1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target-independent interfaces which should be
10// implemented by each target which is using a TableGen based code generator.
11//
12//===----------------------------------------------------------------------===//
13
14// Include all information about LLVM intrinsics.
15include "llvm/IR/Intrinsics.td"
16
17//===----------------------------------------------------------------------===//
18// Register file description - These classes are used to fill in the target
19// description classes.
20
21class HwMode<string FS> {
22  // A string representing subtarget features that turn on this HW mode.
23  // For example, "+feat1,-feat2" will indicate that the mode is active
24  // when "feat1" is enabled and "feat2" is disabled at the same time.
25  // Any other features are not checked.
26  // When multiple modes are used, they should be mutually exclusive,
27  // otherwise the results are unpredictable.
28  string Features = FS;
29}
30
31// A special mode recognized by tablegen. This mode is considered active
32// when no other mode is active. For targets that do not use specific hw
33// modes, this is the only mode.
34def DefaultMode : HwMode<"">;
35
36// A class used to associate objects with HW modes. It is only intended to
37// be used as a base class, where the derived class should contain a member
38// "Objects", which is a list of the same length as the list of modes.
39// The n-th element on the Objects list will be associated with the n-th
40// element on the Modes list.
41class HwModeSelect<list<HwMode> Ms> {
42  list<HwMode> Modes = Ms;
43}
44
45// A common class that implements a counterpart of ValueType, which is
46// dependent on a HW mode. This class inherits from ValueType itself,
47// which makes it possible to use objects of this class where ValueType
48// objects could be used. This is specifically applicable to selection
49// patterns.
50class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
51    : HwModeSelect<Ms>, ValueType<0, 0> {
52  // The length of this list must be the same as the length of Ms.
53  list<ValueType> Objects = Ts;
54}
55
56// A class representing the register size, spill size and spill alignment
57// in bits of a register.
58class RegInfo<int RS, int SS, int SA> {
59  int RegSize = RS;         // Register size in bits.
60  int SpillSize = SS;       // Spill slot size in bits.
61  int SpillAlignment = SA;  // Spill slot alignment in bits.
62}
63
64// The register size/alignment information, parameterized by a HW mode.
65class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
66    : HwModeSelect<Ms> {
67  // The length of this list must be the same as the length of Ms.
68  list<RegInfo> Objects = Ts;
69}
70
71// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
72class SubRegIndex<int size, int offset = 0> {
73  string Namespace = "";
74
75  // Size - Size (in bits) of the sub-registers represented by this index.
76  int Size = size;
77
78  // Offset - Offset of the first bit that is part of this sub-register index.
79  // Set it to -1 if the same index is used to represent sub-registers that can
80  // be at different offsets (for example when using an index to access an
81  // element in a register tuple).
82  int Offset = offset;
83
84  // ComposedOf - A list of two SubRegIndex instances, [A, B].
85  // This indicates that this SubRegIndex is the result of composing A and B.
86  // See ComposedSubRegIndex.
87  list<SubRegIndex> ComposedOf = [];
88
89  // CoveringSubRegIndices - A list of two or more sub-register indexes that
90  // cover this sub-register.
91  //
92  // This field should normally be left blank as TableGen can infer it.
93  //
94  // TableGen automatically detects sub-registers that straddle the registers
95  // in the SubRegs field of a Register definition. For example:
96  //
97  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
98  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
99  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
100  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
101  //
102  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
103  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
104  // CoveringSubRegIndices = [dsub_1, dsub_2].
105  list<SubRegIndex> CoveringSubRegIndices = [];
106}
107
108// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
109// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
110class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
111  : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
112                              !eq(B.Offset, -1): -1,
113                              true:              !add(A.Offset, B.Offset))> {
114  // See SubRegIndex.
115  let ComposedOf = [A, B];
116}
117
118// RegAltNameIndex - The alternate name set to use for register operands of
119// this register class when printing.
120class RegAltNameIndex {
121  string Namespace = "";
122
123  // A set to be used if the name for a register is not defined in this set.
124  // This allows creating name sets with only a few alternative names.
125  RegAltNameIndex FallbackRegAltNameIndex = ?;
126}
127def NoRegAltName : RegAltNameIndex;
128
129// Register - You should define one instance of this class for each register
130// in the target machine.  String n will become the "name" of the register.
131class Register<string n, list<string> altNames = []> {
132  string Namespace = "";
133  string AsmName = n;
134  list<string> AltNames = altNames;
135
136  // Aliases - A list of registers that this register overlaps with.  A read or
137  // modification of this register can potentially read or modify the aliased
138  // registers.
139  list<Register> Aliases = [];
140
141  // SubRegs - A list of registers that are parts of this register. Note these
142  // are "immediate" sub-registers and the registers within the list do not
143  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
144  // not [AX, AH, AL].
145  list<Register> SubRegs = [];
146
147  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
148  // to address it. Sub-sub-register indices are automatically inherited from
149  // SubRegs.
150  list<SubRegIndex> SubRegIndices = [];
151
152  // RegAltNameIndices - The alternate name indices which are valid for this
153  // register.
154  list<RegAltNameIndex> RegAltNameIndices = [];
155
156  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
157  // These values can be determined by locating the <target>.h file in the
158  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
159  // order of these names correspond to the enumeration used by gcc.  A value of
160  // -1 indicates that the gcc number is undefined and -2 that register number
161  // is invalid for this mode/flavour.
162  list<int> DwarfNumbers = [];
163
164  // CostPerUse - Additional cost of instructions using this register compared
165  // to other registers in its class. The register allocator will try to
166  // minimize the number of instructions using a register with a CostPerUse.
167  // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
168  // some registers require larger instruction encodings, by the RISC-V target,
169  // where some registers preclude using some C instructions. By making it a
170  // list, targets can have multiple cost models associated with each register
171  // and can choose one specific cost model per Machine Function by overriding
172  // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will
173  // finally have an equal number of cost values which is the max of costPerUse
174  // values specified. Any mismatch in the cost values for a register will be
175  // filled with zeros. Restricted the cost type to uint8_t in the
176  // generated table. It will considerably reduce the table size.
177  list<int> CostPerUse = [0];
178
179  // CoveredBySubRegs - When this bit is set, the value of this register is
180  // completely determined by the value of its sub-registers.  For example, the
181  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
182  // covered by its sub-register AX.
183  bit CoveredBySubRegs = false;
184
185  // HWEncoding - The target specific hardware encoding for this register.
186  bits<16> HWEncoding = 0;
187
188  bit isArtificial = false;
189}
190
191// RegisterWithSubRegs - This can be used to define instances of Register which
192// need to specify sub-registers.
193// List "subregs" specifies which registers are sub-registers to this one. This
194// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
195// This allows the code generator to be careful not to put two values with
196// overlapping live ranges into registers which alias.
197class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
198  let SubRegs = subregs;
199}
200
201// DAGOperand - An empty base class that unifies RegisterClass's and other forms
202// of Operand's that are legal as type qualifiers in DAG patterns.  This should
203// only ever be used for defining multiclasses that are polymorphic over both
204// RegisterClass's and other Operand's.
205class DAGOperand {
206  string OperandNamespace = "MCOI";
207  string DecoderMethod = "";
208}
209
210// RegisterClass - Now that all of the registers are defined, and aliases
211// between registers are defined, specify which registers belong to which
212// register classes.  This also defines the default allocation order of
213// registers by register allocators.
214//
215class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
216                    dag regList, RegAltNameIndex idx = NoRegAltName>
217  : DAGOperand {
218  string Namespace = namespace;
219
220  // The register size/alignment information, parameterized by a HW mode.
221  RegInfoByHwMode RegInfos;
222
223  // RegType - Specify the list ValueType of the registers in this register
224  // class.  Note that all registers in a register class must have the same
225  // ValueTypes.  This is a list because some targets permit storing different
226  // types in same register, for example vector values with 128-bit total size,
227  // but different count/size of items, like SSE on x86.
228  //
229  list<ValueType> RegTypes = regTypes;
230
231  // Size - Specify the spill size in bits of the registers.  A default value of
232  // zero lets tablegen pick an appropriate size.
233  int Size = 0;
234
235  // Alignment - Specify the alignment required of the registers when they are
236  // stored or loaded to memory.
237  //
238  int Alignment = alignment;
239
240  // CopyCost - This value is used to specify the cost of copying a value
241  // between two registers in this register class. The default value is one
242  // meaning it takes a single instruction to perform the copying. A negative
243  // value means copying is extremely expensive or impossible.
