands yet.  However, this
800  /// error will be suppressed if all of the remaining unmatched operands are
801  /// marked as IsOptional.
802  ///
803  /// Optional arguments must be at the end of the operand list.
804  bit IsOptional = false;
805
806  /// The name of the method on the target specific asm parser that returns the
807  /// default operand for this optional operand. This method is only used if
808  /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
809  /// where Foo is the AsmOperandClass name. The method signature should be:
810  ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
811  string DefaultMethod = ?;
812}
813
814def ImmAsmOperand : AsmOperandClass {
815  let Name = "Imm";
816}
817
818/// Operand Types - These provide the built-in operand types that may be used
819/// by a target.  Targets can optionally provide their own operand types as
820/// needed, though this should not be needed for RISC targets.
821class Operand<ValueType ty> : DAGOperand {
822  ValueType Type = ty;
823  string PrintMethod = "printOperand";
824  string EncoderMethod = "";
825  bit hasCompleteDecoder = true;
826  string OperandType = "OPERAND_UNKNOWN";
827  dag MIOperandInfo = (ops);
828
829  // MCOperandPredicate - Optionally, a code fragment operating on
830  // const MCOperand &MCOp, and returning a bool, to indicate if
831  // the value of MCOp is valid for the specific subclass of Operand
832  code MCOperandPredicate;
833
834  // ParserMatchClass - The "match class" that operands of this type fit
835  // in. Match classes are used to define the order in which instructions are
836  // match, to ensure that which instructions gets matched is deterministic.
837  //
838  // The target specific parser must be able to classify an parsed operand into
839  // a unique class, which does not partially overlap with any other classes. It
840  // can match a subset of some other class, in which case the AsmOperandClass
841  // should declare the other operand as one of its super classes.
842  AsmOperandClass ParserMatchClass = ImmAsmOperand;
843}
844
845class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
846  : DAGOperand {
847  // RegClass - The register class of the operand.
848  RegisterClass RegClass = regclass;
849  // PrintMethod - The target method to call to print register operands of
850  // this type. The method normally will just use an alt-name index to look
851  // up the name to print. Default to the generic printOperand().
852  string PrintMethod = pm;
853
854  // EncoderMethod - The target method name to call to encode this register
855  // operand.
856  string EncoderMethod = "";
857
858  // ParserMatchClass - The "match class" that operands of this type fit
859  // in. Match classes are used to define the order in which instructions are
860  // match, to ensure that which instructions gets matched is deterministic.
861  //
862  // The target specific parser must be able to classify an parsed operand into
863  // a unique class, which does not partially overlap with any other classes. It
864  // can match a subset of some other class, in which case the AsmOperandClass
865  // should declare the other operand as one of its super classes.
866  AsmOperandClass ParserMatchClass;
867
868  string OperandType = "OPERAND_REGISTER";
869
870  // When referenced in the result of a CodeGen pattern, GlobalISel will
871  // normally copy the matched operand to the result. When this is set, it will
872  // emit a special copy that will replace zero-immediates with the specified
873  // zero-register.
874  Register GIZeroRegister = ?;
875}
876
877let OperandType = "OPERAND_IMMEDIATE" in {
878def i1imm  : Operand<i1>;
879def i8imm  : Operand<i8>;
880def i16imm : Operand<i16>;
881def i32imm : Operand<i32>;
882def i64imm : Operand<i64>;
883
884def f32imm : Operand<f32>;
885def f64imm : Operand<f64>;
886}
887
888// Register operands for generic instructions don't have an MVT, but do have
889// constraints linking the operands (e.g. all operands of a G_ADD must
890// have the same LLT).
891class TypedOperand<string Ty> : Operand<untyped> {
892  let OperandType = Ty;
893  bit IsPointer = false;
894  bit IsImmediate = false;
895}
896
897def type0 : TypedOperand<"OPERAND_GENERIC_0">;
898def type1 : TypedOperand<"OPERAND_GENERIC_1">;
899def type2 : TypedOperand<"OPERAND_GENERIC_2">;
900def type3 : TypedOperand<"OPERAND_GENERIC_3">;
901def type4 : TypedOperand<"OPERAND_GENERIC_4">;
902def type5 : TypedOperand<"OPERAND_GENERIC_5">;
903
904let IsPointer = true in {
905  def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
906  def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
907  def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
908  def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
909  def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
910  def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
911}
912
913// untyped_imm is for operands where isImm() will be true. It currently has no
914// special behaviour and is only used for clarity.
