1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target-independent interfaces which should be
10// implemented by each target which is using a TableGen based code generator.
11//
12//===----------------------------------------------------------------------===//
13
14// Include all information about LLVM intrinsics.
15include "llvm/IR/Intrinsics.td"
16
17class Predicate; // Forward def
18
19//===----------------------------------------------------------------------===//
20// Register file description - These classes are used to fill in the target
21// description classes.
22
23class HwMode<string FS, list<Predicate> Ps> {
24  // A string representing subtarget features that turn on this HW mode.
25  // For example, "+feat1,-feat2" will indicate that the mode is active
26  // when "feat1" is enabled and "feat2" is disabled at the same time.
27  // Any other features are not checked.
28  // When multiple modes are used, they should be mutually exclusive,
29  // otherwise the results are unpredictable.
30  string Features = FS;
31
32  // A list of predicates that turn on this HW mode.
33  list<Predicate> Predicates = Ps;
34}
35
36// A special mode recognized by tablegen. This mode is considered active
37// when no other mode is active. For targets that do not use specific hw
38// modes, this is the only mode.
39def DefaultMode : HwMode<"", []>;
40
41// A class used to associate objects with HW modes. It is only intended to
42// be used as a base class, where the derived class should contain a member
43// "Objects", which is a list of the same length as the list of modes.
44// The n-th element on the Objects list will be associated with the n-th
45// element on the Modes list.
46class HwModeSelect<list<HwMode> Ms> {
47  list<HwMode> Modes = Ms;
48}
49
50// A common class that implements a counterpart of ValueType, which is
51// dependent on a HW mode. This class inherits from ValueType itself,
52// which makes it possible to use objects of this class where ValueType
53// objects could be used. This is specifically applicable to selection
54// patterns.
55class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
56    : HwModeSelect<Ms>, ValueType<0, 0> {
57  // The length of this list must be the same as the length of Ms.
58  list<ValueType> Objects = Ts;
59}
60
61// A class representing the register size, spill size and spill alignment
62// in bits of a register.
63class RegInfo<int RS, int SS, int SA> {
64  int RegSize = RS;         // Register size in bits.
65  int SpillSize = SS;       // Spill slot size in bits.
66  int SpillAlignment = SA;  // Spill slot alignment in bits.
67}
68
69// The register size/alignment information, parameterized by a HW mode.
70class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
71    : HwModeSelect<Ms> {
72  // The length of this list must be the same as the length of Ms.
73  list<RegInfo> Objects = Ts;
74}
75
76// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
77class SubRegIndex<int size, int offset = 0> {
78  string Namespace = "";
79
80  // Size - Size (in bits) of the sub-registers represented by this index.
81  int Size = size;
82
83  // Offset - Offset of the first bit that is part of this sub-register index.
84  // Set it to -1 if the same index is used to represent sub-registers that can
85  // be at different offsets (for example when using an index to access an
86  // element in a register tuple).
87  int Offset = offset;
88
89  // ComposedOf - A list of two SubRegIndex instances, [A, B].
90  // This indicates that this SubRegIndex is the result of composing A and B.
91  // See ComposedSubRegIndex.
92  list<SubRegIndex> ComposedOf = [];
93
94  // CoveringSubRegIndices - A list of two or more sub-register indexes that
95  // cover this sub-register.
96  //
97  // This field should normally be left blank as TableGen can infer it.
98  //
99  // TableGen automatically detects sub-registers that straddle the registers
100  // in the SubRegs field of a Register definition. For example:
101  //
102  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
103  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
104  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
105  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
106  //
107  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
108  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
109  // CoveringSubRegIndices = [dsub_1, dsub_2].
110  list<SubRegIndex> CoveringSubRegIndices = [];
111}
112
113// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
114// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
115class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
116  : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
117                              !eq(B.Offset, -1): -1,
118                              true:              !add(A.Offset, B.Offset))> {
119  // See SubRegIndex.
120  let ComposedOf = [A, B];
121}
122
123// RegAltNameIndex - The alternate name set to use for register operands of
124// this register class when printing.
125class RegAltNameIndex {
126  string Namespace = "";
127
128  // A set to be used if the name for a register is not defined in this set.
129  // This allows creating name sets with only a few alternative names.
130  RegAltNameIndex FallbackRegAltNameIndex = ?;
131}
132def NoRegAltName : RegAltNameIndex;
133
134// Register - You should define one instance of this class for each register
135// in the target machine.  String n will become the "name" of the register.
136class Register<string n, list<string> altNames = []> {
137  string Namespace = "";
138  string AsmName = n;
139  list<string> AltNames = altNames;
140
141  // Aliases - A list of registers that this register overlaps with.  A read or
142  // modification of this register can potentially read or modify the aliased
143  // registers.
144  list<Register> Aliases = [];
145
146  // SubRegs - A list of registers that are parts of this register. Note these
147  // are "immediate" sub-registers and the registers within the list do not
148  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
149  // not [AX, AH, AL].
150  list<Register> SubRegs = [];
151
152  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
153  // to address it. Sub-sub-register indices are automatically inherited from
154  // SubRegs.
155  list<SubRegIndex> SubRegIndices = [];
156
157  // RegAltNameIndices - The alternate name indices which are valid for this
158  // register.
159  list<RegAltNameIndex> RegAltNameIndices = [];
160
161  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
162  // These values can be determined by locating the <target>.h file in the
163  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
164  // order of these names correspond to the enumeration used by gcc.  A value of
165  // -1 indicates that the gcc number is undefined and -2 that register number
166  // is invalid for this mode/flavour.
167  list<int> DwarfNumbers = [];
168
169  // CostPerUse - Additional cost of instructions using this register compared
170  // to other registers in its class. The register allocator will try to
171  // minimize the number of instructions using a register with a CostPerUse.
172  // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
173  // some registers require larger instruction encodings, by the RISC-V target,
174  // where some registers preclude using some C instructions. By making it a
175  // list, targets can have multiple cost models associated with each register
176  // and can choose one specific cost model per Machine Function by overriding
177  // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will
178  // finally have an equal number of cost values which is the max of costPerUse
179  // values specified. Any mismatch in the cost values for a register will be
180  // filled with zeros. Restricted the cost type to uint8_t in the
181  // generated table. It will considerably reduce the table size.
182  list<int> CostPerUse = [0];
183
184  // CoveredBySubRegs - When this bit is set, the value of this register is
185  // completely determined by the value of its sub-registers.  For example, the
186  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
187  // covered by its sub-register AX.
188  bit CoveredBySubRegs = false;
189
190  // HWEncoding - The target specific hardware encoding for this register.
191  bits<16> HWEncoding = 0;
192
193  bit isArtificial = false;
194
195  // isConstant - This register always holds a constant value (e.g. the zero
196  // register in architectures such as MIPS)
197  bit isConstant = false;
198}
199
200// RegisterWithSubRegs - This can be used to define instances of Register which
201// need to specify sub-registers.
202// List "subregs" specifies which registers are sub-registers to this one. This
203// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
204// This allows the code generator to be careful not to put two values with
205// overlapping live ranges into registers which alias.
206class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
207  let SubRegs = subregs;
208}
209
210// DAGOperand - An empty base class that unifies RegisterClass's and other forms
211// of Operand's that are legal as type qualifiers in DAG patterns.  This should
212// only ever be used for defining multiclasses that are polymorphic over both
213// RegisterClass's and other Operand's.
214class DAGOperand {
215  string OperandNamespace = "MCOI";
216  string DecoderMethod = "";
217}
218
219// RegisterClass - Now that all of the registers are defined, and aliases
220// between registers are defined, specify which registers belong to which
221// register classes.  This also defines the default allocation order of
222// registers by register allocators.
223//
224class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
225                    dag regList, RegAltNameIndex idx = NoRegAltName>
226  : DAGOperand {
227  string Namespace = namespace;
228
229  // The register size/alignment information, parameterized by a HW mode.
230  RegInfoByHwMode RegInfos;
231
232  // RegType - Specify the list ValueType of the registers in this register
233  // class.  Note that all registers in a register class must have the same
234  // ValueTypes.  This is a list because some targets permit storing different
235  // types in same register, for example vector values with 128-bit total size,
236  // but different count/size of items, like SSE on x86.
237  //
238  list<ValueType> RegTypes = regTypes;
239
240  // Size - Specify the spill size in bits of the registers.  A default value of
241  // zero lets tablegen pick an appropriate size.
242  int Size = 0;
243
244  // Alignment - Specify the alignment required of the registers when they are
245  // stored or loaded to memory.
246  //
247  int Alignment = alignment;
248
249  // CopyCost - This value is used to specify the cost of copying a value
250  // between two registers in this register class. The default value is one
251  // meaning it takes a single instruction to perform the copying. A negative
252  // value means copying is extremely expensive or impossible.