244  int CopyCost = 1;
245
246  // MemberList - Specify which registers are in this class.  If the
247  // allocation_order_* method are not specified, this also defines the order of
248  // allocation used by the register allocator.
249  //
250  dag MemberList = regList;
251
252  // AltNameIndex - The alternate register name to use when printing operands
253  // of this register class. Every register in the register class must have
254  // a valid alternate name for the given index.
255  RegAltNameIndex altNameIndex = idx;
256
257  // isAllocatable - Specify that the register class can be used for virtual
258  // registers and register allocation.  Some register classes are only used to
259  // model instruction operand constraints, and should have isAllocatable = 0.
260  bit isAllocatable = true;
261
262  // AltOrders - List of alternative allocation orders. The default order is
263  // MemberList itself, and that is good enough for most targets since the
264  // register allocators automatically remove reserved registers and move
265  // callee-saved registers to the end.
266  list<dag> AltOrders = [];
267
268  // AltOrderSelect - The body of a function that selects the allocation order
269  // to use in a given machine function. The code will be inserted in a
270  // function like this:
271  //
272  //   static inline unsigned f(const MachineFunction &MF) { ... }
273  //
274  // The function should return 0 to select the default order defined by
275  // MemberList, 1 to select the first AltOrders entry and so on.
276  code AltOrderSelect = [{}];
277
278  // Specify allocation priority for register allocators using a greedy
279  // heuristic. Classes with higher priority values are assigned first. This is
280  // useful as it is sometimes beneficial to assign registers to highly
281  // constrained classes first. The value has to be in the range [0,63].
282  // Values >= 32 should be used with care since they may overlap with other
283  // fields in the allocator's priority heuristics.
284  int AllocationPriority = 0;
285
286  // Generate register pressure set for this register class and any class
287  // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
288  bit GeneratePressureSet = true;
289
290  // Weight override for register pressure calculation. This is the value
291  // TargetRegisterClass::getRegClassWeight() will return. The weight is in
292  // units of pressure for this register class. If unset tablegen will
293  // calculate a weight based on a number of register units in this register
294  // class registers. The weight is per register.
295  int Weight = ?;
296
297  // The diagnostic type to present when referencing this operand in a match
298  // failure error message. If this is empty, the default Match_InvalidOperand
299  // diagnostic type will be used. If this is "<name>", a Match_<name> enum
300  // value will be generated and used for this operand type. The target
301  // assembly parser is responsible for converting this into a user-facing
302  // diagnostic message.
303  string DiagnosticType = "";
304
305  // A diagnostic message to emit when an invalid value is provided for this
306  // register class when it is being used an an assembly operand. If this is
307  // non-empty, an anonymous diagnostic type enum value will be generated, and
308  // the assembly matcher will provide a function to map from diagnostic types
309  // to message strings.
310  string DiagnosticString = "";
311
312  // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass.
313  bits<8> TSFlags = 0;
314}
315
316// The memberList in a RegisterClass is a dag of set operations. TableGen
317// evaluates these set operations and expand them into register lists. These
318// are the most common operation, see test/TableGen/SetTheory.td for more
319// examples of what is possible:
320//
321// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
322// register class, or a sub-expression. This is also the way to simply list
323// registers.
324//
325// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
326//
327// (and GPR, CSR) - Set intersection. All registers from the first set that are
328// also in the second set.
329//
330// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
331// numbered registers.  Takes an optional 4th operand which is a stride to use
332// when generating the sequence.
333//
334// (shl GPR, 4) - Remove the first N elements.
335//
336// (trunc GPR, 4) - Truncate after the first N elements.
337//
338// (rotl GPR, 1) - Rotate N places to the left.
339//
340// (rotr GPR, 1) - Rotate N places to the right.
341//
342// (decimate GPR, 2) - Pick every N'th element, starting with the first.
343//
344// (interleave A, B, ...) - Interleave the elements from each argument list.
345//
346// All of these operators work on ordered sets, not lists. That means
347// duplicates are removed from sub-expressions.
348
349// Set operators. The rest is defined in TargetSelectionDAG.td.
350def sequence;
351def decimate;
352def interleave;
353
354// RegisterTuples - Automatically generate super-registers by forming tuples of
355// sub-registers. This is useful for modeling register sequence constraints
356// with pseudo-registers that are larger than the architectural registers.
357//
358// The sub-register lists are zipped together:
359//
360//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
361//
362// Generates the same registers as:
363//
364//   let SubRegIndices = [sube, subo] in {
365//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
366//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
367//   }
368//
369// The generated pseudo-registers inherit super-classes and fields from their
370// first sub-register. Most fields from the Register class are inferred, and
371// the AsmName and Dwarf numbers are cleared.
372//
373// RegisterTuples instances can be used in other set operations to form
374// register classes and so on. This is the only way of using the generated
375// registers.
376//
377// RegNames may be specified to supply asm names for the generated tuples.
378// If used must have the same size as the list of produced registers.
379class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
380                     list<string> RegNames = []> {
381  // SubRegs - N lists of registers to be zipped up. Super-registers are
382  // synthesized from the first element of each SubRegs list, the second
383  // element and so on.
384  list<dag> SubRegs = Regs;
385
386  // SubRegIndices - N SubRegIndex instances. This provides the names of the
387  // sub-registers in the synthesized super-registers.
388  list<SubRegIndex> SubRegIndices = Indices;
389
390  // List of asm names for the generated tuple registers.
391  list<string> RegAsmNames = RegNames;
392}
393
394// RegisterCategory - This class is a list of RegisterClasses that belong to a
395// general cateogry --- e.g. "general purpose" or "fixed" registers. This is
396// useful for identifying registers in a generic way instead of having
397// information about a specific target's registers.
398class RegisterCategory<list<RegisterClass> classes> {
399  // Classes - A list of register classes that fall within the category.
400  list<RegisterClass> Classes = classes;
401}
402
403//===----------------------------------------------------------------------===//
404// DwarfRegNum - This class provides a mapping of the llvm register enumeration
405// to the register numbering used by gcc and gdb.  These values are used by a
406// debug information writer to describe where values may be located during
407// execution.
408class DwarfRegNum<list<int> Numbers> {
409  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
410  // These values can be determined by locating the <target>.h file in the
411  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
412  // order of these names correspond to the enumeration used by gcc.  A value of
413  // -1 indicates that the gcc number is undefined and -2 that register number
414  // is invalid for this mode/flavour.
415  list<int> DwarfNumbers = Numbers;
416}
417
418// DwarfRegAlias - This class declares that a given register uses the same dwarf
419// numbers as another one. This is useful for making it clear that the two
420// registers do have the same number. It also lets us build a mapping
421// from dwarf register number to llvm register.
422class DwarfRegAlias<Register reg> {
423      Register DwarfAlias = reg;
424}
425
426//===----------------------------------------------------------------------===//
427// Pull in the common support for MCPredicate (portable scheduling predicates).
428//
429include "llvm/Target/TargetInstrPredicate.td"
430
431//===----------------------------------------------------------------------===//
432// Pull in the common support for scheduling
433//
434include "llvm/Target/TargetSchedule.td"
435
436class Predicate; // Forward def
437
438class InstructionEncoding {
439  // Size of encoded instruction.
440  int Size;
441
442  // The "namespace" in which this instruction exists, on targets like ARM
443  // which multiple ISA namespaces exist.
444  string DecoderNamespace = "";
445
446  // List of predicates which will be turned into isel matching code.
447  list<Predicate> Predicates = [];
448
449  string DecoderMethod = "";
450
451  // Is the instruction decoder method able to completely determine if the
452  // given instruction is valid or not. If the TableGen definition of the
453  // instruction specifies bitpattern A??B where A and B are static bits, the
454  // hasCompleteDecoder flag says whether the decoder method fully handles the
455  // ?? space, i.e. if it is a final arbiter for the instruction validity.
456  // If not then the decoder attempts to continue decoding when the decoder
457  // method fails.
458  //
459  // This allows to handle situations where the encoding is not fully
460  // orthogonal. Example:
461  // * InstA with bitpattern 0b0000????,
462  // * InstB with bitpattern 0b000000?? but the associated decoder method
463  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
464  //
465  // The decoder tries to decode a bitpattern that matches both InstA and
466  // InstB bitpatterns first as InstB (because it is the most specific
467  // encoding). In the default case (hasCompleteDecoder = 1), when
468  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
469  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
470  // DecodeInstB() is not able to determine if all possible values of ?? are
471  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
472  // decode the bitpattern as InstA too.
473  bit hasCompleteDecoder = true;
474}
475
476// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
477// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
478// to encode and decode based on HwMode.