915def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
916  let IsImmediate = true;
917}
918
919/// zero_reg definition - Special node to stand for the zero register.
920///
921def zero_reg;
922
923/// undef_tied_input - Special node to indicate an input register tied
924/// to an output which defaults to IMPLICIT_DEF.
925def undef_tied_input;
926
927/// All operands which the MC layer classifies as predicates should inherit from
928/// this class in some manner. This is already handled for the most commonly
929/// used PredicateOperand, but may be useful in other circumstances.
930class PredicateOp;
931
932/// OperandWithDefaultOps - This Operand class can be used as the parent class
933/// for an Operand that needs to be initialized with a default value if
934/// no value is supplied in a pattern.  This class can be used to simplify the
935/// pattern definitions for instructions that have target specific flags
936/// encoded as immediate operands.
937class OperandWithDefaultOps<ValueType ty, dag defaultops>
938  : Operand<ty> {
939  dag DefaultOps = defaultops;
940}
941
942/// PredicateOperand - This can be used to define a predicate operand for an
943/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
944/// AlwaysVal specifies the value of this predicate when set to "always
945/// execute".
946class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
947  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
948  let MIOperandInfo = OpTypes;
949}
950
951/// OptionalDefOperand - This is used to define a optional definition operand
952/// for an instruction. DefaultOps is the register the operand represents if
953/// none is supplied, e.g. zero_reg.
954class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
955  : OperandWithDefaultOps<ty, defaultops> {
956  let MIOperandInfo = OpTypes;
957}
958
959
960// InstrInfo - This class should only be instantiated once to provide parameters
961// which are global to the target machine.
962//
963class InstrInfo {
964  // Target can specify its instructions in either big or little-endian formats.
965  // For instance, while both Sparc and PowerPC are big-endian platforms, the
966  // Sparc manual specifies its instructions in the format [31..0] (big), while
967  // PowerPC specifies them using the format [0..31] (little).
968  bit isLittleEndianEncoding = false;
969
970  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
971  // by default, and TableGen will infer their value from the instruction
972  // pattern when possible.
973  //
974  // Normally, TableGen will issue an error it it can't infer the value of a
975  // property that hasn't been set explicitly. When guessInstructionProperties
976  // is set, it will guess a safe value instead.
977  //
978  // This option is a temporary migration help. It will go away.
979  bit guessInstructionProperties = true;
980
981  // TableGen's instruction encoder generator has support for matching operands
982  // to bit-field variables both by name and by position. While matching by
983  // name is preferred, this is currently not possible for complex operands,
984  // and some targets still reply on the positional encoding rules. When
985  // generating a decoder for such targets, the positional encoding rules must
986  // be used by the decoder generator as well.
987  //
988  // This option is temporary; it will go away once the TableGen decoder
989  // generator has better support for complex operands and targets have
990  // migrated away from using positionally encoded operands.
991  bit decodePositionallyEncodedOperands = false;
992
993  // When set, this indicates that there will be no overlap between those
994  // operands that are matched by ordering (positional operands) and those
995  // matched by name.
996  //
997  // This option is temporary; it will go away once the TableGen decoder
998  // generator has better support for complex operands and targets have
999  // migrated away from using positionally encoded operands.
1000  bit noNamedPositionallyEncodedOperands = false;
1001}
1002
1003// Standard Pseudo Instructions.
1004// This list must match TargetOpcodes.def.
1005// Only these instructions are allowed in the TargetOpcode namespace.
1006// Ensure mayLoad and mayStore have a default value, so as not to break
1007// targets that set guessInstructionProperties=0. Any local definition of
1008// mayLoad/mayStore takes precedence over these default values.
1009class StandardPseudoInstruction : Instruction {
1010  let mayLoad = false;
1011  let mayStore = false;
1012  let isCodeGenOnly = true;
1013  let isPseudo = true;
1014  let hasNoSchedulingInfo = true;
1015  let Namespace = "TargetOpcode";
1016}
1017def PHI : StandardPseudoInstruction {
1018  let OutOperandList = (outs unknown:$dst);
1019  let InOperandList = (ins variable_ops);
1020  let AsmString = "PHINODE";
1021  let hasSideEffects = false;
1022}
1023def INLINEASM : StandardPseudoInstruction {
1024  let OutOperandList = (outs);
1025  let InOperandList = (ins variable_ops);
1026  let AsmString = "";
1027  let hasSideEffects = false;  // Note side effect is encoded in an operand.
