1//===- TargetCallingConv.td - Target Calling Conventions ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target-independent interfaces with which targets
10// describe their calling conventions.
11//
12//===----------------------------------------------------------------------===//
13
14class CCAction;
15class CallingConv;
16
17/// CCCustom - Calls a custom arg handling function.
18class CCCustom<string fn> : CCAction {
19  string FuncName = fn;
20}
21
22/// CCPredicateAction - Instances of this class check some predicate, then
23/// delegate to another action if the predicate is true.
24class CCPredicateAction<CCAction A> : CCAction {
25  CCAction SubAction = A;
26}
27
28/// CCIfType - If the current argument is one of the specified types, apply
29/// Action A.
30class CCIfType<list<ValueType> vts, CCAction A> : CCPredicateAction<A> {
31  list<ValueType> VTs = vts;
32}
33
34/// CCIf - If the predicate matches, apply A.
35class CCIf<string predicate, CCAction A> : CCPredicateAction<A> {
36  string Predicate = predicate;
37}
38
39/// CCIfByVal - If the current argument has ByVal parameter attribute, apply
40/// Action A.
41class CCIfByVal<CCAction A> : CCIf<"ArgFlags.isByVal()", A> {
42}
43
44/// CCIfPreallocated - If the current argument has Preallocated parameter attribute,
45/// apply Action A.
46class CCIfPreallocated<CCAction A> : CCIf<"ArgFlags.isPreallocated()", A> {
47}
48
49/// CCIfSwiftSelf - If the current argument has swiftself parameter attribute,
50/// apply Action A.
51class CCIfSwiftSelf<CCAction A> : CCIf<"ArgFlags.isSwiftSelf()", A> {
52}
53
54/// CCIfSwiftAsync - If the current argument has swiftasync parameter attribute,
55/// apply Action A.
56class CCIfSwiftAsync<CCAction A> : CCIf<"ArgFlags.isSwiftAsync()", A> {
57}
58
59/// CCIfSwiftError - If the current argument has swifterror parameter attribute,
60/// apply Action A.
61class CCIfSwiftError<CCAction A> : CCIf<"ArgFlags.isSwiftError()", A> {
62}
63
64/// CCIfCFGuardTarget - If the current argument has cfguardtarget parameter
65/// attribute, apply Action A.
66class CCIfCFGuardTarget<CCAction A> : CCIf<"ArgFlags.isCFGuardTarget()", A> {
67}
68
69/// CCIfConsecutiveRegs - If the current argument has InConsecutiveRegs
70/// parameter attribute, apply Action A.
71class CCIfConsecutiveRegs<CCAction A> : CCIf<"ArgFlags.isInConsecutiveRegs()", A> {
72}
73
74/// CCIfCC - Match if the current calling convention is 'CC'.
75class CCIfCC<string CC, CCAction A>
76  : CCIf<!strconcat("State.getCallingConv() == ", CC), A> {}
77
78/// CCIfInReg - If this argument is marked with the 'inreg' attribute, apply
79/// the specified action.
80class CCIfInReg<CCAction A> : CCIf<"ArgFlags.isInReg()", A> {}
81
82/// CCIfNest - If this argument is marked with the 'nest' attribute, apply
83/// the specified action.
84class CCIfNest<CCAction A> : CCIf<"ArgFlags.isNest()", A> {}
85
86/// CCIfSplit - If this argument is marked with the 'split' attribute, apply
87/// the specified action.
88class CCIfSplit<CCAction A> : CCIf<"ArgFlags.isSplit()", A> {}
89
90/// CCIfSRet - If this argument is marked with the 'sret' attribute, apply
91/// the specified action.
92class CCIfSRet<CCAction A> : CCIf<"ArgFlags.isSRet()", A> {}
93
94/// CCIfVarArg - If the current function is vararg - apply the action
95class CCIfVarArg<CCAction A> : CCIf<"State.isVarArg()", A> {}
96
97/// CCIfNotVarArg - If the current function is not vararg - apply the action
98class CCIfNotVarArg<CCAction A> : CCIf<"!State.isVarArg()", A> {}
99
100/// CCIfPtrAddrSpace - If the top-level parent of the current argument has
101/// pointer type in the specified address-space.
102class CCIfPtrAddrSpace<int AS, CCAction A>
103    : CCIf<"(ArgFlags.isPointer() && ArgFlags.getPointerAddrSpace() == " # AS # ")", A> {}
104
105/// CCIfPtr - If the top-level parent of the current argument had
106/// pointer type in some address-space.