479class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
480    : HwModeSelect<Ms> {
481  // The length of this list must be the same as the length of Ms.
482  list<InstructionEncoding> Objects = Ts;
483}
484
485//===----------------------------------------------------------------------===//
486// Instruction set description - These classes correspond to the C++ classes in
487// the Target/TargetInstrInfo.h file.
488//
489class Instruction : InstructionEncoding {
490  string Namespace = "";
491
492  dag OutOperandList;       // An dag containing the MI def operand list.
493  dag InOperandList;        // An dag containing the MI use operand list.
494  string AsmString = "";    // The .s format to print the instruction with.
495
496  // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
497  // the Inst member of this Instruction is ignored.
498  EncodingByHwMode EncodingInfos;
499
500  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
501  // otherwise, uninitialized.
502  list<dag> Pattern;
503
504  // The follow state will eventually be inferred automatically from the
505  // instruction pattern.
506
507  list<Register> Uses = []; // Default to using no non-operand registers
508  list<Register> Defs = []; // Default to modifying no non-operand registers
509
510  // Predicates - List of predicates which will be turned into isel matching
511  // code.
512  list<Predicate> Predicates = [];
513
514  // Size - Size of encoded instruction, or zero if the size cannot be determined
515  // from the opcode.
516  int Size = 0;
517
518  // Code size, for instruction selection.
519  // FIXME: What does this actually mean?
520  int CodeSize = 0;
521
522  // Added complexity passed onto matching pattern.
523  int AddedComplexity  = 0;
524
525  // Indicates if this is a pre-isel opcode that should be
526  // legalized/regbankselected/selected.
527  bit isPreISelOpcode = false;
528
529  // These bits capture information about the high-level semantics of the
530  // instruction.
531  bit isReturn     = false;     // Is this instruction a return instruction?
532  bit isBranch     = false;     // Is this instruction a branch instruction?
533  bit isEHScopeReturn = false;  // Does this instruction end an EH scope?
534  bit isIndirectBranch = false; // Is this instruction an indirect branch?
535  bit isCompare    = false;     // Is this instruction a comparison instruction?
536  bit isMoveImm    = false;     // Is this instruction a move immediate instruction?
537  bit isMoveReg    = false;     // Is this instruction a move register instruction?
538  bit isBitcast    = false;     // Is this instruction a bitcast instruction?
539  bit isSelect     = false;     // Is this instruction a select instruction?
540  bit isBarrier    = false;     // Can control flow fall through this instruction?
541  bit isCall       = false;     // Is this instruction a call instruction?
542  bit isAdd        = false;     // Is this instruction an add instruction?
543  bit isTrap       = false;     // Is this instruction a trap instruction?
544  bit canFoldAsLoad = false;    // Can this be folded as a simple memory operand?
545  bit mayLoad      = ?;         // Is it possible for this inst to read memory?
546  bit mayStore     = ?;         // Is it possible for this inst to write memory?
547  bit mayRaiseFPException = false; // Can this raise a floating-point exception?
548  bit isConvertibleToThreeAddress = false;  // Can this 2-addr instruction promote?
549  bit isCommutable = false;     // Is this 3 operand instruction commutable?
550  bit isTerminator = false;     // Is this part of the terminator for a basic block?
551  bit isReMaterializable = false; // Is this instruction re-materializable?
552  bit isPredicable = false;     // 1 means this instruction is predicable
553                                // even if it does not have any operand
554                                // tablegen can identify as a predicate
555  bit isUnpredicable = false;   // 1 means this instruction is not predicable
556                                // even if it _does_ have a predicate operand
557  bit hasDelaySlot = false;     // Does this instruction have an delay slot?
558  bit usesCustomInserter = false; // Pseudo instr needing special help.
559  bit hasPostISelHook = false;  // To be *adjusted* after isel by target hook.
560  bit hasCtrlDep   = false;     // Does this instruction r/w ctrl-flow chains?
561  bit isNotDuplicable = false;  // Is it unsafe to duplicate this instruction?
562  bit isConvergent = false;     // Is this instruction convergent?
563  bit isAuthenticated = false;  // Does this instruction authenticate a pointer?
564  bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
565  bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
566  bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
567  bit isRegSequence = false;    // Is this instruction a kind of reg sequence?
568                                // If so, make sure to override
569                                // TargetInstrInfo::getRegSequenceLikeInputs.
570  bit isPseudo     = false;     // Is this instruction a pseudo-instruction?
571                                // If so, won't have encoding information for
572                                // the [MC]CodeEmitter stuff.
573  bit isMeta = false;           // Is this instruction a meta-instruction?
574                                // If so, won't produce any output in the form of
575                                // executable instructions
576  bit isExtractSubreg = false;  // Is this instruction a kind of extract subreg?
577                                // If so, make sure to override
578                                // TargetInstrInfo::getExtractSubregLikeInputs.
579  bit isInsertSubreg = false;   // Is this instruction a kind of insert subreg?
580                                // If so, make sure to override
581                                // TargetInstrInfo::getInsertSubregLikeInputs.
582  bit variadicOpsAreDefs = false; // Are variadic operands definitions?
583
584  // Does the instruction have side effects that are not captured by any
585  // operands of the instruction or other flags?
586  bit hasSideEffects = ?;
587
588  // Is this instruction a "real" instruction (with a distinct machine
589  // encoding), or is it a pseudo instruction used for codegen modeling
590  // purposes.
591  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
592  // instructions can (and often do) still have encoding information
593  // associated with them. Once we've migrated all of them over to true
594  // pseudo-instructions that are lowered to real instructions prior to
595  // the printer/emitter, we can remove this attribute and just use isPseudo.
596  //
597  // The intended use is:
598  // isPseudo: Does not have encoding information and should be expanded,
599  //   at the latest, during lowering to MCInst.
600  //
601  // isCodeGenOnly: Does have encoding information and can go through to the
602  //   CodeEmitter unchanged, but duplicates a canonical instruction
603  //   definition's encoding and should be ignored when constructing the
604  //   assembler match tables.
605  bit isCodeGenOnly = false;
606
607  // Is this instruction a pseudo instruction for use by the assembler parser.
608  bit isAsmParserOnly = false;
609
610  // This instruction is not expected to be queried for scheduling latencies
611  // and therefore needs no scheduling information even for a complete
612  // scheduling model.
613  bit hasNoSchedulingInfo = false;
614
615  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
616
617  // Scheduling information from TargetSchedule.td.
618  list<SchedReadWrite> SchedRW;
619
620  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
621
622  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
623  /// be encoded into the output machineinstr.
624  string DisableEncoding = "";
625
626  string PostEncoderMethod = "";
627
628  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
629  bits<64> TSFlags = 0;
630
631  ///@name Assembler Parser Support
632  ///@{
633
634  string AsmMatchConverter = "";
635
636  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
637  /// two-operand matcher inst-alias for a three operand instruction.
638  /// For example, the arm instruction "add r3, r3, r5" can be written
639  /// as "add r3, r5". The constraint is of the same form as a tied-operand
640  /// constraint. For example, "$Rn = $Rd".
641  string TwoOperandAliasConstraint = "";
642
643  /// Assembler variant name to use for this instruction. If specified then
644  /// instruction will be presented only in MatchTable for this variant. If
645  /// not specified then assembler variants will be determined based on
646  /// AsmString
647  string AsmVariantName = "";
648
649  ///@}
650
651  /// UseNamedOperandTable - If set, the operand indices of this instruction
652  /// can be queried via the getNamedOperandIdx() function which is generated
653  /// by TableGen.
654  bit UseNamedOperandTable = false;
655
656  /// Should generate helper functions that help you to map a logical operand's
657  /// index to the underlying MIOperand's index.
658  /// In most architectures logical operand indicies are equal to
659  /// MIOperand indicies, but for some CISC architectures, a logical operand
660  /// might be consist of multiple MIOperand (e.g. a logical operand that
661  /// uses complex address mode).
662  bit UseLogicalOperandMappings = false;
663
664  /// Should FastISel ignore this instruction. For certain ISAs, they have
665  /// instructions which map to the same ISD Opcode, value type operands and
666  /// instruction selection predicates. FastISel cannot handle such cases, but
667  /// SelectionDAG can.
668  bit FastISelShouldIgnore = false;
669
670  /// HasPositionOrder: Indicate tablegen to sort the instructions by record
671  /// ID, so that instruction that is defined earlier can be sorted earlier
672  /// in the assembly matching table.
673  bit HasPositionOrder = false;
674}
675
676/// Defines a Pat match between compressed and uncompressed instruction.