253  int CopyCost = 1;
254
255  // MemberList - Specify which registers are in this class.  If the
256  // allocation_order_* method are not specified, this also defines the order of
257  // allocation used by the register allocator.
258  //
259  dag MemberList = regList;
260
261  // AltNameIndex - The alternate register name to use when printing operands
262  // of this register class. Every register in the register class must have
263  // a valid alternate name for the given index.
264  RegAltNameIndex altNameIndex = idx;
265
266  // isAllocatable - Specify that the register class can be used for virtual
267  // registers and register allocation.  Some register classes are only used to
268  // model instruction operand constraints, and should have isAllocatable = 0.
269  bit isAllocatable = true;
270
271  // AltOrders - List of alternative allocation orders. The default order is
272  // MemberList itself, and that is good enough for most targets since the
273  // register allocators automatically remove reserved registers and move
274  // callee-saved registers to the end.
275  list<dag> AltOrders = [];
276
277  // AltOrderSelect - The body of a function that selects the allocation order
278  // to use in a given machine function. The code will be inserted in a
279  // function like this:
280  //
281  //   static inline unsigned f(const MachineFunction &MF) { ... }
282  //
283  // The function should return 0 to select the default order defined by
284  // MemberList, 1 to select the first AltOrders entry and so on.
285  code AltOrderSelect = [{}];
286
287  // Specify allocation priority for register allocators using a greedy
288  // heuristic. Classes with higher priority values are assigned first. This is
289  // useful as it is sometimes beneficial to assign registers to highly
290  // constrained classes first. The value has to be in the range [0,31].
291  int AllocationPriority = 0;
292
293  // Force register class to use greedy's global heuristic for all
294  // registers in this class. This should more aggressively try to
295  // avoid spilling in pathological cases.
296  bit GlobalPriority = false;
297
298  // Generate register pressure set for this register class and any class
299  // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
300  bit GeneratePressureSet = true;
301
302  // Weight override for register pressure calculation. This is the value
303  // TargetRegisterClass::getRegClassWeight() will return. The weight is in
304  // units of pressure for this register class. If unset tablegen will
305  // calculate a weight based on a number of register units in this register
306  // class registers. The weight is per register.
307  int Weight = ?;
308
309  // The diagnostic type to present when referencing this operand in a match
310  // failure error message. If this is empty, the default Match_InvalidOperand
311  // diagnostic type will be used. If this is "<name>", a Match_<name> enum
312  // value will be generated and used for this operand type. The target
313  // assembly parser is responsible for converting this into a user-facing
314  // diagnostic message.
315  string DiagnosticType = "";
316
317  // A diagnostic message to emit when an invalid value is provided for this
318  // register class when it is being used an an assembly operand. If this is
319  // non-empty, an anonymous diagnostic type enum value will be generated, and
320  // the assembly matcher will provide a function to map from diagnostic types
321  // to message strings.
322  string DiagnosticString = "";
323
324  // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass.
325  bits<8> TSFlags = 0;
326
327  // If set then consider this register class to be the base class for registers in
328  // its MemberList.  The base class for registers present in multiple base register
329  // classes will be resolved in the order defined by this value, with lower values
330  // taking precedence over higher ones.  Ties are resolved by enumeration order.
331  int BaseClassOrder = ?;
332}
333
334// The memberList in a RegisterClass is a dag of set operations. TableGen
335// evaluates these set operations and expand them into register lists. These
336// are the most common operation, see test/TableGen/SetTheory.td for more
337// examples of what is possible:
338//
339// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
340// register class, or a sub-expression. This is also the way to simply list
341// registers.
342//
343// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
344//
345// (and GPR, CSR) - Set intersection. All registers from the first set that are
346// also in the second set.
347//
348// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
349// numbered registers.  Takes an optional 4th operand which is a stride to use
350// when generating the sequence.
351//
352// (shl GPR, 4) - Remove the first N elements.
353//
354// (trunc GPR, 4) - Truncate after the first N elements.
355//
356// (rotl GPR, 1) - Rotate N places to the left.
357//
358// (rotr GPR, 1) - Rotate N places to the right.
359//
360// (decimate GPR, 2) - Pick every N'th element, starting with the first.
361//
362// (interleave A, B, ...) - Interleave the elements from each argument list.
363//
364// All of these operators work on ordered sets, not lists. That means
365// duplicates are removed from sub-expressions.
366
367// Set operators. The rest is defined in TargetSelectionDAG.td.
368def sequence;
369def decimate;
370def interleave;
371
372// RegisterTuples - Automatically generate super-registers by forming tuples of
373// sub-registers. This is useful for modeling register sequence constraints
374// with pseudo-registers that are larger than the architectural registers.
375//
376// The sub-register lists are zipped together:
377//
378//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
379//
380// Generates the same registers as:
381//
382//   let SubRegIndices = [sube, subo] in {
383//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
384//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
385//   }
386//
387// The generated pseudo-registers inherit super-classes and fields from their
388// first sub-register. Most fields from the Register class are inferred, and
389// the AsmName and Dwarf numbers are cleared.
390//
391// RegisterTuples instances can be used in other set operations to form
392// register classes and so on. This is the only way of using the generated
393// registers.
394//
395// RegNames may be specified to supply asm names for the generated tuples.
396// If used must have the same size as the list of produced registers.
397class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
398                     list<string> RegNames = []> {
399  // SubRegs - N lists of registers to be zipped up. Super-registers are
400  // synthesized from the first element of each SubRegs list, the second
401  // element and so on.
402  list<dag> SubRegs = Regs;
403
404  // SubRegIndices - N SubRegIndex instances. This provides the names of the
405  // sub-registers in the synthesized super-registers.
406  list<SubRegIndex> SubRegIndices = Indices;
407
408  // List of asm names for the generated tuple registers.
409  list<string> RegAsmNames = RegNames;
410}
411
412// RegisterCategory - This class is a list of RegisterClasses that belong to a
413// general cateogry --- e.g. "general purpose" or "fixed" registers. This is
414// useful for identifying registers in a generic way instead of having
415// information about a specific target's registers.
416class RegisterCategory<list<RegisterClass> classes> {
417  // Classes - A list of register classes that fall within the category.
418  list<RegisterClass> Classes = classes;
419}
420
421//===----------------------------------------------------------------------===//
422// DwarfRegNum - This class provides a mapping of the llvm register enumeration
423// to the register numbering used by gcc and gdb.  These values are used by a
424// debug information writer to describe where values may be located during
425// execution.
426class DwarfRegNum<list<int> Numbers> {
427  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
428  // These values can be determined by locating the <target>.h file in the
429  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
430  // order of these names correspond to the enumeration used by gcc.  A value of
431  // -1 indicates that the gcc number is undefined and -2 that register number
432  // is invalid for this mode/flavour.
433  list<int> DwarfNumbers = Numbers;
434}
435
436// DwarfRegAlias - This class declares that a given register uses the same dwarf
437// numbers as another one. This is useful for making it clear that the two
438// registers do have the same number. It also lets us build a mapping
439// from dwarf register number to llvm register.
440class DwarfRegAlias<Register reg> {
441      Register DwarfAlias = reg;
442}
443
444//===----------------------------------------------------------------------===//
445// Pull in the common support for MCPredicate (portable scheduling predicates).
446//
447include "llvm/Target/TargetInstrPredicate.td"
448
449//===----------------------------------------------------------------------===//
450// Pull in the common support for scheduling
451//
452include "llvm/Target/TargetSchedule.td"
453
454class InstructionEncoding {
455  // Size of encoded instruction.
456  int Size;
457
458  // The "namespace" in which this instruction exists, on targets like ARM
459  // which multiple ISA namespaces exist.
460  string DecoderNamespace = "";
461
462  // List of predicates which will be turned into isel matching code.
463  list<Predicate> Predicates = [];
464
465  string DecoderMethod = "";
466
467  // Is the instruction decoder method able to completely determine if the
468  // given instruction is valid or not. If the TableGen definition of the
469  // instruction specifies bitpattern A??B where A and B are static bits, the
470  // hasCompleteDecoder flag says whether the decoder method fully handles the
471  // ?? space, i.e. if it is a final arbiter for the instruction validity.
472  // If not then the decoder attempts to continue decoding when the decoder
473  // method fails.