1028}
1029def INLINEASM_BR : StandardPseudoInstruction {
1030  let OutOperandList = (outs);
1031  let InOperandList = (ins variable_ops);
1032  let AsmString = "";
1033  // Unlike INLINEASM, this is always treated as having side-effects.
1034  let hasSideEffects = true;
1035  // Despite potentially branching, this instruction is intentionally _not_
1036  // marked as a terminator or a branch.
1037}
1038def CFI_INSTRUCTION : StandardPseudoInstruction {
1039  let OutOperandList = (outs);
1040  let InOperandList = (ins i32imm:$id);
1041  let AsmString = "";
1042  let hasCtrlDep = true;
1043  let hasSideEffects = false;
1044  let isNotDuplicable = true;
1045}
1046def EH_LABEL : StandardPseudoInstruction {
1047  let OutOperandList = (outs);
1048  let InOperandList = (ins i32imm:$id);
1049  let AsmString = "";
1050  let hasCtrlDep = true;
1051  let hasSideEffects = false;
1052  let isNotDuplicable = true;
1053}
1054def GC_LABEL : StandardPseudoInstruction {
1055  let OutOperandList = (outs);
1056  let InOperandList = (ins i32imm:$id);
1057  let AsmString = "";
1058  let hasCtrlDep = true;
1059  let hasSideEffects = false;
1060  let isNotDuplicable = true;
1061}
1062def ANNOTATION_LABEL : StandardPseudoInstruction {
1063  let OutOperandList = (outs);
1064  let InOperandList = (ins i32imm:$id);
1065  let AsmString = "";
1066  let hasCtrlDep = true;
1067  let hasSideEffects = false;
1068  let isNotDuplicable = true;
1069}
1070def KILL : StandardPseudoInstruction {
1071  let OutOperandList = (outs);
1072  let InOperandList = (ins variable_ops);
1073  let AsmString = "";
1074  let hasSideEffects = false;
1075}
1076def EXTRACT_SUBREG : StandardPseudoInstruction {
1077  let OutOperandList = (outs unknown:$dst);
1078  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
1079  let AsmString = "";
1080  let hasSideEffects = false;
1081}
1082def INSERT_SUBREG : StandardPseudoInstruction {
1083  let OutOperandList = (outs unknown:$dst);
1084  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
1085  let AsmString = "";
1086  let hasSideEffects = false;
1087  let Constraints = "$supersrc = $dst";
1088}
1089def IMPLICIT_DEF : StandardPseudoInstruction {
1090  let OutOperandList = (outs unknown:$dst);
1091  let InOperandList = (ins);
1092  let AsmString = "";
1093  let hasSideEffects = false;
1094  let isReMaterializable = true;
1095  let isAsCheapAsAMove = true;
1096}
1097def SUBREG_TO_REG : StandardPseudoInstruction {
1098  let OutOperandList = (outs unknown:$dst);
1099  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
1100  let AsmString = "";
1101  let hasSideEffects = false;
1102}
1103def COPY_TO_REGCLASS : StandardPseudoInstruction {
1104  let OutOperandList = (outs unknown:$dst);
1105  let InOperandList = (ins unknown:$src, i32imm:$regclass);
1106  let AsmString = "";
1107  let hasSideEffects = false;
1108  let isAsCheapAsAMove = true;
1109}
1110def DBG_VALUE : StandardPseudoInstruction {
1111  let OutOperandList = (outs);
1112  let InOperandList = (ins variable_ops);
1113  let AsmString = "DBG_VALUE";
1114  let hasSideEffects = false;
1115}
1116def DBG_VALUE_LIST : StandardPseudoInstruction {
1117  let OutOperandList = (outs);
1118  let InOperandList = (ins variable_ops);
1119  let AsmString = "DBG_VALUE_LIST";
1120  let hasSideEffects = 0;
1121}
1122def DBG_INSTR_REF : StandardPseudoInstruction {
1123  let OutOperandList = (outs);
1124  let InOperandList = (ins variable_ops);
1125  let AsmString = "DBG_INSTR_REF";
1126  let hasSideEffects = false;
1127}
1128def DBG_PHI : StandardPseudoInstruction {
1129  let OutOperandList = (outs);
1130  let InOperandList = (ins variable_ops);
1131  let AsmString = "DBG_PHI";
1132  let hasSideEffects = 0;
1133}