677/// The relationship and helper function generation are handled by
678/// CompressInstEmitter backend.
679class CompressPat<dag input, dag output, list<Predicate> predicates = []> {
680  /// Uncompressed instruction description.
681  dag Input = input;
682  /// Compressed instruction description.
683  dag Output = output;
684  /// Predicates that must be true for this to match.
685  list<Predicate> Predicates = predicates;
686  /// Duplicate match when tied operand is just different.
687  bit isCompressOnly = false;
688}
689
690/// Defines an additional encoding that disassembles to the given instruction
691/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
692// to specify their size.
693class AdditionalEncoding<Instruction I> : InstructionEncoding {
694  Instruction AliasOf = I;
695}
696
697/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
698/// Which instruction it expands to and how the operands map from the
699/// pseudo.
700class PseudoInstExpansion<dag Result> {
701  dag ResultInst = Result;     // The instruction to generate.
702  bit isPseudo = true;
703}
704
705/// Predicates - These are extra conditionals which are turned into instruction
706/// selector matching code. Currently each predicate is just a string.
707class Predicate<string cond> {
708  string CondString = cond;
709
710  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
711  /// matcher, this is true.  Targets should set this by inheriting their
712  /// feature from the AssemblerPredicate class in addition to Predicate.
713  bit AssemblerMatcherPredicate = false;
714
715  /// AssemblerCondDag - Set of subtarget features being tested used
716  /// as alternative condition string used for assembler matcher. Must be used
717  /// with (all_of) to indicate that all features must be present, or (any_of)
718  /// to indicate that at least one must be. The required lack of presence of
719  /// a feature can be tested using a (not) node including the feature.
720  /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
721  ///      "(all_of (not ModeThumb))" is translated to
722  ///      "(Bits & ModeThumb) == 0".
723  ///      "(all_of ModeThumb, FeatureThumb2)" is translated to
724  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
725  ///      "(any_of ModeTumb, FeatureThumb2)" is translated to
726  ///      "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
727  /// all_of and any_of cannot be combined in a single dag, instead multiple
728  /// predicates can be placed onto Instruction definitions.
729  dag AssemblerCondDag;
730
731  /// PredicateName - User-level name to use for the predicate. Mainly for use
732  /// in diagnostics such as missing feature errors in the asm matcher.
733  string PredicateName = "";
734
735  /// Setting this to '1' indicates that the predicate must be recomputed on
736  /// every function change. Most predicates can leave this at '0'.
737  ///
738  /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
739  bit RecomputePerFunction = false;
740}
741
742/// NoHonorSignDependentRounding - This predicate is true if support for
743/// sign-dependent-rounding is not enabled.
744def NoHonorSignDependentRounding
745 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
746
747class Requires<list<Predicate> preds> {
748  list<Predicate> Predicates = preds;
749}
750
751/// ops definition - This is just a simple marker used to identify the operand
752/// list for an instruction. outs and ins are identical both syntactically and
753/// semantically; they are used to define def operands and use operands to
754/// improve readability. This should be used like this:
755///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
756def ops;
757def outs;
758def ins;
759
760/// variable_ops definition - Mark this instruction as taking a variable number
761/// of operands.
762def variable_ops;
763
764/// variable-length instruction encoding utilities.
765/// The `ascend` operator should be used like this:
766///     (ascend 0b0010, 0b1101)
767/// Which represent a seqence of encoding fragments placing from LSB to MSB.
768/// Thus, in this case the final encoding will be 0b1101_0010.
769/// The arguments for `ascend` can either be `bits` or another DAG.
770def ascend;
771/// In addition, we can use `descend` to describe an encoding that places
772/// its arguments (i.e. encoding fragments) from MSB to LSB. For instance:
773///     (descend 0b0010, 0b1101)
774/// This results in an encoding of 0b0010_1101.
775def descend;
776/// The `operand` operator should be used like this:
777///     (operand "$src", 4)
778/// Which represents a 4-bit encoding for an instruction operand named `$src`.
779def operand;
780/// Similar to `operand`, we can reference only part of the operand's encoding:
781///     (slice "$src", 6, 8)
782///     (slice "$src", 8, 6)
783/// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand
784/// `$src`.
785def slice;
786/// You can use `encoder` to specify a custom encoder function for a specific
787/// `operand` or `encoder` directive. For example:
788///     (operand "$src", 4, (encoder "encodeMyImm"))
789///     (slice "$src", 8, 6, (encoder "encodeMyReg"))
790def encoder;
791
792/// PointerLikeRegClass - Values that are designed to have pointer width are
793/// derived from this.  TableGen treats the register class as having a symbolic
794/// type that it doesn't know, and resolves the actual regclass to use by using
795/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
796class PointerLikeRegClass<int Kind> {
797  int RegClassKind = Kind;
798}
799
800
801/// ptr_rc definition - Mark this operand as being a pointer value whose
802/// register class is resolved dynamically via a callback to TargetInstrInfo.
803/// FIXME: We should probably change this to a class which contain a list of
804/// flags. But currently we have but one flag.
805def ptr_rc : PointerLikeRegClass<0>;
806
807/// unknown definition - Mark this operand as being of unknown type, causing
808/// it to be resolved by inference in the context it is used.
809class unknown_class;
810def unknown : unknown_class;
811
812/// AsmOperandClass - Representation for the kinds of operands which the target
813/// specific parser can create and the assembly matcher may need to distinguish.
814///
815/// Operand classes are used to define the order in which instructions are
816/// matched, to ensure that the instruction which gets matched for any
817/// particular list of operands is deterministic.
818///
819/// The target specific parser must be able to classify a parsed operand into a
820/// unique class which does not partially overlap with any other classes. It can
821/// match a subset of some other class, in which case the super class field
822/// should be defined.
823class AsmOperandClass {
824  /// The name to use for this class, which should be usable as an enum value.
825  string Name = ?;
826
827  /// The super classes of this operand.
828  list<AsmOperandClass> SuperClasses = [];
829
830  /// The name of the method on the target specific operand to call to test
831  /// whether the operand is an instance of this class. If not set, this will
832  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
833  /// signature should be:
834  ///   bool isFoo() const;
835  string PredicateMethod = ?;
836
837  /// The name of the method on the target specific operand to call to add the
838  /// target specific operand to an MCInst. If not set, this will default to
839  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
840  /// signature should be:
841  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
842  string RenderMethod = ?;
843
844  /// The name of the method on the target specific operand to call to custom
845  /// handle the operand parsing. This is useful when the operands do not relate
846  /// to immediates or registers and are very instruction specific (as flags to
847  /// set in a processor register, coprocessor number, ...).
848  string ParserMethod = ?;
849
850  // The diagnostic type to present when referencing this operand in a
851  // match failure error message. By default, use a generic "invalid operand"
852  // diagnostic. The target AsmParser maps these codes to text.
853  string DiagnosticType = "";
854
855  /// A diagnostic message to emit when an invalid value is provided for this
856  /// operand.
857  string DiagnosticString = "";
858
859  /// Set to 1 if this operand is optional and not always required. Typically,
860  /// the AsmParser will emit an error when it finishes parsing an
861  /// instruction if it hasn't matched all the operands yet.  However, this
862  /// error will be suppressed if all of the remaining unmatched operands are
863  /// marked as IsOptional.
864  ///
865  /// Optional arguments must be at the end of the operand list.
866  bit IsOptional = false;
867
868  /// The name of the method on the target specific asm parser that returns the
869  /// default operand for this optional operand. This method is only used if
870  /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
871  /// where Foo is the AsmOperandClass name. The method signature should be:
872  ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
873  string DefaultMethod = ?;
874}
875
876def ImmAsmOperand : AsmOperandClass {
877  let Name = "Imm";
878}
879
880/// Operand Types - These provide the built-in operand types that may be used
881/// by a target.  Targets can optionally provide their own operand types as
882/// needed, though this should not be needed for RISC targets.
883class Operand<ValueType ty> : DAGOperand {
884  ValueType Type = ty;
885  string PrintMethod = "printOperand";
886  string EncoderMethod = "";
887  bit hasCompleteDecoder = true;
888  string OperandType = "OPERAND_UNKNOWN";
889  dag MIOperandInfo = (ops);
890
891  // MCOperandPredicate - Optionally, a code fragment operating on
892  // const MCOperand &MCOp, and returning a bool, to indicate if
893  // the value of MCOp is valid for the specific subclass of Operand
894  code MCOperandPredicate;
895
896  // ParserMatchClass - The "match class" that operands of this type fit
897  // in. Match classes are used to define the order in which instructions are
898  // match, to ensure that which instructions gets matched is deterministic.