474  //
475  // This allows to handle situations where the encoding is not fully
476  // orthogonal. Example:
477  // * InstA with bitpattern 0b0000????,
478  // * InstB with bitpattern 0b000000?? but the associated decoder method
479  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
480  //
481  // The decoder tries to decode a bitpattern that matches both InstA and
482  // InstB bitpatterns first as InstB (because it is the most specific
483  // encoding). In the default case (hasCompleteDecoder = 1), when
484  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
485  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
486  // DecodeInstB() is not able to determine if all possible values of ?? are
487  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
488  // decode the bitpattern as InstA too.
489  bit hasCompleteDecoder = true;
490}
491
492// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
493// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
494// to encode and decode based on HwMode.
495class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
496    : HwModeSelect<Ms> {
497  // The length of this list must be the same as the length of Ms.
498  list<InstructionEncoding> Objects = Ts;
499}
500
501//===----------------------------------------------------------------------===//
502// Instruction set description - These classes correspond to the C++ classes in
503// the Target/TargetInstrInfo.h file.
504//
505class Instruction : InstructionEncoding {
506  string Namespace = "";
507
508  dag OutOperandList;       // An dag containing the MI def operand list.
509  dag InOperandList;        // An dag containing the MI use operand list.
510  string AsmString = "";    // The .s format to print the instruction with.
511
512  // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
513  // the Inst member of this Instruction is ignored.
514  EncodingByHwMode EncodingInfos;
515
516  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
517  // otherwise, uninitialized.
518  list<dag> Pattern;
519
520  // The follow state will eventually be inferred automatically from the
521  // instruction pattern.
522
523  list<Register> Uses = []; // Default to using no non-operand registers
524  list<Register> Defs = []; // Default to modifying no non-operand registers
525
526  // Predicates - List of predicates which will be turned into isel matching
527  // code.
528  list<Predicate> Predicates = [];
529
530  // Size - Size of encoded instruction, or zero if the size cannot be determined
531  // from the opcode.
532  int Size = 0;
533
534  // Code size, for instruction selection.
535  // FIXME: What does this actually mean?
536  int CodeSize = 0;
537
538  // Added complexity passed onto matching pattern.
539  int AddedComplexity  = 0;
540
541  // Indicates if this is a pre-isel opcode that should be
542  // legalized/regbankselected/selected.
543  bit isPreISelOpcode = false;
544
545  // These bits capture information about the high-level semantics of the
546  // instruction.
547  bit isReturn     = false;     // Is this instruction a return instruction?
548  bit isBranch     = false;     // Is this instruction a branch instruction?
549  bit isEHScopeReturn = false;  // Does this instruction end an EH scope?
550  bit isIndirectBranch = false; // Is this instruction an indirect branch?
551  bit isCompare    = false;     // Is this instruction a comparison instruction?
552  bit isMoveImm    = false;     // Is this instruction a move immediate instruction?
553  bit isMoveReg    = false;     // Is this instruction a move register instruction?
554  bit isBitcast    = false;     // Is this instruction a bitcast instruction?
555  bit isSelect     = false;     // Is this instruction a select instruction?
556  bit isBarrier    = false;     // Can control flow fall through this instruction?
557  bit isCall       = false;     // Is this instruction a call instruction?
558  bit isAdd        = false;     // Is this instruction an add instruction?
559  bit isTrap       = false;     // Is this instruction a trap instruction?
560  bit canFoldAsLoad = false;    // Can this be folded as a simple memory operand?
561  bit mayLoad      = ?;         // Is it possible for this inst to read memory?
562  bit mayStore     = ?;         // Is it possible for this inst to write memory?
563  bit mayRaiseFPException = false; // Can this raise a floating-point exception?
564  bit isConvertibleToThreeAddress = false;  // Can this 2-addr instruction promote?
565  bit isCommutable = false;     // Is this 3 operand instruction commutable?
566  bit isTerminator = false;     // Is this part of the terminator for a basic block?
567  bit isReMaterializable = false; // Is this instruction re-materializable?
568  bit isPredicable = false;     // 1 means this instruction is predicable
569                                // even if it does not have any operand
570                                // tablegen can identify as a predicate
571  bit isUnpredicable = false;   // 1 means this instruction is not predicable
572                                // even if it _does_ have a predicate operand
573  bit hasDelaySlot = false;     // Does this instruction have an delay slot?
574  bit usesCustomInserter = false; // Pseudo instr needing special help.
575  bit hasPostISelHook = false;  // To be *adjusted* after isel by target hook.
576  bit hasCtrlDep   = false;     // Does this instruction r/w ctrl-flow chains?
577  bit isNotDuplicable = false;  // Is it unsafe to duplicate this instruction?
578  bit isConvergent = false;     // Is this instruction convergent?
579  bit isAuthenticated = false;  // Does this instruction authenticate a pointer?
580  bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
581  bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
582  bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
583  bit isRegSequence = false;    // Is this instruction a kind of reg sequence?
584                                // If so, make sure to override
585                                // TargetInstrInfo::getRegSequenceLikeInputs.
586  bit isPseudo     = false;     // Is this instruction a pseudo-instruction?
587                                // If so, won't have encoding information for
588                                // the [MC]CodeEmitter stuff.
589  bit isMeta = false;           // Is this instruction a meta-instruction?
590                                // If so, won't produce any output in the form of
591                                // executable instructions
592  bit isExtractSubreg = false;  // Is this instruction a kind of extract subreg?
593                                // If so, make sure to override
594                                // TargetInstrInfo::getExtractSubregLikeInputs.
595  bit isInsertSubreg = false;   // Is this instruction a kind of insert subreg?
596                                // If so, make sure to override
597                                // TargetInstrInfo::getInsertSubregLikeInputs.
598  bit variadicOpsAreDefs = false; // Are variadic operands definitions?
599
600  // Does the instruction have side effects that are not captured by any
601  // operands of the instruction or other flags?
602  bit hasSideEffects = ?;
603
604  // Is this instruction a "real" instruction (with a distinct machine
605  // encoding), or is it a pseudo instruction used for codegen modeling
606  // purposes.
607  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
608  // instructions can (and often do) still have encoding information
609  // associated with them. Once we've migrated all of them over to true
610  // pseudo-instructions that are lowered to real instructions prior to
611  // the printer/emitter, we can remove this attribute and just use isPseudo.
612  //
613  // The intended use is:
614  // isPseudo: Does not have encoding information and should be expanded,
615  //   at the latest, during lowering to MCInst.
616  //
617  // isCodeGenOnly: Does have encoding information and can go through to the
618  //   CodeEmitter unchanged, but duplicates a canonical instruction
619  //   definition's encoding and should be ignored when constructing the
620  //   assembler match tables.
621  bit isCodeGenOnly = false;
622
623  // Is this instruction a pseudo instruction for use by the assembler parser.
624  bit isAsmParserOnly = false;
625
626  // This instruction is not expected to be queried for scheduling latencies
627  // and therefore needs no scheduling information even for a complete
628  // scheduling model.
629  bit hasNoSchedulingInfo = false;
630
631  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
632
633  // Scheduling information from TargetSchedule.td.
634  list<SchedReadWrite> SchedRW;
635
636  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
637
638  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
639  /// be encoded into the output machineinstr.
640  string DisableEncoding = "";
641
642  string PostEncoderMethod = "";
643
644  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
645  bits<64> TSFlags = 0;
646
647  ///@name Assembler Parser Support
648  ///@{
649
650  string AsmMatchConverter = "";
651
652  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
653  /// two-operand matcher inst-alias for a three operand instruction.
654  /// For example, the arm instruction "add r3, r3, r5" can be written
655  /// as "add r3, r5". The constraint is of the same form as a tied-operand
656  /// constraint. For example, "$Rn = $Rd".
657  string TwoOperandAliasConstraint = "";
658
659  /// Assembler variant name to use for this instruction. If specified then
660  /// instruction will be presented only in MatchTable for this variant. If
661  /// not specified then assembler variants will be determined based on
662  /// AsmString
663  string AsmVariantName = "";
664
665  ///@}
666
667  /// UseNamedOperandTable - If set, the operand indices of this instruction
668  /// can be queried via the getNamedOperandIdx() function which is generated
669  /// by TableGen.
670  bit UseNamedOperandTable = false;
671
672  /// Should generate helper functions that help you to map a logical operand's
673  /// index to the underlying MIOperand's index.
674  /// In most architectures logical operand indicies are equal to
675  /// MIOperand indicies, but for some CISC architectures, a logical operand
676  /// might be consist of multiple MIOperand (e.g. a logical operand that
677  /// uses complex address mode).
678  bit UseLogicalOperandMappings = false;
679
680  /// Should FastISel ignore this instruction. For certain ISAs, they have
681  /// instructions which map to the same ISD Opcode, value type operands and
682  /// instruction selection predicates. FastISel cannot handle such cases, but
683  /// SelectionDAG can.