1134def DBG_LABEL : StandardPseudoInstruction {
1135  let OutOperandList = (outs);
1136  let InOperandList = (ins unknown:$label);
1137  let AsmString = "DBG_LABEL";
1138  let hasSideEffects = false;
1139}
1140def REG_SEQUENCE : StandardPseudoInstruction {
1141  let OutOperandList = (outs unknown:$dst);
1142  let InOperandList = (ins unknown:$supersrc, variable_ops);
1143  let AsmString = "";
1144  let hasSideEffects = false;
1145  let isAsCheapAsAMove = true;
1146}
1147def COPY : StandardPseudoInstruction {
1148  let OutOperandList = (outs unknown:$dst);
1149  let InOperandList = (ins unknown:$src);
1150  let AsmString = "";
1151  let hasSideEffects = false;
1152  let isAsCheapAsAMove = true;
1153  let hasNoSchedulingInfo = false;
1154}
1155def BUNDLE : StandardPseudoInstruction {
1156  let OutOperandList = (outs);
1157  let InOperandList = (ins variable_ops);
1158  let AsmString = "BUNDLE";
1159  let hasSideEffects = false;
1160}
1161def LIFETIME_START : StandardPseudoInstruction {
1162  let OutOperandList = (outs);
1163  let InOperandList = (ins i32imm:$id);
1164  let AsmString = "LIFETIME_START";
1165  let hasSideEffects = false;
1166}
1167def LIFETIME_END : StandardPseudoInstruction {
1168  let OutOperandList = (outs);
1169  let InOperandList = (ins i32imm:$id);
1170  let AsmString = "LIFETIME_END";
1171  let hasSideEffects = false;
1172}
1173def PSEUDO_PROBE : StandardPseudoInstruction {
1174  let OutOperandList = (outs);
1175  let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
1176  let AsmString = "PSEUDO_PROBE";
1177  let hasSideEffects = 1;
1178}
1179def ARITH_FENCE : StandardPseudoInstruction {
1180  let OutOperandList = (outs unknown:$dst);
1181  let InOperandList = (ins unknown:$src);
1182  let AsmString = "";
1183  let hasSideEffects = false;
1184  let Constraints = "$src = $dst";
1185}
1186
1187def STACKMAP : StandardPseudoInstruction {
1188  let OutOperandList = (outs);
1189  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1190  let hasSideEffects = true;
1191  let isCall = true;
1192  let mayLoad = true;
1193  let usesCustomInserter = true;
1194}
1195def PATCHPOINT : StandardPseudoInstruction {
1196  let OutOperandList = (outs unknown:$dst);
1197  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1198                       i32imm:$nargs, i32imm:$cc, variable_ops);
1199  let hasSideEffects = true;
1200  let isCall = true;
1201  let mayLoad = true;
1202  let usesCustomInserter = true;
1203}
1204def STATEPOINT : StandardPseudoInstruction {
1205  let OutOperandList = (outs variable_ops);
1206  let InOperandList = (ins variable_ops);
1207  let usesCustomInserter = true;
1208  let mayLoad = true;
1209  let mayStore = true;
1210  let hasSideEffects = true;
1211  let isCall = true;
1212}
1213def LOAD_STACK_GUARD : StandardPseudoInstruction {
1214  let OutOperandList = (outs ptr_rc:$dst);
1215  let InOperandList = (ins);
1216  let mayLoad = true;
1217  bit isReMaterializable = true;
1218  let hasSideEffects = false;
1219  bit isPseudo = true;
1220}
1221def PREALLOCATED_SETUP : StandardPseudoInstruction {
1222  let OutOperandList = (outs);
1223  let InOperandList = (ins i32imm:$a);
1224  let usesCustomInserter = true;
1225  let hasSideEffects = true;
1226}
1227def PREALLOCATED_ARG : StandardPseudoInstruction {
1228  let OutOperandList = (outs ptr_rc:$loc);
1229  let InOperandList = (ins i32imm:$a, i32imm:$b);
1230  let usesCustomInserter = true;
1231  let hasSideEffects = true;
1232}
1233def LOCAL_ESCAPE : StandardPseudoInstruction {
1234  // This instruction is really just a label. It has to be part of the chain so
1235  // that it doesn't get dropped from the DAG, but it produces nothing and has
1236  // no side effects.