899  //
900  // The target specific parser must be able to classify an parsed operand into
901  // a unique class, which does not partially overlap with any other classes. It
902  // can match a subset of some other class, in which case the AsmOperandClass
903  // should declare the other operand as one of its super classes.
904  AsmOperandClass ParserMatchClass = ImmAsmOperand;
905}
906
907class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
908  : DAGOperand {
909  // RegClass - The register class of the operand.
910  RegisterClass RegClass = regclass;
911  // PrintMethod - The target method to call to print register operands of
912  // this type. The method normally will just use an alt-name index to look
913  // up the name to print. Default to the generic printOperand().
914  string PrintMethod = pm;
915
916  // EncoderMethod - The target method name to call to encode this register
917  // operand.
918  string EncoderMethod = "";
919
920  // ParserMatchClass - The "match class" that operands of this type fit
921  // in. Match classes are used to define the order in which instructions are
922  // match, to ensure that which instructions gets matched is deterministic.
923  //
924  // The target specific parser must be able to classify an parsed operand into
925  // a unique class, which does not partially overlap with any other classes. It
926  // can match a subset of some other class, in which case the AsmOperandClass
927  // should declare the other operand as one of its super classes.
928  AsmOperandClass ParserMatchClass;
929
930  string OperandType = "OPERAND_REGISTER";
931
932  // When referenced in the result of a CodeGen pattern, GlobalISel will
933  // normally copy the matched operand to the result. When this is set, it will
934  // emit a special copy that will replace zero-immediates with the specified
935  // zero-register.
936  Register GIZeroRegister = ?;
937}
938
939let OperandType = "OPERAND_IMMEDIATE" in {
940def i1imm  : Operand<i1>;
941def i8imm  : Operand<i8>;
942def i16imm : Operand<i16>;
943def i32imm : Operand<i32>;
944def i64imm : Operand<i64>;
945
946def f32imm : Operand<f32>;
947def f64imm : Operand<f64>;
948}
949
950// Register operands for generic instructions don't have an MVT, but do have
951// constraints linking the operands (e.g. all operands of a G_ADD must
952// have the same LLT).
953class TypedOperand<string Ty> : Operand<untyped> {
954  let OperandType = Ty;
955  bit IsPointer = false;
956  bit IsImmediate = false;
957}
958
959def type0 : TypedOperand<"OPERAND_GENERIC_0">;
960def type1 : TypedOperand<"OPERAND_GENERIC_1">;
961def type2 : TypedOperand<"OPERAND_GENERIC_2">;
962def type3 : TypedOperand<"OPERAND_GENERIC_3">;
963def type4 : TypedOperand<"OPERAND_GENERIC_4">;
964def type5 : TypedOperand<"OPERAND_GENERIC_5">;
965
966let IsPointer = true in {
967  def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
968  def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
969  def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
970  def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
971  def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
972  def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
973}
974
975// untyped_imm is for operands where isImm() will be true. It currently has no
976// special behaviour and is only used for clarity.
977def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
978  let IsImmediate = true;
979}
980
981/// zero_reg definition - Special node to stand for the zero register.
982///
983def zero_reg;
984
985/// undef_tied_input - Special node to indicate an input register tied
986/// to an output which defaults to IMPLICIT_DEF.
987def undef_tied_input;
988
989/// All operands which the MC layer classifies as predicates should inherit from
990/// this class in some manner. This is already handled for the most commonly
991/// used PredicateOperand, but may be useful in other circumstances.
992class PredicateOp;
993
994/// OperandWithDefaultOps - This Operand class can be used as the parent class
995/// for an Operand that needs to be initialized with a default value if
996/// no value is supplied in a pattern.  This class can be used to simplify the
997/// pattern definitions for instructions that have target specific flags
998/// encoded as immediate operands.
999class OperandWithDefaultOps<ValueType ty, dag defaultops>
1000  : Operand<ty> {
1001  dag DefaultOps = defaultops;
1002}
1003
1004/// PredicateOperand - This can be used to define a predicate operand for an
1005/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
1006/// AlwaysVal specifies the value of this predicate when set to "always
1007/// execute".
1008class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
1009  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
1010  let MIOperandInfo = OpTypes;
1011}
1012
1013/// OptionalDefOperand - This is used to define a optional definition operand
1014/// for an instruction. DefaultOps is the register the operand represents if
1015/// none is supplied, e.g. zero_reg.
1016class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
1017  : OperandWithDefaultOps<ty, defaultops> {
1018  let MIOperandInfo = OpTypes;
1019}
1020
1021
1022// InstrInfo - This class should only be instantiated once to provide parameters
1023// which are global to the target machine.
1024//
1025class InstrInfo {
1026  // Target can specify its instructions in either big or little-endian formats.
1027  // For instance, while both Sparc and PowerPC are big-endian platforms, the
1028  // Sparc manual specifies its instructions in the format [31..0] (big), while
1029  // PowerPC specifies them using the format [0..31] (little).
1030  bit isLittleEndianEncoding = false;
1031
1032  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
1033  // by default, and TableGen will infer their value from the instruction
1034  // pattern when possible.
1035  //
1036  // Normally, TableGen will issue an error if it can't infer the value of a
1037  // property that hasn't been set explicitly. When guessInstructionProperties
1038  // is set, it will guess a safe value instead.
1039  //
1040  // This option is a temporary migration help. It will go away.
1041  bit guessInstructionProperties = true;
1042
1043  // TableGen's instruction encoder generator has support for matching operands
1044  // to bit-field variables both by name and by position. While matching by
1045  // name is preferred, this is currently not possible for complex operands,
1046  // and some targets still reply on the positional encoding rules. When
1047  // generating a decoder for such targets, the positional encoding rules must
1048  // be used by the decoder generator as well.
1049  //
1050  // This option is temporary; it will go away once the TableGen decoder
1051  // generator has better support for complex operands and targets have
1052  // migrated away from using positionally encoded operands.
1053  bit decodePositionallyEncodedOperands = false;
1054
1055  // When set, this indicates that there will be no overlap between those
1056  // operands that are matched by ordering (positional operands) and those
1057  // matched by name.
1058  //
1059  // This option is temporary; it will go away once the TableGen decoder
1060  // generator has better support for complex operands and targets have
1061  // migrated away from using positionally encoded operands.
1062  bit noNamedPositionallyEncodedOperands = false;
1063}
1064
1065// Standard Pseudo Instructions.
1066// This list must match TargetOpcodes.def.
1067// Only these instructions are allowed in the TargetOpcode namespace.
1068// Ensure mayLoad and mayStore have a default value, so as not to break
1069// targets that set guessInstructionProperties=0. Any local definition of
1070// mayLoad/mayStore takes precedence over these default values.
1071class StandardPseudoInstruction : Instruction {
1072  let mayLoad = false;
1073  let mayStore = false;
1074  let isCodeGenOnly = true;
1075  let isPseudo = true;
1076  let hasNoSchedulingInfo = true;
1077  let Namespace = "TargetOpcode";
1078}
1079def PHI : StandardPseudoInstruction {
1080  let OutOperandList = (outs unknown:$dst);
1081  let InOperandList = (ins variable_ops);
1082  let AsmString = "PHINODE";
1083  let hasSideEffects = false;
1084}
1085def INLINEASM : StandardPseudoInstruction {
1086  let OutOperandList = (outs);
1087  let InOperandList = (ins variable_ops);
1088  let AsmString = "";
1089  let hasSideEffects = false;  // Note side effect is encoded in an operand.
1090}
1091def INLINEASM_BR : StandardPseudoInstruction {
1092  let OutOperandList = (outs);
1093  let InOperandList = (ins variable_ops);
1094  let AsmString = "";
1095  // Unlike INLINEASM, this is always treated as having side-effects.
1096  let hasSideEffects = true;
1097  // Despite potentially branching, this instruction is intentionally _not_
1098  // marked as a terminator or a branch.