684  bit FastISelShouldIgnore = false;
685
686  /// HasPositionOrder: Indicate tablegen to sort the instructions by record
687  /// ID, so that instruction that is defined earlier can be sorted earlier
688  /// in the assembly matching table.
689  bit HasPositionOrder = false;
690}
691
692/// Defines a Pat match between compressed and uncompressed instruction.
693/// The relationship and helper function generation are handled by
694/// CompressInstEmitter backend.
695class CompressPat<dag input, dag output, list<Predicate> predicates = []> {
696  /// Uncompressed instruction description.
697  dag Input = input;
698  /// Compressed instruction description.
699  dag Output = output;
700  /// Predicates that must be true for this to match.
701  list<Predicate> Predicates = predicates;
702  /// Duplicate match when tied operand is just different.
703  bit isCompressOnly = false;
704}
705
706/// Defines an additional encoding that disassembles to the given instruction
707/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
708// to specify their size.
709class AdditionalEncoding<Instruction I> : InstructionEncoding {
710  Instruction AliasOf = I;
711}
712
713/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
714/// Which instruction it expands to and how the operands map from the
715/// pseudo.
716class PseudoInstExpansion<dag Result> {
717  dag ResultInst = Result;     // The instruction to generate.
718  bit isPseudo = true;
719}
720
721/// Predicates - These are extra conditionals which are turned into instruction
722/// selector matching code. Currently each predicate is just a string.
723class Predicate<string cond> {
724  string CondString = cond;
725
726  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
727  /// matcher, this is true.  Targets should set this by inheriting their
728  /// feature from the AssemblerPredicate class in addition to Predicate.
729  bit AssemblerMatcherPredicate = false;
730
731  /// AssemblerCondDag - Set of subtarget features being tested used
732  /// as alternative condition string used for assembler matcher. Must be used
733  /// with (all_of) to indicate that all features must be present, or (any_of)
734  /// to indicate that at least one must be. The required lack of presence of
735  /// a feature can be tested using a (not) node including the feature.
736  /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
737  ///      "(all_of (not ModeThumb))" is translated to
738  ///      "(Bits & ModeThumb) == 0".
739  ///      "(all_of ModeThumb, FeatureThumb2)" is translated to
740  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
741  ///      "(any_of ModeTumb, FeatureThumb2)" is translated to
742  ///      "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
743  /// all_of and any_of cannot be combined in a single dag, instead multiple
744  /// predicates can be placed onto Instruction definitions.
745  dag AssemblerCondDag;
746
747  /// PredicateName - User-level name to use for the predicate. Mainly for use
748  /// in diagnostics such as missing feature errors in the asm matcher.
749  string PredicateName = "";
750
751  /// Setting this to '1' indicates that the predicate must be recomputed on
752  /// every function change. Most predicates can leave this at '0'.
753  ///
754  /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
755  bit RecomputePerFunction = false;
756}
757
758/// NoHonorSignDependentRounding - This predicate is true if support for
759/// sign-dependent-rounding is not enabled.
760def NoHonorSignDependentRounding
761 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
762
763class Requires<list<Predicate> preds> {
764  list<Predicate> Predicates = preds;
765}
766
767/// ops definition - This is just a simple marker used to identify the operand
768/// list for an instruction. outs and ins are identical both syntactically and
769/// semantically; they are used to define def operands and use operands to
770/// improve readability. This should be used like this:
771///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
772def ops;
773def outs;
774def ins;
775
776/// variable_ops definition - Mark this instruction as taking a variable number
777/// of operands.
778def variable_ops;
779
780/// variable-length instruction encoding utilities.
781/// The `ascend` operator should be used like this:
782///     (ascend 0b0010, 0b1101)
783/// Which represent a seqence of encoding fragments placing from LSB to MSB.
784/// Thus, in this case the final encoding will be 0b1101_0010.
785/// The arguments for `ascend` can either be `bits` or another DAG.
786def ascend;
787/// In addition, we can use `descend` to describe an encoding that places
788/// its arguments (i.e. encoding fragments) from MSB to LSB. For instance:
789///     (descend 0b0010, 0b1101)
790/// This results in an encoding of 0b0010_1101.
791def descend;
792/// The `operand` operator should be used like this:
793///     (operand "$src", 4)
794/// Which represents a 4-bit encoding for an instruction operand named `$src`.
795def operand;
796/// Similar to `operand`, we can reference only part of the operand's encoding:
797///     (slice "$src", 6, 8)
798///     (slice "$src", 8, 6)
799/// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand
800/// `$src`.
801def slice;
802/// You can use `encoder` or `decoder` to specify a custom encoder or decoder
803/// function for a specific `operand` or `slice` directive. For example:
804///     (operand "$src", 4, (encoder "encodeMyImm"))
805///     (slice "$src", 8, 6, (encoder "encodeMyReg"))
806///     (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm"))
807/// The ordering of `encoder` and `decoder` in the same `operand` or `slice`
808/// doesn't matter.
809/// Note that currently we cannot assign different decoders in the same
810/// (instruction) operand.
811def encoder;
812def decoder;
813
814/// PointerLikeRegClass - Values that are designed to have pointer width are
815/// derived from this.  TableGen treats the register class as having a symbolic
816/// type that it doesn't know, and resolves the actual regclass to use by using
817/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
818class PointerLikeRegClass<int Kind> {
819  int RegClassKind = Kind;
820}
821
822
823/// ptr_rc definition - Mark this operand as being a pointer value whose
824/// register class is resolved dynamically via a callback to TargetInstrInfo.
825/// FIXME: We should probably change this to a class which contain a list of
826/// flags. But currently we have but one flag.
827def ptr_rc : PointerLikeRegClass<0>;
828
829/// unknown definition - Mark this operand as being of unknown type, causing
830/// it to be resolved by inference in the context it is used.
831class unknown_class;
832def unknown : unknown_class;
833
834/// AsmOperandClass - Representation for the kinds of operands which the target
835/// specific parser can create and the assembly matcher may need to distinguish.
836///
837/// Operand classes are used to define the order in which instructions are
838/// matched, to ensure that the instruction which gets matched for any
839/// particular list of operands is deterministic.
840///
841/// The target specific parser must be able to classify a parsed operand into a
842/// unique class which does not partially overlap with any other classes. It can
843/// match a subset of some other class, in which case the super class field
844/// should be defined.
845class AsmOperandClass {
846  /// The name to use for this class, which should be usable as an enum value.
847  string Name = ?;
848
849  /// The super classes of this operand.
850  list<AsmOperandClass> SuperClasses = [];
851
852  /// The name of the method on the target specific operand to call to test
853  /// whether the operand is an instance of this class. If not set, this will
854  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
855  /// signature should be:
856  ///   bool isFoo() const;
857  string PredicateMethod = ?;
858
859  /// The name of the method on the target specific operand to call to add the
860  /// target specific operand to an MCInst. If not set, this will default to
861  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
862  /// signature should be:
863  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
864  string RenderMethod = ?;
865
866  /// The name of the method on the target specific operand to call to custom
867  /// handle the operand parsing. This is useful when the operands do not relate
868  /// to immediates or registers and are very instruction specific (as flags to
869  /// set in a processor register, coprocessor number, ...).
870  string ParserMethod = ?;
871
872  // The diagnostic type to present when referencing this operand in a
873  // match failure error message. By default, use a generic "invalid operand"
874  // diagnostic. The target AsmParser maps these codes to text.
875  string DiagnosticType = "";
876
877  /// A diagnostic message to emit when an invalid value is provided for this
878  /// operand.
879  string DiagnosticString = "";
880
881  /// Set to 1 if this operand is optional and not always required. Typically,
882  /// the AsmParser will emit an error when it finishes parsing an
883  /// instruction if it hasn't matched all the operands yet.  However, this
884  /// error will be suppressed if all of the remaining unmatched operands are
885  /// marked as IsOptional.
886  ///
887  /// Optional arguments must be at the end of the operand list.
888  bit IsOptional = false;
889
890  /// The name of the method on the target specific asm parser that returns the
891  /// default operand for this optional operand. This method is only used if
892  /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
893  /// where Foo is the AsmOperandClass name. The method signature should be:
894  ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
895  string DefaultMethod = ?;
896}
897
898def ImmAsmOperand : AsmOperandClass {
899  let Name = "Imm";
900}
901
902/// Operand Types - These provide the built-in operand types that may be used
903/// by a target.  Targets can optionally provide their own operand types as
904/// needed, though this should not be needed for RISC targets.