107class CCIfPtr<CCAction A> : CCIf<"ArgFlags.isPointer()", A> {}
108
109/// CCAssignToReg - This action matches if there is a register in the specified
110/// list that is still available.  If so, it assigns the value to the first
111/// available register and succeeds.
112class CCAssignToReg<list<Register> regList> : CCAction {
113  list<Register> RegList = regList;
114}
115
116/// CCAssignToRegWithShadow - Same as CCAssignToReg, but with list of registers
117/// which became shadowed, when some register is used.
118class CCAssignToRegWithShadow<list<Register> regList,
119                              list<Register> shadowList> : CCAction {
120  list<Register> RegList = regList;
121  list<Register> ShadowRegList = shadowList;
122}
123
124/// CCAssignToStack - This action always matches: it assigns the value to a
125/// stack slot of the specified size and alignment on the stack.  If size is
126/// zero then the ABI size is used; if align is zero then the ABI alignment
127/// is used - these may depend on the target or subtarget.
128class CCAssignToStack<int size, int align> : CCAction {
129  int Size = size;
130  int Align = align;
131}
132
133/// CCAssignToStackWithShadow - Same as CCAssignToStack, but with a list of
134/// registers to be shadowed. Note that, unlike CCAssignToRegWithShadow, this
135/// shadows ALL of the registers in shadowList.
136class CCAssignToStackWithShadow<int size,
137                                int align,
138                                list<Register> shadowList> : CCAction {
139  int Size = size;
140  int Align = align;
141  list<Register> ShadowRegList = shadowList;
142}
143
144/// CCPassByVal - This action always matches: it assigns the value to a stack
145/// slot to implement ByVal aggregate parameter passing. Size and alignment
146/// specify the minimum size and alignment for the stack slot.
147class CCPassByVal<int size, int align> : CCAction {
148  int Size = size;
149  int Align = align;
150}
151
152/// CCPromoteToType - If applied, this promotes the specified current value to
153/// the specified type.
154class CCPromoteToType<ValueType destTy> : CCAction {
155  ValueType DestTy = destTy;
156}
157
158/// CCPromoteToUpperBitsInType - If applied, this promotes the specified current
159/// value to the specified type and shifts the value into the upper bits.
160class CCPromoteToUpperBitsInType<ValueType destTy> : CCAction {
161  ValueType DestTy = destTy;
162}
163
164/// CCBitConvertToType - If applied, this bitconverts the specified current
165/// value to the specified type.
166class CCBitConvertToType<ValueType destTy> : CCAction {
167  ValueType DestTy = destTy;
168}
169
170/// CCTruncToType - If applied, this truncates the specified current value to
171/// the specified type.
172class CCTruncToType<ValueType destTy> : CCAction {
173  ValueType DestTy = destTy;
174}
175
176/// CCPassIndirect - If applied, this stores the value to stack and passes the pointer
177/// as normal argument.
178class CCPassIndirect<ValueType destTy> : CCAction {
179  ValueType DestTy = destTy;
180}
181
182/// CCDelegateTo - This action invokes the specified sub-calling-convention.  It
183/// is successful if the specified CC matches.
184class CCDelegateTo<CallingConv cc> : CCAction {
185  CallingConv CC = cc;
186}
187
188/// CallingConv - An instance of this is used to define each calling convention
189/// that the target supports.
190class CallingConv<list<CCAction> actions> {
191  list<CCAction> Actions = actions;
192
193  /// If true, this calling convention will be emitted as externally visible in
194  /// the llvm namespaces instead of as a static function.
195  bit Entry = false;
196
197  bit Custom = false;
198}
199
200/// CustomCallingConv - An instance of this is used to declare calling
201/// conventions that are implemented using a custom function of the same name.
202class CustomCallingConv : CallingConv<[]> {
203  let Custom = true;
204}
205
206/// CalleeSavedRegs - A list of callee saved registers for a given calling
207/// convention.  The order of registers is used by PrologEpilogInsertion when
208/// allocation stack slots for saved registers.
209///
210/// For each CalleeSavedRegs def, TableGen will emit a FOO_SaveList array for
211/// returning from getCalleeSavedRegs(), and a FOO_RegMask bit mask suitable for
212/// returning from getCallPreservedMask().
213class CalleeSavedRegs<dag saves> {
214  dag SaveList = saves;
215
216  // Registers that are also preserved across function calls, but should not be
217  // included in the generated FOO_SaveList array. These registers will be
218  // included in the FOO_RegMask bit mask. This can be used for registers that
219  // are saved automatically, like the SPARC register windows.
220  dag OtherPreserved;
221}
222