1237  let OutOperandList = (outs);
1238  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1239  let hasSideEffects = false;
1240  let hasCtrlDep = true;
1241}
1242def FAULTING_OP : StandardPseudoInstruction {
1243  let OutOperandList = (outs unknown:$dst);
1244  let InOperandList = (ins variable_ops);
1245  let usesCustomInserter = true;
1246  let hasSideEffects = true;
1247  let mayLoad = true;
1248  let mayStore = true;
1249  let isTerminator = true;
1250  let isBranch = true;
1251}
1252def PATCHABLE_OP : StandardPseudoInstruction {
1253  let OutOperandList = (outs);
1254  let InOperandList = (ins variable_ops);
1255  let usesCustomInserter = true;
1256  let mayLoad = true;
1257  let mayStore = true;
1258  let hasSideEffects = true;
1259}
1260def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1261  let OutOperandList = (outs);
1262  let InOperandList = (ins);
1263  let AsmString = "# XRay Function Enter.";
1264  let usesCustomInserter = true;
1265  let hasSideEffects = true;
1266}
1267def PATCHABLE_RET : StandardPseudoInstruction {
1268  let OutOperandList = (outs);
1269  let InOperandList = (ins variable_ops);
1270  let AsmString = "# XRay Function Patchable RET.";
1271  let usesCustomInserter = true;
1272  let hasSideEffects = true;
1273  let isTerminator = true;
1274  let isReturn = true;
1275}
1276def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1277  let OutOperandList = (outs);
1278  let InOperandList = (ins);
1279  let AsmString = "# XRay Function Exit.";
1280  let usesCustomInserter = true;
1281  let hasSideEffects = true;
1282  let isReturn = false; // Original return instruction will follow
1283}
1284def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1285  let OutOperandList = (outs);
1286  let InOperandList = (ins variable_ops);
1287  let AsmString = "# XRay Tail Call Exit.";
1288  let usesCustomInserter = true;
1289  let hasSideEffects = true;
1290  let isReturn = true;
1291}
1292def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1293  let OutOperandList = (outs);
1294  let InOperandList = (ins ptr_rc:$event, unknown:$size);
1295  let AsmString = "# XRay Custom Event Log.";
1296  let usesCustomInserter = true;
1297  let isCall = true;
1298  let mayLoad = true;
1299  let mayStore = true;
1300  let hasSideEffects = true;
1301}
1302def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1303  let OutOperandList = (outs);
1304  let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
1305  let AsmString = "# XRay Typed Event Log.";
1306  let usesCustomInserter = true;
1307  let isCall = true;
1308  let mayLoad = true;
1309  let mayStore = true;
1310  let hasSideEffects = true;
1311}
1312def FENTRY_CALL : StandardPseudoInstruction {
1313  let OutOperandList = (outs);
1314  let InOperandList = (ins);
1315  let AsmString = "# FEntry call";
1316  let usesCustomInserter = true;
1317  let isCall = true;
1318  let mayLoad = true;
1319  let mayStore = true;
1320  let hasSideEffects = true;
1321}
1322def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1323  let OutOperandList = (outs);
1324  let InOperandList = (ins variable_ops);
1325  let AsmString = "";
1326  let hasSideEffects = true;
1327}
1328
1329// Generic opcodes used in GlobalISel.
1330include "llvm/Target/GenericOpcodes.td"
1331
1332//===----------------------------------------------------------------------===//
1333// AsmParser - This class can be implemented by targets that wish to implement
1334// .s file parsing.
1335//
1336// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1337// syntax on X86 for example).
1338//
1339class AsmParser {
1340  // AsmParserClassName - This specifies the suffix to use for the asmparser
1341  // class.  Generated AsmParser classes are always prefixed with the target
1342  // name.
1343  string AsmParserClassName  = "AsmParser";
1344
1345  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1346  // function of the AsmParser class to call on every matched instruction.
1347  // This can be used to perform target specific instruction post-processing.
1348  string AsmParserInstCleanup  = "";
1349
1350  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1351  // written register name matcher
1352  bit ShouldEmitMatchRegisterName = true;
1353
1354  // Set to true if the target needs a generated 'alternative register name'
1355  // matcher.
1356  //
1357  // This generates a function which can be used to lookup registers from
1358  // their aliases. This function will fail when called on targets where
1359  // several registers share the same alias (i.e. not a 1:1 mapping).
1360  bit ShouldEmitMatchRegisterAltName = false;
1361
1362  // Set to true if MatchRegisterName and MatchRegisterAltName functions
1363  // should be generated even if there are duplicate register names. The
1364  // target is responsible for coercing aliased registers as necessary
1365  // (e.g. in validateTargetOperandClass), and there are no guarantees about
1366  // which numeric register identifier will be returned in the case of
1367  // multiple matches.