905class Operand<ValueType ty> : DAGOperand {
906  ValueType Type = ty;
907  string PrintMethod = "printOperand";
908  string EncoderMethod = "";
909  bit hasCompleteDecoder = true;
910  string OperandType = "OPERAND_UNKNOWN";
911  dag MIOperandInfo = (ops);
912
913  // MCOperandPredicate - Optionally, a code fragment operating on
914  // const MCOperand &MCOp, and returning a bool, to indicate if
915  // the value of MCOp is valid for the specific subclass of Operand
916  code MCOperandPredicate;
917
918  // ParserMatchClass - The "match class" that operands of this type fit
919  // in. Match classes are used to define the order in which instructions are
920  // match, to ensure that which instructions gets matched is deterministic.
921  //
922  // The target specific parser must be able to classify an parsed operand into
923  // a unique class, which does not partially overlap with any other classes. It
924  // can match a subset of some other class, in which case the AsmOperandClass
925  // should declare the other operand as one of its super classes.
926  AsmOperandClass ParserMatchClass = ImmAsmOperand;
927}
928
929class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
930  : DAGOperand {
931  // RegClass - The register class of the operand.
932  RegisterClass RegClass = regclass;
933  // PrintMethod - The target method to call to print register operands of
934  // this type. The method normally will just use an alt-name index to look
935  // up the name to print. Default to the generic printOperand().
936  string PrintMethod = pm;
937
938  // EncoderMethod - The target method name to call to encode this register
939  // operand.
940  string EncoderMethod = "";
941
942  // ParserMatchClass - The "match class" that operands of this type fit
943  // in. Match classes are used to define the order in which instructions are
944  // match, to ensure that which instructions gets matched is deterministic.
945  //
946  // The target specific parser must be able to classify an parsed operand into
947  // a unique class, which does not partially overlap with any other classes. It
948  // can match a subset of some other class, in which case the AsmOperandClass
949  // should declare the other operand as one of its super classes.
950  AsmOperandClass ParserMatchClass;
951
952  string OperandType = "OPERAND_REGISTER";
953
954  // When referenced in the result of a CodeGen pattern, GlobalISel will
955  // normally copy the matched operand to the result. When this is set, it will
956  // emit a special copy that will replace zero-immediates with the specified
957  // zero-register.
958  Register GIZeroRegister = ?;
959}
960
961let OperandType = "OPERAND_IMMEDIATE" in {
962def i1imm  : Operand<i1>;
963def i8imm  : Operand<i8>;
964def i16imm : Operand<i16>;
965def i32imm : Operand<i32>;
966def i64imm : Operand<i64>;
967
968def f32imm : Operand<f32>;
969def f64imm : Operand<f64>;
970}
971
972// Register operands for generic instructions don't have an MVT, but do have
973// constraints linking the operands (e.g. all operands of a G_ADD must
974// have the same LLT).
975class TypedOperand<string Ty> : Operand<untyped> {
976  let OperandType = Ty;
977  bit IsPointer = false;
978  bit IsImmediate = false;
979}
980
981def type0 : TypedOperand<"OPERAND_GENERIC_0">;
982def type1 : TypedOperand<"OPERAND_GENERIC_1">;
983def type2 : TypedOperand<"OPERAND_GENERIC_2">;
984def type3 : TypedOperand<"OPERAND_GENERIC_3">;
985def type4 : TypedOperand<"OPERAND_GENERIC_4">;
986def type5 : TypedOperand<"OPERAND_GENERIC_5">;
987
988let IsPointer = true in {
989  def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
990  def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
991  def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
992  def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
993  def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
994  def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
995}
996
997// untyped_imm is for operands where isImm() will be true. It currently has no
998// special behaviour and is only used for clarity.
999def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
1000  let IsImmediate = true;
1001}
1002
1003/// zero_reg definition - Special node to stand for the zero register.
1004///
1005def zero_reg;
1006
1007/// undef_tied_input - Special node to indicate an input register tied
1008/// to an output which defaults to IMPLICIT_DEF.
1009def undef_tied_input;
1010
1011/// All operands which the MC layer classifies as predicates should inherit from
1012/// this class in some manner. This is already handled for the most commonly
1013/// used PredicateOperand, but may be useful in other circumstances.
1014class PredicateOp;
1015
1016/// OperandWithDefaultOps - This Operand class can be used as the parent class
1017/// for an Operand that needs to be initialized with a default value if
1018/// no value is supplied in a pattern.  This class can be used to simplify the
1019/// pattern definitions for instructions that have target specific flags
1020/// encoded as immediate operands.
1021class OperandWithDefaultOps<ValueType ty, dag defaultops>
1022  : Operand<ty> {
1023  dag DefaultOps = defaultops;
1024}
1025
1026/// PredicateOperand - This can be used to define a predicate operand for an
1027/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
1028/// AlwaysVal specifies the value of this predicate when set to "always
1029/// execute".
1030class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
1031  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
1032  let MIOperandInfo = OpTypes;
1033}
1034
1035/// OptionalDefOperand - This is used to define a optional definition operand
1036/// for an instruction. DefaultOps is the register the operand represents if
1037/// none is supplied, e.g. zero_reg.
1038class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
1039  : OperandWithDefaultOps<ty, defaultops> {
1040  let MIOperandInfo = OpTypes;
1041}
1042
1043
1044// InstrInfo - This class should only be instantiated once to provide parameters
1045// which are global to the target machine.
1046//
1047class InstrInfo {
1048  // Target can specify its instructions in either big or little-endian formats.
1049  // For instance, while both Sparc and PowerPC are big-endian platforms, the
1050  // Sparc manual specifies its instructions in the format [31..0] (big), while
1051  // PowerPC specifies them using the format [0..31] (little).
1052  bit isLittleEndianEncoding = false;
1053
1054  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
1055  // by default, and TableGen will infer their value from the instruction
1056  // pattern when possible.
1057  //
1058  // Normally, TableGen will issue an error if it can't infer the value of a
1059  // property that hasn't been set explicitly. When guessInstructionProperties
1060  // is set, it will guess a safe value instead.
1061  //
1062  // This option is a temporary migration help. It will go away.
1063  bit guessInstructionProperties = true;
1064}
1065
1066// Standard Pseudo Instructions.
1067// This list must match TargetOpcodes.def.
1068// Only these instructions are allowed in the TargetOpcode namespace.
1069// Ensure mayLoad and mayStore have a default value, so as not to break
1070// targets that set guessInstructionProperties=0. Any local definition of
1071// mayLoad/mayStore takes precedence over these default values.
1072class StandardPseudoInstruction : Instruction {
1073  let mayLoad = false;
1074  let mayStore = false;
1075  let isCodeGenOnly = true;
1076  let isPseudo = true;
1077  let hasNoSchedulingInfo = true;
1078  let Namespace = "TargetOpcode";
1079}
1080def PHI : StandardPseudoInstruction {
1081  let OutOperandList = (outs unknown:$dst);
1082  let InOperandList = (ins variable_ops);
1083  let AsmString = "PHINODE";
1084  let hasSideEffects = false;
1085}
1086def INLINEASM : StandardPseudoInstruction {
1087  let OutOperandList = (outs);
1088  let InOperandList = (ins variable_ops);
1089  let AsmString = "";
1090  let hasSideEffects = false;  // Note side effect is encoded in an operand.
1091}
1092def INLINEASM_BR : StandardPseudoInstruction {
1093  let OutOperandList = (outs);
1094  let InOperandList = (ins variable_ops);
1095  let AsmString = "";
1096  // Unlike INLINEASM, this is always treated as having side-effects.
1097  let hasSideEffects = true;
1098  // Despite potentially branching, this instruction is intentionally _not_
1099  // marked as a terminator or a branch.