1099}
1100def CFI_INSTRUCTION : StandardPseudoInstruction {
1101  let OutOperandList = (outs);
1102  let InOperandList = (ins i32imm:$id);
1103  let AsmString = "";
1104  let hasCtrlDep = true;
1105  let hasSideEffects = false;
1106  let isNotDuplicable = true;
1107  let isMeta = true;
1108}
1109def EH_LABEL : StandardPseudoInstruction {
1110  let OutOperandList = (outs);
1111  let InOperandList = (ins i32imm:$id);
1112  let AsmString = "";
1113  let hasCtrlDep = true;
1114  let hasSideEffects = false;
1115  let isNotDuplicable = true;
1116  let isMeta = true;
1117}
1118def GC_LABEL : StandardPseudoInstruction {
1119  let OutOperandList = (outs);
1120  let InOperandList = (ins i32imm:$id);
1121  let AsmString = "";
1122  let hasCtrlDep = true;
1123  let hasSideEffects = false;
1124  let isNotDuplicable = true;
1125  let isMeta = true;
1126}
1127def ANNOTATION_LABEL : StandardPseudoInstruction {
1128  let OutOperandList = (outs);
1129  let InOperandList = (ins i32imm:$id);
1130  let AsmString = "";
1131  let hasCtrlDep = true;
1132  let hasSideEffects = false;
1133  let isNotDuplicable = true;
1134}
1135def KILL : StandardPseudoInstruction {
1136  let OutOperandList = (outs);
1137  let InOperandList = (ins variable_ops);
1138  let AsmString = "";
1139  let hasSideEffects = false;
1140  let isMeta = true;
1141}
1142def EXTRACT_SUBREG : StandardPseudoInstruction {
1143  let OutOperandList = (outs unknown:$dst);
1144  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
1145  let AsmString = "";
1146  let hasSideEffects = false;
1147}
1148def INSERT_SUBREG : StandardPseudoInstruction {
1149  let OutOperandList = (outs unknown:$dst);
1150  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
1151  let AsmString = "";
1152  let hasSideEffects = false;
1153  let Constraints = "$supersrc = $dst";
1154}
1155def IMPLICIT_DEF : StandardPseudoInstruction {
1156  let OutOperandList = (outs unknown:$dst);
1157  let InOperandList = (ins);
1158  let AsmString = "";
1159  let hasSideEffects = false;
1160  let isReMaterializable = true;
1161  let isAsCheapAsAMove = true;
1162  let isMeta = true;
1163}
1164def SUBREG_TO_REG : StandardPseudoInstruction {
1165  let OutOperandList = (outs unknown:$dst);
1166  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
1167  let AsmString = "";
1168  let hasSideEffects = false;
1169}
1170def COPY_TO_REGCLASS : StandardPseudoInstruction {
1171  let OutOperandList = (outs unknown:$dst);
1172  let InOperandList = (ins unknown:$src, i32imm:$regclass);
1173  let AsmString = "";
1174  let hasSideEffects = false;
1175  let isAsCheapAsAMove = true;
1176}
1177def DBG_VALUE : StandardPseudoInstruction {
1178  let OutOperandList = (outs);
1179  let InOperandList = (ins variable_ops);
1180  let AsmString = "DBG_VALUE";
1181  let hasSideEffects = false;
1182  let isMeta = true;
1183}
1184def DBG_VALUE_LIST : StandardPseudoInstruction {
1185  let OutOperandList = (outs);
1186  let InOperandList = (ins variable_ops);
1187  let AsmString = "DBG_VALUE_LIST";
1188  let hasSideEffects = 0;
1189  let isMeta = true;
1190}
1191def DBG_INSTR_REF : StandardPseudoInstruction {
1192  let OutOperandList = (outs);
1193  let InOperandList = (ins variable_ops);
1194  let AsmString = "DBG_INSTR_REF";
1195  let hasSideEffects = false;
1196  let isMeta = true;
1197}
1198def DBG_PHI : StandardPseudoInstruction {
1199  let OutOperandList = (outs);
1200  let InOperandList = (ins variable_ops);
1201  let AsmString = "DBG_PHI";
1202  let hasSideEffects = 0;
1203  let isMeta = true;
1204}
1205def DBG_LABEL : StandardPseudoInstruction {
1206  let OutOperandList = (outs);
1207  let InOperandList = (ins unknown:$label);
1208  let AsmString = "DBG_LABEL";
1209  let hasSideEffects = false;
1210  let isMeta = true;
1211}
1212def REG_SEQUENCE : StandardPseudoInstruction {
1213  let OutOperandList = (outs unknown:$dst);
1214  let InOperandList = (ins unknown:$supersrc, variable_ops);
1215  let AsmString = "";
1216  let hasSideEffects = false;
1217  let isAsCheapAsAMove = true;
1218}
1219def COPY : StandardPseudoInstruction {
1220  let OutOperandList = (outs unknown:$dst);
1221  let InOperandList = (ins unknown:$src);
1222  let AsmString = "";
1223  let hasSideEffects = false;
1224  let isAsCheapAsAMove = true;
1225  let hasNoSchedulingInfo = false;
1226}
1227def BUNDLE : StandardPseudoInstruction {
1228  let OutOperandList = (outs);
1229  let InOperandList = (ins variable_ops);
1230  let AsmString = "BUNDLE";
1231  let hasSideEffects = false;
1232}
1233def LIFETIME_START : StandardPseudoInstruction {
1234  let OutOperandList = (outs);
1235  let InOperandList = (ins i32imm:$id);
1236  let AsmString = "LIFETIME_START";
1237  let hasSideEffects = false;
1238  let isMeta = true;
1239}
1240def LIFETIME_END : StandardPseudoInstruction {
1241  let OutOperandList = (outs);
1242  let InOperandList = (ins i32imm:$id);
1243  let AsmString = "LIFETIME_END";
1244  let hasSideEffects = false;
1245  let isMeta = true;
1246}
1247def PSEUDO_PROBE : StandardPseudoInstruction {
1248  let OutOperandList = (outs);
1249  let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
1250  let AsmString = "PSEUDO_PROBE";
1251  let hasSideEffects = 1;
1252  let isMeta = true;
1253}
1254def ARITH_FENCE : StandardPseudoInstruction {
1255  let OutOperandList = (outs unknown:$dst);
1256  let InOperandList = (ins unknown:$src);
1257  let AsmString = "";
1258  let hasSideEffects = false;
1259  let Constraints = "$src = $dst";
1260  let isMeta = true;
1261}
1262
1263def STACKMAP : StandardPseudoInstruction {
1264  let OutOperandList = (outs);
1265  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1266  let hasSideEffects = true;
1267  let isCall = true;
1268  let mayLoad = true;
1269  let usesCustomInserter = true;
1270}
1271def PATCHPOINT : StandardPseudoInstruction {
1272  let OutOperandList = (outs unknown:$dst);
1273  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1274                       i32imm:$nargs, i32imm:$cc, variable_ops);
1275  let hasSideEffects = true;
1276  let isCall = true;
1277  let mayLoad = true;
1278  let usesCustomInserter = true;
1279}
1280def STATEPOINT : StandardPseudoInstruction {
1281  let OutOperandList = (outs variable_ops);
1282  let InOperandList = (ins variable_ops);
1283  let usesCustomInserter = true;
1284  let mayLoad = true;
1285  let mayStore = true;
1286  let hasSideEffects = true;
1287  let isCall = true;
1288}
1289def LOAD_STACK_GUARD : StandardPseudoInstruction {
1290  let OutOperandList = (outs ptr_rc:$dst);
1291  let InOperandList = (ins);
1292  let mayLoad = true;
1293  bit isReMaterializable = true;
1294  let hasSideEffects = false;
1295  bit isPseudo = true;
1296}
1297def PREALLOCATED_SETUP : StandardPseudoInstruction {
1298  let OutOperandList = (outs);
1299  let InOperandList = (ins i32imm:$a);
1300  let usesCustomInserter = true;
1301  let hasSideEffects = true;
1302}
1303def PREALLOCATED_ARG : StandardPseudoInstruction {
1304  let OutOperandList = (outs ptr_rc:$loc);
1305  let InOperandList = (ins i32imm:$a, i32imm:$b);
1306  let usesCustomInserter = true;
1307  let hasSideEffects = true;
1308}
1309def LOCAL_ESCAPE : StandardPseudoInstruction {
1310  // This instruction is really just a label. It has to be part of the chain so
1311  // that it doesn't get dropped from the DAG, but it produces nothing and has
1312  // no side effects.