1368  bit AllowDuplicateRegisterNames = false;
1369
1370  // HasMnemonicFirst - Set to false if target instructions don't always
1371  // start with a mnemonic as the first token.
1372  bit HasMnemonicFirst = true;
1373
1374  // ReportMultipleNearMisses -
1375  // When 0, the assembly matcher reports an error for one encoding or operand
1376  // that did not match the parsed instruction.
1377  // When 1, the assembly matcher returns a list of encodings that were close
1378  // to matching the parsed instruction, so to allow more detailed error
1379  // messages.
1380  bit ReportMultipleNearMisses = false;
1381}
1382def DefaultAsmParser : AsmParser;
1383
1384//===----------------------------------------------------------------------===//
1385// AsmParserVariant - Subtargets can have multiple different assembly parsers
1386// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1387// implemented by targets to describe such variants.
1388//
1389class AsmParserVariant {
1390  // Variant - AsmParsers can be of multiple different variants.  Variants are
1391  // used to support targets that need to parse multiple formats for the
1392  // assembly language.
1393  int Variant = 0;
1394
1395  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1396  string Name = "";
1397
1398  // CommentDelimiter - If given, the delimiter string used to recognize
1399  // comments which are hard coded in the .td assembler strings for individual
1400  // instructions.
1401  string CommentDelimiter = "";
1402
1403  // RegisterPrefix - If given, the token prefix which indicates a register
1404  // token. This is used by the matcher to automatically recognize hard coded
1405  // register tokens as constrained registers, instead of tokens, for the
1406  // purposes of matching.
1407  string RegisterPrefix = "";
1408
1409  // TokenizingCharacters - Characters that are standalone tokens
1410  string TokenizingCharacters = "[]*!";
1411
1412  // SeparatorCharacters - Characters that are not tokens
1413  string SeparatorCharacters = " \t,";
1414
1415  // BreakCharacters - Characters that start new identifiers
1416  string BreakCharacters = "";
1417}
1418def DefaultAsmParserVariant : AsmParserVariant;
1419
1420// Operators for combining SubtargetFeatures in AssemblerPredicates
1421def any_of;
1422def all_of;
1423
1424/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1425/// matches instructions and aliases.
1426class AssemblerPredicate<dag cond, string name = ""> {
1427  bit AssemblerMatcherPredicate = true;
1428  dag AssemblerCondDag = cond;
1429  string PredicateName = name;
1430}
1431
1432/// TokenAlias - This class allows targets to define assembler token
1433/// operand aliases. That is, a token literal operand which is equivalent
1434/// to another, canonical, token literal. For example, ARM allows:
1435///   vmov.u32 s4, #0  -> vmov.i32, #0
1436/// 'u32' is a more specific designator for the 32-bit integer type specifier
1437/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1438///   def : TokenAlias<".u32", ".i32">;
1439///
1440/// This works by marking the match class of 'From' as a subclass of the
1441/// match class of 'To'.
1442class TokenAlias<string From, string To> {
1443  string FromToken = From;
1444  string ToToken = To;
1445}
1446
1447/// MnemonicAlias - This class allows targets to define assembler mnemonic
1448/// aliases.  This should be used when all forms of one mnemonic are accepted
1449/// with a different mnemonic.  For example, X86 allows:
1450///   sal %al, 1    -> shl %al, 1
1451///   sal %ax, %cl  -> shl %ax, %cl
1452///   sal %eax, %cl -> shl %eax, %cl
1453/// etc.  Though "sal" is accepted with many forms, all of them are directly
1454/// translated to a shl, so it can be handled with (in the case of X86, it
1455/// actually has one for each suffix as well):
1456///   def : MnemonicAlias<"sal", "shl">;
1457///
1458/// Mnemonic aliases are mapped before any other translation in the match phase,
1459/// and do allow Requires predicates, e.g.:
1460///
1461///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1462///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1463///
1464/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1465///
1466///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1467///
1468/// If no variant (e.g., "att" or "intel") is specified then the alias is
1469/// applied unconditionally.
1470class MnemonicAlias<string From, string To, string VariantName = ""> {
1471  string FromMnemonic = From;
1472  string ToMnemonic = To;
1473  string AsmVariantName = VariantName;
1474
1475  // Predicates - Predicates that must be true for this remapping to happen.