1100}
1101def CFI_INSTRUCTION : StandardPseudoInstruction {
1102  let OutOperandList = (outs);
1103  let InOperandList = (ins i32imm:$id);
1104  let AsmString = "";
1105  let hasCtrlDep = true;
1106  let hasSideEffects = false;
1107  let isNotDuplicable = true;
1108  let isMeta = true;
1109}
1110def EH_LABEL : StandardPseudoInstruction {
1111  let OutOperandList = (outs);
1112  let InOperandList = (ins i32imm:$id);
1113  let AsmString = "";
1114  let hasCtrlDep = true;
1115  let hasSideEffects = false;
1116  let isNotDuplicable = true;
1117  let isMeta = true;
1118}
1119def GC_LABEL : StandardPseudoInstruction {
1120  let OutOperandList = (outs);
1121  let InOperandList = (ins i32imm:$id);
1122  let AsmString = "";
1123  let hasCtrlDep = true;
1124  let hasSideEffects = false;
1125  let isNotDuplicable = true;
1126  let isMeta = true;
1127}
1128def ANNOTATION_LABEL : StandardPseudoInstruction {
1129  let OutOperandList = (outs);
1130  let InOperandList = (ins i32imm:$id);
1131  let AsmString = "";
1132  let hasCtrlDep = true;
1133  let hasSideEffects = false;
1134  let isNotDuplicable = true;
1135}
1136def KILL : StandardPseudoInstruction {
1137  let OutOperandList = (outs);
1138  let InOperandList = (ins variable_ops);
1139  let AsmString = "";
1140  let hasSideEffects = false;
1141  let isMeta = true;
1142}
1143def EXTRACT_SUBREG : StandardPseudoInstruction {
1144  let OutOperandList = (outs unknown:$dst);
1145  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
1146  let AsmString = "";
1147  let hasSideEffects = false;
1148}
1149def INSERT_SUBREG : StandardPseudoInstruction {
1150  let OutOperandList = (outs unknown:$dst);
1151  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
1152  let AsmString = "";
1153  let hasSideEffects = false;
1154  let Constraints = "$supersrc = $dst";
1155}
1156def IMPLICIT_DEF : StandardPseudoInstruction {
1157  let OutOperandList = (outs unknown:$dst);
1158  let InOperandList = (ins);
1159  let AsmString = "";
1160  let hasSideEffects = false;
1161  let isReMaterializable = true;
1162  let isAsCheapAsAMove = true;
1163  let isMeta = true;
1164}
1165def SUBREG_TO_REG : StandardPseudoInstruction {
1166  let OutOperandList = (outs unknown:$dst);
1167  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
1168  let AsmString = "";
1169  let hasSideEffects = false;
1170}
1171def COPY_TO_REGCLASS : StandardPseudoInstruction {
1172  let OutOperandList = (outs unknown:$dst);
1173  let InOperandList = (ins unknown:$src, i32imm:$regclass);
1174  let AsmString = "";
1175  let hasSideEffects = false;
1176  let isAsCheapAsAMove = true;
1177}
1178def DBG_VALUE : StandardPseudoInstruction {
1179  let OutOperandList = (outs);
1180  let InOperandList = (ins variable_ops);
1181  let AsmString = "DBG_VALUE";
1182  let hasSideEffects = false;
1183  let isMeta = true;
1184}
1185def DBG_VALUE_LIST : StandardPseudoInstruction {
1186  let OutOperandList = (outs);
1187  let InOperandList = (ins variable_ops);
1188  let AsmString = "DBG_VALUE_LIST";
1189  let hasSideEffects = 0;
1190  let isMeta = true;
1191}
1192def DBG_INSTR_REF : StandardPseudoInstruction {
1193  let OutOperandList = (outs);
1194  let InOperandList = (ins variable_ops);
1195  let AsmString = "DBG_INSTR_REF";
1196  let hasSideEffects = false;
1197  let isMeta = true;
1198}
1199def DBG_PHI : StandardPseudoInstruction {
1200  let OutOperandList = (outs);
1201  let InOperandList = (ins variable_ops);
1202  let AsmString = "DBG_PHI";
1203  let hasSideEffects = 0;
1204  let isMeta = true;
1205}
1206def DBG_LABEL : StandardPseudoInstruction {
1207  let OutOperandList = (outs);
1208  let InOperandList = (ins unknown:$label);
1209  let AsmString = "DBG_LABEL";
1210  let hasSideEffects = false;
1211  let isMeta = true;
1212}
1213def REG_SEQUENCE : StandardPseudoInstruction {
1214  let OutOperandList = (outs unknown:$dst);
1215  let InOperandList = (ins unknown:$supersrc, variable_ops);
1216  let AsmString = "";
1217  let hasSideEffects = false;
1218  let isAsCheapAsAMove = true;
1219}
1220def COPY : StandardPseudoInstruction {
1221  let OutOperandList = (outs unknown:$dst);
1222  let InOperandList = (ins unknown:$src);
1223  let AsmString = "";
1224  let hasSideEffects = false;
1225  let isAsCheapAsAMove = true;
1226  let hasNoSchedulingInfo = false;
1227}
1228def BUNDLE : StandardPseudoInstruction {
1229  let OutOperandList = (outs);
1230  let InOperandList = (ins variable_ops);
1231  let AsmString = "BUNDLE";
1232  let hasSideEffects = false;
1233}
1234def LIFETIME_START : StandardPseudoInstruction {
1235  let OutOperandList = (outs);
1236  let InOperandList = (ins i32imm:$id);
1237  let AsmString = "LIFETIME_START";
1238  let hasSideEffects = false;
1239  let isMeta = true;
1240}
1241def LIFETIME_END : StandardPseudoInstruction {
1242  let OutOperandList = (outs);
1243  let InOperandList = (ins i32imm:$id);
1244  let AsmString = "LIFETIME_END";
1245  let hasSideEffects = false;
1246  let isMeta = true;
1247}
1248def PSEUDO_PROBE : StandardPseudoInstruction {
1249  let OutOperandList = (outs);
1250  let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
1251  let AsmString = "PSEUDO_PROBE";
1252  let hasSideEffects = 1;
1253  let isMeta = true;
1254}
1255def ARITH_FENCE : StandardPseudoInstruction {
1256  let OutOperandList = (outs unknown:$dst);
1257  let InOperandList = (ins unknown:$src);
1258  let AsmString = "";
1259  let hasSideEffects = false;
1260  let Constraints = "$src = $dst";
1261  let isMeta = true;
1262}
1263
1264def STACKMAP : StandardPseudoInstruction {
1265  let OutOperandList = (outs);
1266  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1267  let hasSideEffects = true;
1268  let isCall = true;
1269  let mayLoad = true;
1270  let usesCustomInserter = true;
1271}
1272def PATCHPOINT : StandardPseudoInstruction {
1273  let OutOperandList = (outs unknown:$dst);
1274  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1275                       i32imm:$nargs, i32imm:$cc, variable_ops);
1276  let hasSideEffects = true;
1277  let isCall = true;
1278  let mayLoad = true;
1279  let usesCustomInserter = true;
1280}
1281def STATEPOINT : StandardPseudoInstruction {
1282  let OutOperandList = (outs variable_ops);
1283  let InOperandList = (ins variable_ops);
1284  let usesCustomInserter = true;
1285  let mayLoad = true;
1286  let mayStore = true;
1287  let hasSideEffects = true;
1288  let isCall = true;
1289}
1290def LOAD_STACK_GUARD : StandardPseudoInstruction {
1291  let OutOperandList = (outs ptr_rc:$dst);
1292  let InOperandList = (ins);
1293  let mayLoad = true;
1294  bit isReMaterializable = true;
1295  let hasSideEffects = false;
1296  bit isPseudo = true;
1297}
1298def PREALLOCATED_SETUP : StandardPseudoInstruction {
1299  let OutOperandList = (outs);
1300  let InOperandList = (ins i32imm:$a);
1301  let usesCustomInserter = true;
1302  let hasSideEffects = true;
1303}
1304def PREALLOCATED_ARG : StandardPseudoInstruction {
1305  let OutOperandList = (outs ptr_rc:$loc);
1306  let InOperandList = (ins i32imm:$a, i32imm:$b);
1307  let usesCustomInserter = true;
1308  let hasSideEffects = true;
1309}
1310def LOCAL_ESCAPE : StandardPseudoInstruction {
1311  // This instruction is really just a label. It has to be part of the chain so
1312  // that it doesn't get dropped from the DAG, but it produces nothing and has
1313  // no side effects.