1313  let OutOperandList = (outs);
1314  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1315  let hasSideEffects = false;
1316  let hasCtrlDep = true;
1317}
1318def FAULTING_OP : StandardPseudoInstruction {
1319  let OutOperandList = (outs unknown:$dst);
1320  let InOperandList = (ins variable_ops);
1321  let usesCustomInserter = true;
1322  let hasSideEffects = true;
1323  let mayLoad = true;
1324  let mayStore = true;
1325  let isTerminator = true;
1326  let isBranch = true;
1327}
1328def PATCHABLE_OP : StandardPseudoInstruction {
1329  let OutOperandList = (outs);
1330  let InOperandList = (ins variable_ops);
1331  let usesCustomInserter = true;
1332  let mayLoad = true;
1333  let mayStore = true;
1334  let hasSideEffects = true;
1335}
1336def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1337  let OutOperandList = (outs);
1338  let InOperandList = (ins);
1339  let AsmString = "# XRay Function Enter.";
1340  let usesCustomInserter = true;
1341  let hasSideEffects = true;
1342}
1343def PATCHABLE_RET : StandardPseudoInstruction {
1344  let OutOperandList = (outs);
1345  let InOperandList = (ins variable_ops);
1346  let AsmString = "# XRay Function Patchable RET.";
1347  let usesCustomInserter = true;
1348  let hasSideEffects = true;
1349  let isTerminator = true;
1350  let isReturn = true;
1351}
1352def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1353  let OutOperandList = (outs);
1354  let InOperandList = (ins);
1355  let AsmString = "# XRay Function Exit.";
1356  let usesCustomInserter = true;
1357  let hasSideEffects = true;
1358  let isReturn = false; // Original return instruction will follow
1359}
1360def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1361  let OutOperandList = (outs);
1362  let InOperandList = (ins variable_ops);
1363  let AsmString = "# XRay Tail Call Exit.";
1364  let usesCustomInserter = true;
1365  let hasSideEffects = true;
1366  let isReturn = true;
1367}
1368def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1369  let OutOperandList = (outs);
1370  let InOperandList = (ins ptr_rc:$event, unknown:$size);
1371  let AsmString = "# XRay Custom Event Log.";
1372  let usesCustomInserter = true;
1373  let isCall = true;
1374  let mayLoad = true;
1375  let mayStore = true;
1376  let hasSideEffects = true;
1377}
1378def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1379  let OutOperandList = (outs);
1380  let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
1381  let AsmString = "# XRay Typed Event Log.";
1382  let usesCustomInserter = true;
1383  let isCall = true;
1384  let mayLoad = true;
1385  let mayStore = true;
1386  let hasSideEffects = true;
1387}
1388def FENTRY_CALL : StandardPseudoInstruction {
1389  let OutOperandList = (outs);
1390  let InOperandList = (ins);
1391  let AsmString = "# FEntry call";
1392  let usesCustomInserter = true;
1393  let isCall = true;
1394  let mayLoad = true;
1395  let mayStore = true;
1396  let hasSideEffects = true;
1397}
1398def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1399  let OutOperandList = (outs);
1400  let InOperandList = (ins variable_ops);
1401  let AsmString = "";
1402  let hasSideEffects = true;
1403}
1404
1405// Generic opcodes used in GlobalISel.
1406include "llvm/Target/GenericOpcodes.td"
1407
1408//===----------------------------------------------------------------------===//
1409// AsmParser - This class can be implemented by targets that wish to implement
1410// .s file parsing.
1411//
1412// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1413// syntax on X86 for example).
1414//
1415class AsmParser {
1416  // AsmParserClassName - This specifies the suffix to use for the asmparser
1417  // class.  Generated AsmParser classes are always prefixed with the target
1418  // name.
1419  string AsmParserClassName  = "AsmParser";
1420
1421  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1422  // function of the AsmParser class to call on every matched instruction.
1423  // This can be used to perform target specific instruction post-processing.
1424  string AsmParserInstCleanup  = "";
1425
1426  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1427  // written register name matcher
1428  bit ShouldEmitMatchRegisterName = true;
1429
1430  // Set to true if the target needs a generated 'alternative register name'
1431  // matcher.
1432  //
1433  // This generates a function which can be used to lookup registers from
1434  // their aliases. This function will fail when called on targets where
1435  // several registers share the same alias (i.e. not a 1:1 mapping).
1436  bit ShouldEmitMatchRegisterAltName = false;
1437
1438  // Set to true if MatchRegisterName and MatchRegisterAltName functions
1439  // should be generated even if there are duplicate register names. The
1440  // target is responsible for coercing aliased registers as necessary
1441  // (e.g. in validateTargetOperandClass), and there are no guarantees about
1442  // which numeric register identifier will be returned in the case of
1443  // multiple matches.
1444  bit AllowDuplicateRegisterNames = false;
1445
1446  // HasMnemonicFirst - Set to false if target instructions don't always
1447  // start with a mnemonic as the first token.
1448  bit HasMnemonicFirst = true;
1449
1450  // ReportMultipleNearMisses -
1451  // When 0, the assembly matcher reports an error for one encoding or operand
1452  // that did not match the parsed instruction.
1453  // When 1, the assembly matcher returns a list of encodings that were close
1454  // to matching the parsed instruction, so to allow more detailed error
1455  // messages.
1456  bit ReportMultipleNearMisses = false;
1457}
1458def DefaultAsmParser : AsmParser;
1459
1460//===----------------------------------------------------------------------===//
1461// AsmParserVariant - Subtargets can have multiple different assembly parsers
1462// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1463// implemented by targets to describe such variants.
1464//
1465class AsmParserVariant {
1466  // Variant - AsmParsers can be of multiple different variants.  Variants are
1467  // used to support targets that need to parse multiple formats for the
1468  // assembly language.
1469  int Variant = 0;
1470
1471  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1472  string Name = "";
1473
1474  // CommentDelimiter - If given, the delimiter string used to recognize
1475  // comments which are hard coded in the .td assembler strings for individual
1476  // instructions.
1477  string CommentDelimiter = "";
1478
1479  // RegisterPrefix - If given, the token prefix which indicates a register
1480  // token. This is used by the matcher to automatically recognize hard coded
1481  // register tokens as constrained registers, instead of tokens, for the
1482  // purposes of matching.
1483  string RegisterPrefix = "";
1484
1485  // TokenizingCharacters - Characters that are standalone tokens
1486  string TokenizingCharacters = "[]*!";
1487
1488  // SeparatorCharacters - Characters that are not tokens
1489  string SeparatorCharacters = " \t,";
1490
1491  // BreakCharacters - Characters that start new identifiers
1492  string BreakCharacters = "";
1493}
1494def DefaultAsmParserVariant : AsmParserVariant;
1495
1496// Operators for combining SubtargetFeatures in AssemblerPredicates
1497def any_of;
1498def all_of;
1499
1500/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1501/// matches instructions and aliases.
1502class AssemblerPredicate<dag cond, string name = ""> {
1503  bit AssemblerMatcherPredicate = true;
1504  dag AssemblerCondDag = cond;
1505  string PredicateName = name;
1506}
1507
1508/// TokenAlias - This class allows targets to define assembler token
1509/// operand aliases. That is, a token literal operand which is equivalent
1510/// to another, canonical, token literal. For example, ARM allows:
1511///   vmov.u32 s4, #0  -> vmov.i32, #0
1512/// 'u32' is a more specific designator for the 32-bit integer type specifier
1513/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1514///   def : TokenAlias<".u32", ".i32">;
1515///
1516/// This works by marking the match class of 'From' as a subclass of the
1517/// match class of 'To'.
1518class TokenAlias<string From, string To> {
1519  string FromToken = From;
1520  string ToToken = To;
1521}
1522
1523/// MnemonicAlias - This class allows targets to define assembler mnemonic
1524/// aliases.  This should be used when all forms of one mnemonic are accepted
1525/// with a different mnemonic.  For example, X86 allows:
1526///   sal %al, 1    -> shl %al, 1
1527///   sal %ax, %cl  -> shl %ax, %cl
1528///   sal %eax, %cl -> shl %eax, %cl
1529/// etc.  Though "sal" is accepted with many forms, all of them are directly
1530/// translated to a shl, so it can be handled with (in the case of X86, it
1531/// actually has one for each suffix as well):
1532///   def : MnemonicAlias<"sal", "shl">;
1533///
1534/// Mnemonic aliases are mapped before any other translation in the match phase,
1535/// and do allow Requires predicates, e.g.:
1536///
1537///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1538///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1539///
1540/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1541///
1542///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1543///
1544/// If no variant (e.g., "att" or "intel") is specified then the alias is
1545/// applied unconditionally.
1546class MnemonicAlias<string From, string To, string VariantName = ""> {
1547  string FromMnemonic = From;
1548  string ToMnemonic = To;
1549  string AsmVariantName = VariantName;
1550
1551  // Predicates - Predicates that must be true for this remapping to happen.
1552  list<Predicate> Predicates = [];
1553}
1554
1555/// InstAlias - This defines an alternate assembly syntax that is allowed to
1556/// match an instruction that has a different (more canonical) assembly
1557/// representation.