1476  list<Predicate> Predicates = [];
1477}
1478
1479/// InstAlias - This defines an alternate assembly syntax that is allowed to
1480/// match an instruction that has a different (more canonical) assembly
1481/// representation.
1482class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1483  string AsmString = Asm;      // The .s format to match the instruction with.
1484  dag ResultInst = Result;     // The MCInst to generate.
1485
1486  // This determines which order the InstPrinter detects aliases for
1487  // printing. A larger value makes the alias more likely to be
1488  // emitted. The Instruction's own definition is notionally 0.5, so 0
1489  // disables printing and 1 enables it if there are no conflicting aliases.
1490  int EmitPriority = Emit;
1491
1492  // Predicates - Predicates that must be true for this to match.
1493  list<Predicate> Predicates = [];
1494
1495  // If the instruction specified in Result has defined an AsmMatchConverter
1496  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1497  // function when converting the OperandVector into an MCInst instead of the
1498  // function that is generated by the dag Result.
1499  // Setting this to 0 will cause the alias to ignore the Result instruction's
1500  // defined AsmMatchConverter and instead use the function generated by the
1501  // dag Result.
1502  bit UseInstAsmMatchConverter = true;
1503
1504  // Assembler variant name to use for this alias. If not specified then
1505  // assembler variants will be determined based on AsmString
1506  string AsmVariantName = VariantName;
1507}
1508
1509//===----------------------------------------------------------------------===//
1510// AsmWriter - This class can be implemented by targets that need to customize
1511// the format of the .s file writer.
1512//
1513// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1514// on X86 for example).
1515//
1516class AsmWriter {
1517  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1518  // class.  Generated AsmWriter classes are always prefixed with the target
1519  // name.
1520  string AsmWriterClassName  = "InstPrinter";
1521
1522  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1523  // the various print methods.
1524  // FIXME: Remove after all ports are updated.
1525  int PassSubtarget = 0;
1526
1527  // Variant - AsmWriters can be of multiple different variants.  Variants are
1528  // used to support targets that need to emit assembly code in ways that are
1529  // mostly the same for different targets, but have minor differences in
1530  // syntax.  If the asmstring contains {|} characters in them, this integer
1531  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1532  // == 1, will expand to "y".
1533  int Variant = 0;
1534}
1535def DefaultAsmWriter : AsmWriter;
1536
1537
1538//===----------------------------------------------------------------------===//
1539// Target - This class contains the "global" target information
1540//
1541class Target {
1542  // InstructionSet - Instruction set description for this target.
1543  InstrInfo InstructionSet;
1544
1545  // AssemblyParsers - The AsmParser instances available for this target.
1546  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1547
1548  /// AssemblyParserVariants - The AsmParserVariant instances available for
1549  /// this target.
1550  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1551
1552  // AssemblyWriters - The AsmWriter instances available for this target.
1553  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1554
1555  // AllowRegisterRenaming - Controls whether this target allows
1556  // post-register-allocation renaming of registers.  This is done by
1557  // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1558  // for all opcodes if this flag is set to 0.
1559  int AllowRegisterRenaming = 0;
1560}
1561
1562//===----------------------------------------------------------------------===//
1563// SubtargetFeature - A characteristic of the chip set.
1564//
1565class SubtargetFeature<string n, string a,  string v, string d,
1566                       list<SubtargetFeature> i = []> {
1567  // Name - Feature name.  Used by command line (-mattr=) to determine the
1568  // appropriate target chip.
1569  //
1570  string Name = n;
1571
1572  // Attribute - Attribute to be set by feature.
1573  //
1574  string Attribute = a;
1575
1576  // Value - Value the attribute to be set to by feature.
1577  //
1578  string Value = v;
1579
1580  // Desc - Feature description.  Used by command line (-mattr=) to display help
1581  // information.
1582  //
1583  string Desc = d;
1584
1585  // Implies - Features that this feature implies are present. If one of those
1586  // features isn't set, then this one shouldn't be set either.
1587  //
1588  list<SubtargetFeature> Implies = i;
1589}
1590
1591/// Specifies a Subtarget feature that this instruction is deprecated on.
1592class Deprecated<SubtargetFeature dep> {
1593  SubtargetFeature DeprecatedFeatureMask = dep;
1594}
1595
1596/// A custom predicate used to determine if an instruction is
1597/// deprecated or not.