1314  let OutOperandList = (outs);
1315  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1316  let hasSideEffects = false;
1317  let hasCtrlDep = true;
1318}
1319def FAULTING_OP : StandardPseudoInstruction {
1320  let OutOperandList = (outs unknown:$dst);
1321  let InOperandList = (ins variable_ops);
1322  let usesCustomInserter = true;
1323  let hasSideEffects = true;
1324  let mayLoad = true;
1325  let mayStore = true;
1326  let isTerminator = true;
1327  let isBranch = true;
1328}
1329def PATCHABLE_OP : StandardPseudoInstruction {
1330  let OutOperandList = (outs);
1331  let InOperandList = (ins variable_ops);
1332  let usesCustomInserter = true;
1333  let mayLoad = true;
1334  let mayStore = true;
1335  let hasSideEffects = true;
1336}
1337def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1338  let OutOperandList = (outs);
1339  let InOperandList = (ins);
1340  let AsmString = "# XRay Function Enter.";
1341  let usesCustomInserter = true;
1342  let hasSideEffects = true;
1343}
1344def PATCHABLE_RET : StandardPseudoInstruction {
1345  let OutOperandList = (outs);
1346  let InOperandList = (ins variable_ops);
1347  let AsmString = "# XRay Function Patchable RET.";
1348  let usesCustomInserter = true;
1349  let hasSideEffects = true;
1350  let isTerminator = true;
1351  let isReturn = true;
1352}
1353def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1354  let OutOperandList = (outs);
1355  let InOperandList = (ins);
1356  let AsmString = "# XRay Function Exit.";
1357  let usesCustomInserter = true;
1358  let hasSideEffects = true;
1359  let isReturn = false; // Original return instruction will follow
1360}
1361def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1362  let OutOperandList = (outs);
1363  let InOperandList = (ins variable_ops);
1364  let AsmString = "# XRay Tail Call Exit.";
1365  let usesCustomInserter = true;
1366  let hasSideEffects = true;
1367  let isReturn = true;
1368}
1369def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1370  let OutOperandList = (outs);
1371  let InOperandList = (ins ptr_rc:$event, unknown:$size);
1372  let AsmString = "# XRay Custom Event Log.";
1373  let usesCustomInserter = true;
1374  let isCall = true;
1375  let mayLoad = true;
1376  let mayStore = true;
1377  let hasSideEffects = true;
1378}
1379def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1380  let OutOperandList = (outs);
1381  let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
1382  let AsmString = "# XRay Typed Event Log.";
1383  let usesCustomInserter = true;
1384  let isCall = true;
1385  let mayLoad = true;
1386  let mayStore = true;
1387  let hasSideEffects = true;
1388}
1389def FENTRY_CALL : StandardPseudoInstruction {
1390  let OutOperandList = (outs);
1391  let InOperandList = (ins);
1392  let AsmString = "# FEntry call";
1393  let usesCustomInserter = true;
1394  let isCall = true;
1395  let mayLoad = true;
1396  let mayStore = true;
1397  let hasSideEffects = true;
1398}
1399def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1400  let OutOperandList = (outs);
1401  let InOperandList = (ins variable_ops);
1402  let AsmString = "";
1403  let hasSideEffects = true;
1404}
1405def MEMBARRIER : StandardPseudoInstruction {
1406  let OutOperandList = (outs);
1407  let InOperandList = (ins);
1408  let AsmString = "";
1409  let hasSideEffects = true;
1410  let Size = 0;
1411  let isMeta = true;
1412}
1413
1414// Generic opcodes used in GlobalISel.
1415include "llvm/Target/GenericOpcodes.td"
1416
1417//===----------------------------------------------------------------------===//
1418// AsmParser - This class can be implemented by targets that wish to implement
1419// .s file parsing.
1420//
1421// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1422// syntax on X86 for example).
1423//
1424class AsmParser {
1425  // AsmParserClassName - This specifies the suffix to use for the asmparser
1426  // class.  Generated AsmParser classes are always prefixed with the target
1427  // name.
1428  string AsmParserClassName  = "AsmParser";
1429
1430  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1431  // function of the AsmParser class to call on every matched instruction.
1432  // This can be used to perform target specific instruction post-processing.
1433  string AsmParserInstCleanup  = "";
1434
1435  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1436  // written register name matcher
1437  bit ShouldEmitMatchRegisterName = true;
1438
1439  // Set to true if the target needs a generated 'alternative register name'
1440  // matcher.
1441  //
1442  // This generates a function which can be used to lookup registers from
1443  // their aliases. This function will fail when called on targets where
1444  // several registers share the same alias (i.e. not a 1:1 mapping).
1445  bit ShouldEmitMatchRegisterAltName = false;
1446
1447  // Set to true if MatchRegisterName and MatchRegisterAltName functions
1448  // should be generated even if there are duplicate register names. The
1449  // target is responsible for coercing aliased registers as necessary
1450  // (e.g. in validateTargetOperandClass), and there are no guarantees about
1451  // which numeric register identifier will be returned in the case of
1452  // multiple matches.
1453  bit AllowDuplicateRegisterNames = false;
1454
1455  // HasMnemonicFirst - Set to false if target instructions don't always
1456  // start with a mnemonic as the first token.
1457  bit HasMnemonicFirst = true;
1458
1459  // ReportMultipleNearMisses -
1460  // When 0, the assembly matcher reports an error for one encoding or operand
1461  // that did not match the parsed instruction.
1462  // When 1, the assembly matcher returns a list of encodings that were close
1463  // to matching the parsed instruction, so to allow more detailed error
1464  // messages.
1465  bit ReportMultipleNearMisses = false;
1466
1467  // OperandParserMethod - If non-empty, this is the name of a custom
1468  // member function of the AsmParser class to call for every instruction
1469  // operand to be parsed.
1470  string OperandParserMethod = "";
1471
1472  // CallCustomParserForAllOperands - Set to true if the custom parser
1473  // method shall be called for all operands as opposed to only those
1474  // that have their own specified custom parsers.
1475  bit CallCustomParserForAllOperands = false;
1476}
1477def DefaultAsmParser : AsmParser;
1478
1479//===----------------------------------------------------------------------===//
1480// AsmParserVariant - Subtargets can have multiple different assembly parsers
1481// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1482// implemented by targets to describe such variants.
1483//
1484class AsmParserVariant {
1485  // Variant - AsmParsers can be of multiple different variants.  Variants are
1486  // used to support targets that need to parse multiple formats for the
1487  // assembly language.
1488  int Variant = 0;
1489
1490  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1491  string Name = "";
1492
1493  // CommentDelimiter - If given, the delimiter string used to recognize
1494  // comments which are hard coded in the .td assembler strings for individual
1495  // instructions.
1496  string CommentDelimiter = "";
1497
1498  // RegisterPrefix - If given, the token prefix which indicates a register
1499  // token. This is used by the matcher to automatically recognize hard coded
1500  // register tokens as constrained registers, instead of tokens, for the
1501  // purposes of matching.
1502  string RegisterPrefix = "";
1503
1504  // TokenizingCharacters - Characters that are standalone tokens
1505  string TokenizingCharacters = "[]*!";
1506
1507  // SeparatorCharacters - Characters that are not tokens
1508  string SeparatorCharacters = " \t,";
1509
1510  // BreakCharacters - Characters that start new identifiers
1511  string BreakCharacters = "";
1512}
1513def DefaultAsmParserVariant : AsmParserVariant;
1514
1515// Operators for combining SubtargetFeatures in AssemblerPredicates
1516def any_of;
1517def all_of;
1518
1519/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1520/// matches instructions and aliases.
1521class AssemblerPredicate<dag cond, string name = ""> {
1522  bit AssemblerMatcherPredicate = true;
1523  dag AssemblerCondDag = cond;
1524  string PredicateName = name;
1525}
1526
1527/// TokenAlias - This class allows targets to define assembler token
1528/// operand aliases. That is, a token literal operand which is equivalent
1529/// to another, canonical, token literal. For example, ARM allows:
1530///   vmov.u32 s4, #0  -> vmov.i32, #0
1531/// 'u32' is a more specific designator for the 32-bit integer type specifier
1532/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1533///   def : TokenAlias<".u32", ".i32">;
1534///
1535/// This works by marking the match class of 'From' as a subclass of the
1536/// match class of 'To'.
1537class TokenAlias<string From, string To> {
1538  string FromToken = From;
1539  string ToToken = To;
1540}
1541
1542/// MnemonicAlias - This class allows targets to define assembler mnemonic
1543/// aliases.  This should be used when all forms of one mnemonic are accepted
1544/// with a different mnemonic.  For example, X86 allows:
1545///   sal %al, 1    -> shl %al, 1
1546///   sal %ax, %cl  -> shl %ax, %cl
1547///   sal %eax, %cl -> shl %eax, %cl
1548/// etc.  Though "sal" is accepted with many forms, all of them are directly
1549/// translated to a shl, so it can be handled with (in the case of X86, it
1550/// actually has one for each suffix as well):
1551///   def : MnemonicAlias<"sal", "shl">;
1552///
1553/// Mnemonic aliases are mapped before any other translation in the match phase,
1554/// and do allow Requires predicates, e.g.:
1555///
1556///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1557///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1558///
1559/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1560///
1561///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1562///
1563/// If no variant (e.g., "att" or "intel") is specified then the alias is
1564/// applied unconditionally.
1565class MnemonicAlias<string From, string To, string VariantName = ""> {
1566  string FromMnemonic = From;
1567  string ToMnemonic = To;
1568  string AsmVariantName = VariantName;
1569
1570  // Predicates - Predicates that must be true for this remapping to happen.
1571  list<Predicate> Predicates = [];
1572}
1573
1574/// InstAlias - This defines an alternate assembly syntax that is allowed to
1575/// match an instruction that has a different (more canonical) assembly
1576/// representation.
1577class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1578  string AsmString = Asm;      // The .s format to match the instruction with.
1579  dag ResultInst = Result;     // The MCInst to generate.