1558class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1559  string AsmString = Asm;      // The .s format to match the instruction with.
1560  dag ResultInst = Result;     // The MCInst to generate.
1561
1562  // This determines which order the InstPrinter detects aliases for
1563  // printing. A larger value makes the alias more likely to be
1564  // emitted. The Instruction's own definition is notionally 0.5, so 0
1565  // disables printing and 1 enables it if there are no conflicting aliases.
1566  int EmitPriority = Emit;
1567
1568  // Predicates - Predicates that must be true for this to match.
1569  list<Predicate> Predicates = [];
1570
1571  // If the instruction specified in Result has defined an AsmMatchConverter
1572  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1573  // function when converting the OperandVector into an MCInst instead of the
1574  // function that is generated by the dag Result.
1575  // Setting this to 0 will cause the alias to ignore the Result instruction's
1576  // defined AsmMatchConverter and instead use the function generated by the
1577  // dag Result.
1578  bit UseInstAsmMatchConverter = true;
1579
1580  // Assembler variant name to use for this alias. If not specified then
1581  // assembler variants will be determined based on AsmString
1582  string AsmVariantName = VariantName;
1583}
1584
1585//===----------------------------------------------------------------------===//
1586// AsmWriter - This class can be implemented by targets that need to customize
1587// the format of the .s file writer.
1588//
1589// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1590// on X86 for example).
1591//
1592class AsmWriter {
1593  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1594  // class.  Generated AsmWriter classes are always prefixed with the target
1595  // name.
1596  string AsmWriterClassName  = "InstPrinter";
1597
1598  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1599  // the various print methods.
1600  // FIXME: Remove after all ports are updated.
1601  int PassSubtarget = 0;
1602
1603  // Variant - AsmWriters can be of multiple different variants.  Variants are
1604  // used to support targets that need to emit assembly code in ways that are
1605  // mostly the same for different targets, but have minor differences in
1606  // syntax.  If the asmstring contains {|} characters in them, this integer
1607  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1608  // == 1, will expand to "y".
1609  int Variant = 0;
1610}
1611def DefaultAsmWriter : AsmWriter;
1612
1613
1614//===----------------------------------------------------------------------===//
1615// Target - This class contains the "global" target information
1616//
1617class Target {
1618  // InstructionSet - Instruction set description for this target.
1619  InstrInfo InstructionSet;
1620
1621  // AssemblyParsers - The AsmParser instances available for this target.
1622  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1623
1624  /// AssemblyParserVariants - The AsmParserVariant instances available for
1625  /// this target.
1626  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1627
1628  // AssemblyWriters - The AsmWriter instances available for this target.
1629  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1630
1631  // AllowRegisterRenaming - Controls whether this target allows
1632  // post-register-allocation renaming of registers.  This is done by
1633  // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1634  // for all opcodes if this flag is set to 0.
1635  int AllowRegisterRenaming = 0;
1636}
1637
1638//===----------------------------------------------------------------------===//
1639// SubtargetFeature - A characteristic of the chip set.
1640//
1641class SubtargetFeature<string n, string a,  string v, string d,
1642                       list<SubtargetFeature> i = []> {
1643  // Name - Feature name.  Used by command line (-mattr=) to determine the
1644  // appropriate target chip.
1645  //
1646  string Name = n;
1647
1648  // Attribute - Attribute to be set by feature.
1649  //
1650  string Attribute = a;
1651
1652  // Value - Value the attribute to be set to by feature.
1653  //
1654  string Value = v;
1655
1656  // Desc - Feature description.  Used by command line (-mattr=) to display help
1657  // information.
1658  //
1659  string Desc = d;
1660
1661  // Implies - Features that this feature implies are present. If one of those
1662  // features isn't set, then this one shouldn't be set either.
1663  //
1664  list<SubtargetFeature> Implies = i;
1665}
1666
1667/// Specifies a Subtarget feature that this instruction is deprecated on.
1668class Deprecated<SubtargetFeature dep> {
1669  SubtargetFeature DeprecatedFeatureMask = dep;
1670}
1671
1672/// A custom predicate used to determine if an instruction is
1673/// deprecated or not.
1674class ComplexDeprecationPredicate<string dep> {
1675  string ComplexDeprecationPredicate = dep;
1676}
1677
1678//===----------------------------------------------------------------------===//
1679// Processor chip sets - These values represent each of the chip sets supported
1680// by the scheduler.  Each Processor definition requires corresponding
1681// instruction itineraries.
1682//
1683class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
1684                list<SubtargetFeature> tunef = []> {
1685  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1686  // appropriate target chip.
1687  //
1688  string Name = n;
1689
1690  // SchedModel - The machine model for scheduling and instruction cost.
1691  //
1692  SchedMachineModel SchedModel = NoSchedModel;
1693
1694  // ProcItin - The scheduling information for the target processor.
1695  //
1696  ProcessorItineraries ProcItin = pi;
1697
1698  // Features - list of
1699  list<SubtargetFeature> Features = f;
1700
1701  // TuneFeatures - list of features for tuning for this CPU. If the target
1702  // supports -mtune, this should contain the list of features used to make
1703  // microarchitectural optimization decisions for a given processor.  While
1704  // Features should contain the architectural features for the processor.
1705  list<SubtargetFeature> TuneFeatures = tunef;
1706}
1707
1708// ProcessorModel allows subtargets to specify the more general
1709// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1710// gradually move to this newer form.
1711//
1712// Although this class always passes NoItineraries to the Processor
1713// class, the SchedMachineModel may still define valid Itineraries.
1714class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
1715                     list<SubtargetFeature> tunef = []>
1716  : Processor<n, NoItineraries, f, tunef> {
1717  let SchedModel = m;
1718}
1719
1720//===----------------------------------------------------------------------===//
1721// InstrMapping - This class is used to create mapping tables to relate
1722// instructions with each other based on the values specified in RowFields,
1723// ColFields, KeyCol and ValueCols.
1724//
1725class InstrMapping {
1726  // FilterClass - Used to limit search space only to the instructions that
1727  // define the relationship modeled by this InstrMapping record.
1728  string FilterClass;
1729
1730  // RowFields - List of fields/attributes that should be same for all the
1731  // instructions in a row of the relation table. Think of this as a set of
1732  // properties shared by all the instructions related by this relationship
1733  // model and is used to categorize instructions into subgroups. For instance,
1734  // if we want to define a relation that maps 'Add' instruction to its
1735  // predicated forms, we can define RowFields like this:
1736  //
1737  // let RowFields = BaseOp
1738  // All add instruction predicated/non-predicated will have to set their BaseOp
1739  // to the same value.
1740  //
1741  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1742  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1743  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1744  list<string> RowFields = [];
1745
1746  // List of fields/attributes that are same for all the instructions
1747  // in a column of the relation table.
1748  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1749  // based on the 'predSense' values. All the instruction in a specific
1750  // column have the same value and it is fixed for the column according
1751  // to the values set in 'ValueCols'.
1752  list<string> ColFields = [];
1753
1754  // Values for the fields/attributes listed in 'ColFields'.
1755  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1756  // that models this relation) should be non-predicated.
1757  // In the example above, 'Add' is the key instruction.
1758  list<string> KeyCol = [];
1759
1760  // List of values for the fields/attributes listed in 'ColFields', one for
1761  // each column in the relation table.
1762  //
1763  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1764  // table. First column requires all the instructions to have predSense
1765  // set to 'true' and second column requires it to be 'false'.
1766  list<list<string> > ValueCols = [];
1767}
1768
1769//===----------------------------------------------------------------------===//
1770// Pull in the common support for calling conventions.
1771//
1772include "llvm/Target/TargetCallingConv.td"
1773
1774//===----------------------------------------------------------------------===//
1775// Pull in the common support for DAG isel generation.
1776//
1777include "llvm/Target/TargetSelectionDAG.td"
1778
1779//===----------------------------------------------------------------------===//
1780// Pull in the common support for Global ISel register bank info generation.
1781//
1782include "llvm/Target/GlobalISel/RegisterBank.td"
1783
1784//===----------------------------------------------------------------------===//
1785// Pull in the common support for DAG isel generation.
1786//
1787include "llvm/Target/GlobalISel/Target.td"
1788
1789//===----------------------------------------------------------------------===//
1790// Pull in the common support for the Global ISel DAG-based selector generation.
1791//
1792include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1793
1794//===----------------------------------------------------------------------===//
1795// Pull in the common support for Pfm Counters generation.
1796//
1797include "llvm/Target/TargetPfmCounters.td"
1798