1598class ComplexDeprecationPredicate<string dep> {
1599  string ComplexDeprecationPredicate = dep;
1600}
1601
1602//===----------------------------------------------------------------------===//
1603// Processor chip sets - These values represent each of the chip sets supported
1604// by the scheduler.  Each Processor definition requires corresponding
1605// instruction itineraries.
1606//
1607class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
1608                list<SubtargetFeature> tunef = []> {
1609  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1610  // appropriate target chip.
1611  //
1612  string Name = n;
1613
1614  // SchedModel - The machine model for scheduling and instruction cost.
1615  //
1616  SchedMachineModel SchedModel = NoSchedModel;
1617
1618  // ProcItin - The scheduling information for the target processor.
1619  //
1620  ProcessorItineraries ProcItin = pi;
1621
1622  // Features - list of
1623  list<SubtargetFeature> Features = f;
1624
1625  // TuneFeatures - list of features for tuning for this CPU. If the target
1626  // supports -mtune, this should contain the list of features used to make
1627  // microarchitectural optimization decisions for a given processor.  While
1628  // Features should contain the architectural features for the processor.
1629  list<SubtargetFeature> TuneFeatures = tunef;
1630}
1631
1632// ProcessorModel allows subtargets to specify the more general
1633// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1634// gradually move to this newer form.
1635//
1636// Although this class always passes NoItineraries to the Processor
1637// class, the SchedMachineModel may still define valid Itineraries.
1638class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
1639                     list<SubtargetFeature> tunef = []>
1640  : Processor<n, NoItineraries, f, tunef> {
1641  let SchedModel = m;
1642}
1643
1644//===----------------------------------------------------------------------===//
1645// InstrMapping - This class is used to create mapping tables to relate
1646// instructions with each other based on the values specified in RowFields,
1647// ColFields, KeyCol and ValueCols.
1648//
1649class InstrMapping {
1650  // FilterClass - Used to limit search space only to the instructions that
1651  // define the relationship modeled by this InstrMapping record.
1652  string FilterClass;
1653
1654  // RowFields - List of fields/attributes that should be same for all the
1655  // instructions in a row of the relation table. Think of this as a set of
1656  // properties shared by all the instructions related by this relationship
1657  // model and is used to categorize instructions into subgroups. For instance,
1658  // if we want to define a relation that maps 'Add' instruction to its
1659  // predicated forms, we can define RowFields like this:
1660  //
1661  // let RowFields = BaseOp
1662  // All add instruction predicated/non-predicated will have to set their BaseOp
1663  // to the same value.
1664  //
1665  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1666  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1667  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1668  list<string> RowFields = [];
1669
1670  // List of fields/attributes that are same for all the instructions
1671  // in a column of the relation table.
1672  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1673  // based on the 'predSense' values. All the instruction in a specific
1674  // column have the same value and it is fixed for the column according
1675  // to the values set in 'ValueCols'.
1676  list<string> ColFields = [];
1677
1678  // Values for the fields/attributes listed in 'ColFields'.
1679  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1680  // that models this relation) should be non-predicated.
1681  // In the example above, 'Add' is the key instruction.
1682  list<string> KeyCol = [];
1683
1684  // List of values for the fields/attributes listed in 'ColFields', one for
1685  // each column in the relation table.
1686  //
1687  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1688  // table. First column requires all the instructions to have predSense
1689  // set to 'true' and second column requires it to be 'false'.
1690  list<list<string> > ValueCols = [];
1691}
1692
1693//===----------------------------------------------------------------------===//
1694// Pull in the common support for calling conventions.
1695//
1696include "llvm/Target/TargetCallingConv.td"
1697
1698//===----------------------------------------------------------------------===//
1699// Pull in the common support for DAG isel generation.
1700//
1701include "llvm/Target/TargetSelectionDAG.td"
1702
1703//===----------------------------------------------------------------------===//
1704// Pull in the common support for Global ISel register bank info generation.
1705//
1706include "llvm/Target/GlobalISel/RegisterBank.td"
1707
1708//===----------------------------------------------------------------------===//
1709// Pull in the common support for DAG isel generation.
1710//
1711include "llvm/Target/GlobalISel/Target.td"
1712
1713//===----------------------------------------------------------------------===//
1714// Pull in the common support for the Global ISel DAG-based selector generation.
1715//
1716include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1717
1718//===----------------------------------------------------------------------===//
1719// Pull in the common support for Pfm Counters generation.
1720//
1721include "llvm/Target/TargetPfmCounters.td"
1722