1580
1581  // This determines which order the InstPrinter detects aliases for
1582  // printing. A larger value makes the alias more likely to be
1583  // emitted. The Instruction's own definition is notionally 0.5, so 0
1584  // disables printing and 1 enables it if there are no conflicting aliases.
1585  int EmitPriority = Emit;
1586
1587  // Predicates - Predicates that must be true for this to match.
1588  list<Predicate> Predicates = [];
1589
1590  // If the instruction specified in Result has defined an AsmMatchConverter
1591  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1592  // function when converting the OperandVector into an MCInst instead of the
1593  // function that is generated by the dag Result.
1594  // Setting this to 0 will cause the alias to ignore the Result instruction's
1595  // defined AsmMatchConverter and instead use the function generated by the
1596  // dag Result.
1597  bit UseInstAsmMatchConverter = true;
1598
1599  // Assembler variant name to use for this alias. If not specified then
1600  // assembler variants will be determined based on AsmString
1601  string AsmVariantName = VariantName;
1602}
1603
1604//===----------------------------------------------------------------------===//
1605// AsmWriter - This class can be implemented by targets that need to customize
1606// the format of the .s file writer.
1607//
1608// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1609// on X86 for example).
1610//
1611class AsmWriter {
1612  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1613  // class.  Generated AsmWriter classes are always prefixed with the target
1614  // name.
1615  string AsmWriterClassName  = "InstPrinter";
1616
1617  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1618  // the various print methods.
1619  // FIXME: Remove after all ports are updated.
1620  int PassSubtarget = 0;
1621
1622  // Variant - AsmWriters can be of multiple different variants.  Variants are
1623  // used to support targets that need to emit assembly code in ways that are
1624  // mostly the same for different targets, but have minor differences in
1625  // syntax.  If the asmstring contains {|} characters in them, this integer
1626  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1627  // == 1, will expand to "y".
1628  int Variant = 0;
1629}
1630def DefaultAsmWriter : AsmWriter;
1631
1632
1633//===----------------------------------------------------------------------===//
1634// Target - This class contains the "global" target information
1635//
1636class Target {
1637  // InstructionSet - Instruction set description for this target.
1638  InstrInfo InstructionSet;
1639
1640  // AssemblyParsers - The AsmParser instances available for this target.
1641  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1642
1643  /// AssemblyParserVariants - The AsmParserVariant instances available for
1644  /// this target.
1645  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1646
1647  // AssemblyWriters - The AsmWriter instances available for this target.
1648  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1649
1650  // AllowRegisterRenaming - Controls whether this target allows
1651  // post-register-allocation renaming of registers.  This is done by
1652  // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1653  // for all opcodes if this flag is set to 0.
1654  int AllowRegisterRenaming = 0;
1655}
1656
1657//===----------------------------------------------------------------------===//
1658// SubtargetFeature - A characteristic of the chip set.
1659//
1660class SubtargetFeature<string n, string f, string v, string d,
1661                       list<SubtargetFeature> i = []> {
1662  // Name - Feature name.  Used by command line (-mattr=) to determine the
1663  // appropriate target chip.
1664  //
1665  string Name = n;
1666
1667  // FieldName - Field in XXXSubtarget to be set by feature.
1668  //
1669  string FieldName = f;
1670
1671  // Value - Value the XXXSubtarget field to be set to by feature.
1672  //
1673  // A value of "true" or "false" implies the field is a bool. Otherwise,
1674  // it is assumed to be an integer. the integer value may be the name of an
1675  // enum constant. If multiple features use the same integer field, the
1676  // field will be set to the maximum value of all enabled features that
1677  // share the field.
1678  //
1679  string Value = v;
1680
1681  // Desc - Feature description.  Used by command line (-mattr=) to display help
1682  // information.
1683  //
1684  string Desc = d;
1685
1686  // Implies - Features that this feature implies are present. If one of those
1687  // features isn't set, then this one shouldn't be set either.
1688  //
1689  list<SubtargetFeature> Implies = i;
1690}
1691
1692/// Specifies a Subtarget feature that this instruction is deprecated on.
1693class Deprecated<SubtargetFeature dep> {
1694  SubtargetFeature DeprecatedFeatureMask = dep;
1695}
1696
1697/// A custom predicate used to determine if an instruction is
1698/// deprecated or not.
1699class ComplexDeprecationPredicate<string dep> {
1700  string ComplexDeprecationPredicate = dep;
1701}
1702
1703//===----------------------------------------------------------------------===//
1704// Processor chip sets - These values represent each of the chip sets supported
1705// by the scheduler.  Each Processor definition requires corresponding
1706// instruction itineraries.
1707//
1708class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
1709                list<SubtargetFeature> tunef = []> {
1710  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1711  // appropriate target chip.
1712  //
1713  string Name = n;
1714
1715  // SchedModel - The machine model for scheduling and instruction cost.
1716  //
1717  SchedMachineModel SchedModel = NoSchedModel;
1718
1719  // ProcItin - The scheduling information for the target processor.
1720  //
1721  ProcessorItineraries ProcItin = pi;
1722
1723  // Features - list of
1724  list<SubtargetFeature> Features = f;
1725
1726  // TuneFeatures - list of features for tuning for this CPU. If the target
1727  // supports -mtune, this should contain the list of features used to make
1728  // microarchitectural optimization decisions for a given processor.  While
1729  // Features should contain the architectural features for the processor.
1730  list<SubtargetFeature> TuneFeatures = tunef;
1731}
1732
1733// ProcessorModel allows subtargets to specify the more general
1734// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1735// gradually move to this newer form.
1736//
1737// Although this class always passes NoItineraries to the Processor
1738// class, the SchedMachineModel may still define valid Itineraries.
1739class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
1740                     list<SubtargetFeature> tunef = []>
1741  : Processor<n, NoItineraries, f, tunef> {
1742  let SchedModel = m;
1743}
1744
1745//===----------------------------------------------------------------------===//
1746// InstrMapping - This class is used to create mapping tables to relate
1747// instructions with each other based on the values specified in RowFields,
1748// ColFields, KeyCol and ValueCols.
1749//
1750class InstrMapping {
1751  // FilterClass - Used to limit search space only to the instructions that
1752  // define the relationship modeled by this InstrMapping record.
1753  string FilterClass;
1754
1755  // RowFields - List of fields/attributes that should be same for all the
1756  // instructions in a row of the relation table. Think of this as a set of
1757  // properties shared by all the instructions related by this relationship
1758  // model and is used to categorize instructions into subgroups. For instance,
1759  // if we want to define a relation that maps 'Add' instruction to its
1760  // predicated forms, we can define RowFields like this:
1761  //
1762  // let RowFields = BaseOp
1763  // All add instruction predicated/non-predicated will have to set their BaseOp
1764  // to the same value.
1765  //
1766  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1767  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1768  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1769  list<string> RowFields = [];
1770
1771  // List of fields/attributes that are same for all the instructions
1772  // in a column of the relation table.
1773  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1774  // based on the 'predSense' values. All the instruction in a specific
1775  // column have the same value and it is fixed for the column according
1776  // to the values set in 'ValueCols'.
1777  list<string> ColFields = [];
1778
1779  // Values for the fields/attributes listed in 'ColFields'.
1780  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1781  // that models this relation) should be non-predicated.
1782  // In the example above, 'Add' is the key instruction.
1783  list<string> KeyCol = [];
1784
1785  // List of values for the fields/attributes listed in 'ColFields', one for
1786  // each column in the relation table.
1787  //
1788  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1789  // table. First column requires all the instructions to have predSense
1790  // set to 'true' and second column requires it to be 'false'.
1791  list<list<string> > ValueCols = [];
1792}
1793
1794//===----------------------------------------------------------------------===//
1795// Pull in the common support for calling conventions.
1796//
1797include "llvm/Target/TargetCallingConv.td"
1798
1799//===----------------------------------------------------------------------===//
1800// Pull in the common support for DAG isel generation.
1801//
1802include "llvm/Target/TargetSelectionDAG.td"
1803
1804//===----------------------------------------------------------------------===//
1805// Pull in the common support for Global ISel register bank info generation.
1806//
1807include "llvm/Target/GlobalISel/RegisterBank.td"
1808
1809//===----------------------------------------------------------------------===//
1810// Pull in the common support for DAG isel generation.
1811//
1812include "llvm/Target/GlobalISel/Target.td"
1813
1814//===----------------------------------------------------------------------===//
1815// Pull in the common support for the Global ISel DAG-based selector generation.
1816//
1817include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1818
1819//===----------------------------------------------------------------------===//
1820// Pull in the common support for Pfm Counters generation.
1821//
1822include "llvm/Target/TargetPfmCounters.td"
1823